// Copyright 2018 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "DiscIO/WIABlob.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "Common/Align.h" #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Crypto/SHA1.h" #include "Common/FileUtil.h" #include "Common/IOFile.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/ScopeGuard.h" #include "Common/Swap.h" #include "DiscIO/Blob.h" #include "DiscIO/DiscUtils.h" #include "DiscIO/Filesystem.h" #include "DiscIO/LaggedFibonacciGenerator.h" #include "DiscIO/MultithreadedCompressor.h" #include "DiscIO/Volume.h" #include "DiscIO/VolumeWii.h" #include "DiscIO/WIACompression.h" #include "DiscIO/WiiEncryptionCache.h" namespace DiscIO { static void PushBack(std::vector* vector, const u8* begin, const u8* end) { const size_t offset_in_vector = vector->size(); vector->resize(offset_in_vector + (end - begin)); std::copy(begin, end, vector->data() + offset_in_vector); } template static void PushBack(std::vector* vector, const T& x) { static_assert(std::is_trivially_copyable_v); const u8* x_ptr = reinterpret_cast(&x); PushBack(vector, x_ptr, x_ptr + sizeof(T)); } std::pair GetAllowedCompressionLevels(WIARVZCompressionType compression_type, bool gui) { switch (compression_type) { case WIARVZCompressionType::Bzip2: case WIARVZCompressionType::LZMA: case WIARVZCompressionType::LZMA2: return {1, 9}; case WIARVZCompressionType::Zstd: // The actual minimum level can be gotten by calling ZSTD_minCLevel(). However, returning that // would make the UI rather weird, because it is a negative number with very large magnitude. // Note: Level 0 is a special number which means "default level" (level 3 as of this writing). if (gui) return {1, ZSTD_maxCLevel()}; else return {ZSTD_minCLevel(), ZSTD_maxCLevel()}; default: return {0, -1}; } } template WIARVZFileReader::WIARVZFileReader(File::IOFile file, const std::string& path) : m_file(std::move(file)), m_path(path), m_encryption_cache(this) { m_valid = Initialize(path); } template WIARVZFileReader::~WIARVZFileReader() = default; template bool WIARVZFileReader::Initialize(const std::string& path) { if (!m_file.Seek(0, File::SeekOrigin::Begin) || !m_file.ReadArray(&m_header_1, 1)) return false; if ((!RVZ && m_header_1.magic != WIA_MAGIC) || (RVZ && m_header_1.magic != RVZ_MAGIC)) return false; const u32 version = RVZ ? RVZ_VERSION : WIA_VERSION; const u32 version_read_compatible = RVZ ? RVZ_VERSION_READ_COMPATIBLE : WIA_VERSION_READ_COMPATIBLE; const u32 file_version = Common::swap32(m_header_1.version); const u32 file_version_compatible = Common::swap32(m_header_1.version_compatible); if (version < file_version_compatible || version_read_compatible > file_version) { ERROR_LOG_FMT(DISCIO, "Unsupported version {} in {}", VersionToString(file_version), path); return false; } const auto header_1_actual_hash = Common::SHA1::CalculateDigest( reinterpret_cast(&m_header_1), sizeof(m_header_1) - Common::SHA1::DIGEST_LEN); if (m_header_1.header_1_hash != header_1_actual_hash) return false; if (Common::swap64(m_header_1.wia_file_size) != m_file.GetSize()) { ERROR_LOG_FMT(DISCIO, "File size is incorrect for {}", path); return false; } const u32 header_2_size = Common::swap32(m_header_1.header_2_size); const u32 header_2_min_size = sizeof(WIAHeader2) - sizeof(WIAHeader2::compressor_data); if (header_2_size < header_2_min_size) return false; std::vector header_2(header_2_size); if (!m_file.ReadBytes(header_2.data(), header_2.size())) return false; const auto header_2_actual_hash = Common::SHA1::CalculateDigest(header_2); if (m_header_1.header_2_hash != header_2_actual_hash) return false; std::memcpy(&m_header_2, header_2.data(), std::min(header_2.size(), sizeof(WIAHeader2))); if (m_header_2.compressor_data_size > sizeof(WIAHeader2::compressor_data) || header_2_size < header_2_min_size + m_header_2.compressor_data_size) { return false; } const u32 chunk_size = Common::swap32(m_header_2.chunk_size); const auto is_power_of_two = [](u32 x) { return (x & (x - 1)) == 0; }; if ((!RVZ || chunk_size < VolumeWii::BLOCK_TOTAL_SIZE || !is_power_of_two(chunk_size)) && chunk_size % VolumeWii::GROUP_TOTAL_SIZE != 0) { return false; } const u32 compression_type = Common::swap32(m_header_2.compression_type); m_compression_type = static_cast(compression_type); if (m_compression_type > (RVZ ? WIARVZCompressionType::Zstd : WIARVZCompressionType::LZMA2) || (RVZ && m_compression_type == WIARVZCompressionType::Purge)) { ERROR_LOG_FMT(DISCIO, "Unsupported compression type {} in {}", compression_type, path); return false; } const size_t number_of_partition_entries = Common::swap32(m_header_2.number_of_partition_entries); const size_t partition_entry_size = Common::swap32(m_header_2.partition_entry_size); std::vector partition_entries(partition_entry_size * number_of_partition_entries); if (!m_file.Seek(Common::swap64(m_header_2.partition_entries_offset), File::SeekOrigin::Begin)) return false; if (!m_file.ReadBytes(partition_entries.data(), partition_entries.size())) return false; const auto partition_entries_actual_hash = Common::SHA1::CalculateDigest(partition_entries); if (m_header_2.partition_entries_hash != partition_entries_actual_hash) return false; const size_t copy_length = std::min(partition_entry_size, sizeof(PartitionEntry)); const size_t memset_length = sizeof(PartitionEntry) - copy_length; u8* ptr = partition_entries.data(); m_partition_entries.resize(number_of_partition_entries); for (size_t i = 0; i < number_of_partition_entries; ++i, ptr += partition_entry_size) { std::memcpy(&m_partition_entries[i], ptr, copy_length); std::memset(reinterpret_cast(&m_partition_entries[i]) + copy_length, 0, memset_length); } for (size_t i = 0; i < m_partition_entries.size(); ++i) { const std::array& entries = m_partition_entries[i].data_entries; size_t non_empty_entries = 0; for (size_t j = 0; j < entries.size(); ++j) { const u32 number_of_sectors = Common::swap32(entries[j].number_of_sectors); if (number_of_sectors != 0) { ++non_empty_entries; const u32 last_sector = Common::swap32(entries[j].first_sector) + number_of_sectors; m_data_entries.emplace(last_sector * VolumeWii::BLOCK_TOTAL_SIZE, DataEntry(i, j)); } } if (non_empty_entries > 1) { if (Common::swap32(entries[0].first_sector) > Common::swap32(entries[1].first_sector)) return false; } } const u32 number_of_raw_data_entries = Common::swap32(m_header_2.number_of_raw_data_entries); m_raw_data_entries.resize(number_of_raw_data_entries); Chunk& raw_data_entries = ReadCompressedData(Common::swap64(m_header_2.raw_data_entries_offset), Common::swap32(m_header_2.raw_data_entries_size), number_of_raw_data_entries * sizeof(RawDataEntry), m_compression_type); if (!raw_data_entries.ReadAll(&m_raw_data_entries)) return false; for (size_t i = 0; i < m_raw_data_entries.size(); ++i) { const RawDataEntry& entry = m_raw_data_entries[i]; const u64 data_size = Common::swap64(entry.data_size); if (data_size != 0) m_data_entries.emplace(Common::swap64(entry.data_offset) + data_size, DataEntry(i)); } const u32 number_of_group_entries = Common::swap32(m_header_2.number_of_group_entries); m_group_entries.resize(number_of_group_entries); Chunk& group_entries = ReadCompressedData(Common::swap64(m_header_2.group_entries_offset), Common::swap32(m_header_2.group_entries_size), number_of_group_entries * sizeof(GroupEntry), m_compression_type); if (!group_entries.ReadAll(&m_group_entries)) return false; if (HasDataOverlap()) return false; return true; } template bool WIARVZFileReader::HasDataOverlap() const { for (size_t i = 0; i < m_partition_entries.size(); ++i) { const std::array& entries = m_partition_entries[i].data_entries; for (size_t j = 0; j < entries.size(); ++j) { if (Common::swap32(entries[j].number_of_sectors) == 0) continue; const u64 data_offset = Common::swap32(entries[j].first_sector) * VolumeWii::BLOCK_TOTAL_SIZE; const auto it = m_data_entries.upper_bound(data_offset); if (it == m_data_entries.end()) return true; // Not an overlap, but an error nonetheless if (!it->second.is_partition || it->second.index != i || it->second.partition_data_index != j) return true; // Overlap } } for (size_t i = 0; i < m_raw_data_entries.size(); ++i) { if (Common::swap64(m_raw_data_entries[i].data_size) == 0) continue; const u64 data_offset = Common::swap64(m_raw_data_entries[i].data_offset); const auto it = m_data_entries.upper_bound(data_offset); if (it == m_data_entries.end()) return true; // Not an overlap, but an error nonetheless if (it->second.is_partition || it->second.index != i) return true; // Overlap } return false; } template std::unique_ptr> WIARVZFileReader::Create(File::IOFile file, const std::string& path) { std::unique_ptr blob(new WIARVZFileReader(std::move(file), path)); return blob->m_valid ? std::move(blob) : nullptr; } template BlobType WIARVZFileReader::GetBlobType() const { return RVZ ? BlobType::RVZ : BlobType::WIA; } template std::unique_ptr WIARVZFileReader::CopyReader() const { return Create(m_file.Duplicate("rb"), m_path); } template std::string WIARVZFileReader::GetCompressionMethod() const { switch (m_compression_type) { case WIARVZCompressionType::Purge: return "Purge"; case WIARVZCompressionType::Bzip2: return "bzip2"; case WIARVZCompressionType::LZMA: return "LZMA"; case WIARVZCompressionType::LZMA2: return "LZMA2"; case WIARVZCompressionType::Zstd: return "Zstandard"; default: return {}; } } template bool WIARVZFileReader::Read(u64 offset, u64 size, u8* out_ptr) { if (offset + size > Common::swap64(m_header_1.iso_file_size)) return false; if (offset < sizeof(WIAHeader2::disc_header)) { const u64 bytes_to_read = std::min(sizeof(WIAHeader2::disc_header) - offset, size); std::memcpy(out_ptr, m_header_2.disc_header.data() + offset, bytes_to_read); offset += bytes_to_read; size -= bytes_to_read; out_ptr += bytes_to_read; } const u32 chunk_size = Common::swap32(m_header_2.chunk_size); while (size > 0) { const auto it = m_data_entries.upper_bound(offset); if (it == m_data_entries.end()) return false; const DataEntry& data = it->second; if (data.is_partition) { const PartitionEntry& partition = m_partition_entries[it->second.index]; const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector); const u64 partition_data_offset = partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE; const u32 second_number_of_sectors = Common::swap32(partition.data_entries[1].number_of_sectors); const u32 partition_total_sectors = second_number_of_sectors ? Common::swap32(partition.data_entries[1].first_sector) - partition_first_sector + second_number_of_sectors : Common::swap32(partition.data_entries[0].number_of_sectors); for (const PartitionDataEntry& partition_data : partition.data_entries) { if (size == 0) return true; const u32 first_sector = Common::swap32(partition_data.first_sector); const u32 number_of_sectors = Common::swap32(partition_data.number_of_sectors); const u64 data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE; const u64 data_size = number_of_sectors * VolumeWii::BLOCK_TOTAL_SIZE; if (data_size == 0) continue; if (data_offset + data_size <= offset) continue; if (offset < data_offset) return false; const u64 bytes_to_read = std::min(data_size - (offset - data_offset), size); m_exception_list.clear(); m_write_to_exception_list = true; m_exception_list_last_group_index = std::numeric_limits::max(); Common::ScopeGuard guard([this] { m_write_to_exception_list = false; }); bool hash_exception_error = false; if (!m_encryption_cache.EncryptGroups( offset - partition_data_offset, bytes_to_read, out_ptr, partition_data_offset, partition_total_sectors * VolumeWii::BLOCK_DATA_SIZE, partition.partition_key, [this, &hash_exception_error]( VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP], u64 offset_) { // EncryptGroups calls ReadWiiDecrypted, which calls ReadFromGroups, // which populates m_exception_list when m_write_to_exception_list == true if (!ApplyHashExceptions(m_exception_list, hash_blocks)) hash_exception_error = true; })) { return false; } if (hash_exception_error) return false; offset += bytes_to_read; size -= bytes_to_read; out_ptr += bytes_to_read; } } else { const RawDataEntry& raw_data = m_raw_data_entries[data.index]; if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_TOTAL_SIZE, Common::swap64(raw_data.data_offset), Common::swap64(raw_data.data_size), Common::swap32(raw_data.group_index), Common::swap32(raw_data.number_of_groups), 0)) { return false; } } } return true; } template const typename WIARVZFileReader::PartitionEntry* WIARVZFileReader::GetPartition(u64 partition_data_offset, u32* partition_first_sector) const { const auto it = m_data_entries.upper_bound(partition_data_offset); if (it == m_data_entries.end() || !it->second.is_partition) return nullptr; const PartitionEntry* partition = &m_partition_entries[it->second.index]; *partition_first_sector = Common::swap32(partition->data_entries[0].first_sector); if (partition_data_offset != *partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE) return nullptr; return partition; } template bool WIARVZFileReader::SupportsReadWiiDecrypted(u64 offset, u64 size, u64 partition_data_offset) const { u32 partition_first_sector; const PartitionEntry* partition = GetPartition(partition_data_offset, &partition_first_sector); if (!partition) return false; for (const PartitionDataEntry& data : partition->data_entries) { const u32 start_sector = Common::swap32(data.first_sector) - partition_first_sector; const u32 end_sector = start_sector + Common::swap32(data.number_of_sectors); if (offset + size <= end_sector * VolumeWii::BLOCK_DATA_SIZE) return true; } return false; } template bool WIARVZFileReader::ReadWiiDecrypted(u64 offset, u64 size, u8* out_ptr, u64 partition_data_offset) { u32 partition_first_sector; const PartitionEntry* partition = GetPartition(partition_data_offset, &partition_first_sector); if (!partition) return false; const u64 chunk_size = Common::swap32(m_header_2.chunk_size) * VolumeWii::BLOCK_DATA_SIZE / VolumeWii::BLOCK_TOTAL_SIZE; for (const PartitionDataEntry& data : partition->data_entries) { if (size == 0) return true; const u64 data_offset = (Common::swap32(data.first_sector) - partition_first_sector) * VolumeWii::BLOCK_DATA_SIZE; const u64 data_size = Common::swap32(data.number_of_sectors) * VolumeWii::BLOCK_DATA_SIZE; if (!ReadFromGroups( &offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_DATA_SIZE, data_offset, data_size, Common::swap32(data.group_index), Common::swap32(data.number_of_groups), std::max(1, static_cast(chunk_size / VolumeWii::GROUP_DATA_SIZE)))) { return false; } } return size == 0; } template bool WIARVZFileReader::ReadFromGroups(u64* offset, u64* size, u8** out_ptr, u64 chunk_size, u32 sector_size, u64 data_offset, u64 data_size, u32 