// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "DSPIntUtil.h" #include "DSPMemoryMap.h" #include "DSPIntExtOps.h" // Extended opcodes do not exist on their own. These opcodes can only be // attached to opcodes that allow extending (8 (or 7) lower bits of opcode not used by // opcode). Extended opcodes do not modify program counter $pc register. // Most of the suffixes increment or decrement one or more addressing registers // (the first four, ARx). The increment/decrement is either 1, or the // corresponding "index" register (the second four, IXx). The addressing // registers will wrap in odd ways, dictated by the corresponding wrapping // register, WR0-3. namespace DSPInterpreter { namespace Ext { inline bool IsSameMemArea(u16 a, u16 b) { //LM: tested on WII if ((a>>10)==(b>>10)) return true; else return false; } // DR $arR // xxxx xxxx 0000 01rr // Decrement addressing register $arR. void dr(const UDSPInstruction opc) { writeToBackLog(0, opc & 0x3, dsp_decrement_addr_reg(opc & 0x3)); } // IR $arR // xxxx xxxx 0000 10rr // Increment addressing register $arR. void ir(const UDSPInstruction opc) { writeToBackLog(0, opc & 0x3, dsp_increment_addr_reg(opc & 0x3)); } // NR $arR // xxxx xxxx 0000 11rr // Add corresponding indexing register $ixR to addressing register $arR. void nr(const UDSPInstruction opc) { u8 reg = opc & 0x3; writeToBackLog(0, reg, dsp_increase_addr_reg(reg, (s16)g_dsp.r[DSP_REG_IX0 + reg])); } // MV $axD.D, $acS.S // xxxx xxxx 0001 ddss // Move value of $acS.S to the $axD.D. void mv(const UDSPInstruction opc) { u8 sreg = (opc & 0x3) + DSP_REG_ACL0; u8 dreg = ((opc >> 2) & 0x3); #if 0 //more tests if ((sreg >= DSP_REG_ACM0) && (g_dsp.r[DSP_REG_SR] & SR_40_MODE_BIT)) writeToBackLog(0, dreg + DSP_REG_AXL0, ((u16)dsp_get_acc_h(sreg-DSP_REG_ACM0) & 0x0080) ? 0x8000 : 0x7fff); else #endif writeToBackLog(0, dreg + DSP_REG_AXL0, g_dsp.r[sreg]); } // S @$arD, $acS.S // xxxx xxxx 001s s0dd // Store value of $acS.S in the memory pointed by register $arD. // Post increment register $arD. void s(const UDSPInstruction opc) { u8 dreg = opc & 0x3; u8 sreg = ((opc >> 3) & 0x3) + DSP_REG_ACL0; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_increment_addr_reg(dreg)); } // SN @$arD, $acS.S // xxxx xxxx 001s s1dd // Store value of register $acS.S in the memory pointed by register $arD. // Add indexing register $ixD to register $arD. void sn(const UDSPInstruction opc) { u8 dreg = opc & 0x3; u8 sreg = ((opc >> 3) & 0x3) + DSP_REG_ACL0; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg])); } // L $axD.D, @$arS // xxxx xxxx 01dd d0ss // Load $axD.D/$acD.D with value from memory pointed by register $arS. // Post increment register $arS. void l(const UDSPInstruction opc) { u8 sreg = opc & 0x3; u8 dreg = ((opc >> 3) & 0x7) + DSP_REG_AXL0; if ((dreg >= DSP_REG_ACM0) && (g_dsp.r[DSP_REG_SR] & SR_40_MODE_BIT)) { u16 val = dsp_dmem_read(g_dsp.r[sreg]); writeToBackLog(0, dreg - DSP_REG_ACM0 + DSP_REG_ACH0, (val & 0x8000) ? 0xFFFF : 0x0000); writeToBackLog(1, dreg, val); writeToBackLog(2, dreg - DSP_REG_ACM0 + DSP_REG_ACL0, 0); writeToBackLog(3, sreg, dsp_increment_addr_reg(sreg)); } else { writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increment_addr_reg(sreg)); } } // LN $axD.D, @$arS // xxxx xxxx 01dd d0ss // Load $axD.D/$acD.D with value from memory pointed by register $arS. // Add indexing register register $ixS to register $arS. void ln(const UDSPInstruction opc) { u8 sreg = opc & 0x3; u8 dreg = ((opc >> 3) & 0x7) + DSP_REG_AXL0; if ((dreg >= DSP_REG_ACM0) && (g_dsp.r[DSP_REG_SR] & SR_40_MODE_BIT)) { u16 val = dsp_dmem_read(g_dsp.r[sreg]); writeToBackLog(0, dreg - DSP_REG_ACM0 + DSP_REG_ACH0, (val & 0x8000) ? 0xFFFF : 0x0000); writeToBackLog(1, dreg, val); writeToBackLog(2, dreg - DSP_REG_ACM0 + DSP_REG_ACL0, 0); writeToBackLog(3, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } else { writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[sreg])); writeToBackLog(1, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } } // LS $axD.D, $acS.m // xxxx xxxx 10dd 000s // Load register $axD.D with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Increment both $ar0 and $ar3. void ls(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR3], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // LSN $axD.D, $acS.m // xxxx xxxx 10dd 010s // Load register $axD.D with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Add corresponding indexing register $ix0 to addressing // register $ar0 and increment $ar3. void lsn(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR3], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // LSM $axD.D, $acS.m // xxxx xxxx 10dd 100s // Load register $axD.D with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Add corresponding indexing register $ix3 to addressing // register $ar3 and increment $ar0. void lsm(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR3], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX3])); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // LSMN $axD.D, $acS.m // xxxx xxxx 10dd 110s // Load register $axD.D with value from memory pointed by register // $ar0. Store value from register $acS.m to memory location pointed by // register $ar3. Add corresponding indexing register $ix0 to addressing // register $ar0 and add corresponding indexing register $ix3 to addressing // register $ar3. void lsnm(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR3], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR0])); writeToBackLog(1, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX3])); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // SL $acS.m, $axD.D // xxxx xxxx 10dd 001s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $axD.D with value from memory pointed by register // $ar3. Increment both $ar0 and $ar3. void sl(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(1, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // SLN $acS.m, $axD.D // xxxx xxxx 10dd 011s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $axD.D with value from memory pointed by register // $ar3. Add corresponding indexing register $ix0 to addressing register $ar0 // and increment $ar3. void sln(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(1, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // SLM $acS.m, $axD.D // xxxx xxxx 10dd 101s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $axD.D with value from memory pointed by register // $ar3. Add corresponding indexing register $ix3 to addressing register $ar3 // and increment $ar0. void slm(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(1, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX3])); writeToBackLog(2, DSP_REG_AR0, dsp_increment_addr_reg(DSP_REG_AR0)); } // SLMN $acS.m, $axD.D // xxxx xxxx 10dd 111s // Store value from register $acS.m to memory location pointed by register // $ar0. Load register $axD.D with value from memory pointed by register // $ar3. Add corresponding indexing register $ix0 to addressing register $ar0 // and add corresponding indexing register $ix3 to addressing register $ar3. void slnm(const UDSPInstruction opc) { u8 sreg = (opc & 0x1) + DSP_REG_ACM0; u8 dreg = ((opc >> 4) & 0x3) + DSP_REG_AXL0; dsp_dmem_write(g_dsp.r[DSP_REG_AR0], g_dsp.r[sreg]); writeToBackLog(0, dreg, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(1, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX3])); writeToBackLog(2, DSP_REG_AR0, dsp_increase_addr_reg(DSP_REG_AR0, (s16)g_dsp.r[DSP_REG_IX0])); } // LD $ax0.d, $ax1.r, @$arS // xxxx xxxx 11dr 00ss // example for "nx'ld $AX0.L, $AX1.L, @$AR3" // Loads the word pointed by AR0 to AX0.H, then loads the word pointed by AR3 to AX0.L. // Increments AR0 and AR3. // If AR0 and AR3 point into the same memory page (upper 6 bits of addr are the same -> games are not doing that!) // then the value pointed by AR0 is loaded to BOTH AX0.H and AX0.L. // If AR0 points into an invalid memory page (ie 0x2000), then AX0.H keeps its old value. (not implemented yet) // If AR3 points into an invalid memory page, then AX0.L gets the same value as AX0.H. (not implemented yet) void ld(const UDSPInstruction opc) { u8 dreg = (opc >> 5) & 0x1; u8 rreg = (opc >> 4) & 0x1; u8 sreg = opc & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increment_addr_reg(sreg)); } else { writeToBackLog(0, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increment_addr_reg(dreg)); } writeToBackLog(3, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); } // LDN $ax0.d, $ax1.r, @$arS // xxxx xxxx 11dr 01ss void ldn(const UDSPInstruction opc) { u8 dreg = (opc >> 5) & 0x1; u8 rreg = (opc >> 4) & 0x1; u8 sreg = opc & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } else { writeToBackLog(0, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg])); } writeToBackLog(3, DSP_REG_AR3, dsp_increment_addr_reg(DSP_REG_AR3)); } // LDM $ax0.d, $ax1.r, @$arS // xxxx xxxx 11dr 10ss void ldm(const UDSPInstruction opc) { u8 dreg = (opc >> 5) & 0x1; u8 rreg = (opc >> 4) & 0x1; u8 sreg = opc & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increment_addr_reg(sreg)); } else { writeToBackLog(0, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increment_addr_reg(dreg)); } writeToBackLog(3, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX3])); } // LDNM $ax0.d, $ax1.r, @$arS // xxxx xxxx 11dr 11ss void ldnm(const UDSPInstruction opc) { u8 dreg = (opc >> 5) & 0x1; u8 rreg = (opc >> 4) & 0x1; u8 sreg = opc & 0x3; if (sreg != DSP_REG_AR3) { writeToBackLog(0, (dreg << 1) + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[sreg])); if (IsSameMemArea(g_dsp.r[sreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[sreg])); else writeToBackLog(1, (rreg << 1) + DSP_REG_AXL1, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, sreg, dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg])); } else { writeToBackLog(0, rreg + DSP_REG_AXH0, dsp_dmem_read(g_dsp.r[dreg])); if (IsSameMemArea(g_dsp.r[dreg], g_dsp.r[DSP_REG_AR3])) writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[dreg])); else writeToBackLog(1, rreg + DSP_REG_AXL0, dsp_dmem_read(g_dsp.r[DSP_REG_AR3])); writeToBackLog(2, dreg, dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg])); } writeToBackLog(3, DSP_REG_AR3, dsp_increase_addr_reg(DSP_REG_AR3, (s16)g_dsp.r[DSP_REG_IX3])); } void nop(const UDSPInstruction opc) { } } // end namespace ext } // end namespace DSPInterpeter // The ext ops are calculated in parallel with the actual op. That means that // both the main op and the ext op see the same register state as input. The // output is simple as long as the main and ext ops don't change the same // register. If they do the output is the bitwise or of the result of both the // main and ext ops. // The ext op are writing their output into the backlog which is // being applied to the real registers after the main op was executed void applyWriteBackLog() { // always make sure to have an extra entry at the end w/ -1 to avoid // infinitive loops for (int i = 0; writeBackLogIdx[i] != -1; i++) { dsp_op_write_reg(writeBackLogIdx[i], g_dsp.r[writeBackLogIdx[i]] | writeBackLog[i]); // Clear back log writeBackLogIdx[i] = -1; } } // This function is being called in the main op after all input regs were read // and before it writes into any regs. This way we can always use bitwise or to // apply the ext command output, because if the main op didn't change the value // then 0 | ext output = ext output and if it did then bitwise or is still the // right thing to do void zeroWriteBackLog() { // always make sure to have an extra entry at the end w/ -1 to avoid // infinitive loops for (int i = 0; writeBackLogIdx[i] != -1; i++) { dsp_op_write_reg(writeBackLogIdx[i], 0); } } //needed for 0x3... //ex. corner case -> 0x3060: main opcode modifies .m, and extended .l -> .l shoudnt be zeroed because of .m write... void zeroWriteBackLogPreserveAcc(u8 acc) { for (int i = 0; writeBackLogIdx[i] != -1; i++) { // acc0 if ((acc == 0) && ((writeBackLogIdx[i] == DSP_REG_ACL0) || (writeBackLogIdx[i] == DSP_REG_ACM0) || (writeBackLogIdx[i] == DSP_REG_ACH0))) continue; // acc1 if ((acc == 1) && ((writeBackLogIdx[i] == DSP_REG_ACL1) || (writeBackLogIdx[i] == DSP_REG_ACM1) || (writeBackLogIdx[i] == DSP_REG_ACH1))) continue; dsp_op_write_reg(writeBackLogIdx[i], 0); } }