group_index, u32 number_of_groups, u32 exception_lists) { if (data_offset + data_size <= *offset) return true; if (*offset < data_offset) return false; const u64 skipped_data = data_offset % sector_size; data_offset -= skipped_data; data_size += skipped_data; const u64 start_group_index = (*offset - data_offset) / chunk_size; for (u64 i = start_group_index; i < number_of_groups && (*size) > 0; ++i) { const u64 total_group_index = group_index + i; if (total_group_index >= m_group_entries.size()) return false; const GroupEntry group = m_group_entries[total_group_index]; const u64 group_offset_in_data = i * chunk_size; const u64 offset_in_group = *offset - group_offset_in_data - data_offset; chunk_size = std::min(chunk_size, data_size - group_offset_in_data); const u64 bytes_to_read = std::min(chunk_size - offset_in_group, *size); u32 group_data_size = Common::swap32(group.data_size); WIARVZCompressionType compression_type = m_compression_type; u32 rvz_packed_size = 0; if constexpr (RVZ) { if ((group_data_size & 0x80000000) == 0) compression_type = WIARVZCompressionType::None; group_data_size &= 0x7FFFFFFF; rvz_packed_size = Common::swap32(group.rvz_packed_size); } if (group_data_size == 0) { std::memset(*out_ptr, 0, bytes_to_read); } else { const u64 group_offset_in_file = static_cast(Common::swap32(group.data_offset)) << 2; Chunk& chunk = ReadCompressedData(group_offset_in_file, group_data_size, chunk_size, compression_type, exception_lists, rvz_packed_size, group_offset_in_data); if (!chunk.Read(offset_in_group, bytes_to_read, *out_ptr)) { m_cached_chunk_offset = std::numeric_limits::max(); // Invalidate the cache return false; } if (m_write_to_exception_list && m_exception_list_last_group_index != total_group_index) { const u64 exception_list_index = offset_in_group / VolumeWii::GROUP_DATA_SIZE; const u16 additional_offset = static_cast(group_offset_in_data % VolumeWii::GROUP_DATA_SIZE / VolumeWii::BLOCK_DATA_SIZE * VolumeWii::BLOCK_HEADER_SIZE); chunk.GetHashExceptions(&m_exception_list, exception_list_index, additional_offset); m_exception_list_last_group_index = total_group_index; } } *offset += bytes_to_read; *size -= bytes_to_read; *out_ptr += bytes_to_read; } return true; } template typename WIARVZFileReader::Chunk& WIARVZFileReader::ReadCompressedData(u64 offset_in_file, u64 compressed_size, u64 decompressed_size, WIARVZCompressionType compression_type, u32 exception_lists, u32 rvz_packed_size, u64 data_offset) { if (offset_in_file == m_cached_chunk_offset) return m_cached_chunk; std::unique_ptr decompressor; switch (compression_type) { case WIARVZCompressionType::None: decompressor = std::make_unique(); break; case WIARVZCompressionType::Purge: decompressor = std::make_unique(rvz_packed_size == 0 ? decompressed_size : rvz_packed_size); break; case WIARVZCompressionType::Bzip2: decompressor = std::make_unique(); break; case WIARVZCompressionType::LZMA: decompressor = std::make_unique(false, m_header_2.compressor_data, m_header_2.compressor_data_size); break; case WIARVZCompressionType::LZMA2: decompressor = std::make_unique(true, m_header_2.compressor_data, m_header_2.compressor_data_size); break; case WIARVZCompressionType::Zstd: decompressor = std::make_unique(); break; } const bool compressed_exception_lists = compression_type > WIARVZCompressionType::Purge; m_cached_chunk = Chunk(&m_file, offset_in_file, compressed_size, decompressed_size, exception_lists, compressed_exception_lists, rvz_packed_size, data_offset, std::move(decompressor)); m_cached_chunk_offset = offset_in_file; return m_cached_chunk; } template std::string WIARVZFileReader::VersionToString(u32 version) { const u8 a = version >> 24; const u8 b = (version >> 16) & 0xff; const u8 c = (version >> 8) & 0xff; const u8 d = version & 0xff; if (d == 0 || d == 0xff) return fmt::format("{}.{:02x}.{:02x}", a, b, c); else return fmt::format("{}.{:02x}.{:02x}.beta{}", a, b, c, d); } template WIARVZFileReader::Chunk::Chunk() = default; template WIARVZFileReader::Chunk::Chunk(File::IOFile* file, u64 offset_in_file, u64 compressed_size, u64 decompressed_size, u32 exception_lists, bool compressed_exception_lists, u32 rvz_packed_size, u64 data_offset, std::unique_ptr decompressor) : m_decompressor(std::move(decompressor)), m_file(file), m_offset_in_file(offset_in_file), m_exception_lists(exception_lists), m_compressed_exception_lists(compressed_exception_lists), m_rvz_packed_size(rvz_packed_size), m_data_offset(data_offset) { constexpr size_t MAX_SIZE_PER_EXCEPTION_LIST = Common::AlignUp(VolumeWii::BLOCK_HEADER_SIZE, Common::SHA1::DIGEST_LEN) / Common::SHA1::DIGEST_LEN * VolumeWii::BLOCKS_PER_GROUP * sizeof(HashExceptionEntry) + sizeof(u16); m_out_bytes_allocated_for_exceptions = m_compressed_exception_lists ? MAX_SIZE_PER_EXCEPTION_LIST * m_exception_lists : 0; m_in.data.resize(compressed_size); m_out.data.resize(decompressed_size + m_out_bytes_allocated_for_exceptions); } template bool WIARVZFileReader::Chunk::Read(u64 offset, u64 size, u8* out_ptr) { if (!m_decompressor || !m_file || offset + size > m_out.data.size() - m_out_bytes_allocated_for_exceptions) { return false; } while (offset + size > GetOutBytesWrittenExcludingExceptions()) { u64 bytes_to_read; if (offset + size == m_out.data.size()) { // Read all the remaining data. bytes_to_read = m_in.data.size() - m_in.bytes_written; } else { // Pick a suitable amount of compressed data to read. We have to ensure that bytes_to_read // is larger than 0 and smaller than or equal to the number of bytes available to read, // but the rest is a bit arbitrary and could be changed. // The compressed data is probably not much bigger than the decompressed data. // Add a few bytes for possible compression overhead and for any hash exceptions. bytes_to_read = offset + size - GetOutBytesWrittenExcludingExceptions() + 0x100; // Align the access in an attempt to gain speed. But we don't actually know the // block size of the underlying storage device, so we just use the Wii block size. bytes_to_read = Common::AlignUp(bytes_to_read + m_offset_in_file, VolumeWii::BLOCK_TOTAL_SIZE) - m_offset_in_file; // Ensure we don't read too much. bytes_to_read = std::min(m_in.data.size() - m_in.bytes_written, bytes_to_read); } if (bytes_to_read == 0) { // Compressed size is larger than expected or decompressed size is smaller than expected return false; } if (!m_file->Seek(m_offset_in_file, File::SeekOrigin::Begin)) return false; if (!m_file->ReadBytes(m_in.data.data() + m_in.bytes_written, bytes_to_read)) return false; m_offset_in_file += bytes_to_read; m_in.bytes_written += bytes_to_read; if (m_exception_lists > 0 && !m_compressed_exception_lists) { if (!HandleExceptions(m_in.data.data(), m_in.data.size(), m_in.bytes_written, &m_in_bytes_used_for_exceptions, true)) { return false; } m_in_bytes_read = m_in_bytes_used_for_exceptions; } if (m_exception_lists == 0 || m_compressed_exception_lists) { if (!Decompress()) return false; } if (m_exception_lists > 0 && m_compressed_exception_lists) { if (!HandleExceptions(m_out.data.data(), m_out_bytes_allocated_for_exceptions, m_out.bytes_written, &m_out_bytes_used_for_exceptions, false)) { return false; } if (m_rvz_packed_size != 0 && m_exception_lists == 0) { if (!Decompress()) return false; } } if (m_exception_lists == 0) { const size_t expected_out_bytes = m_out.data.size() - m_out_bytes_allocated_for_exceptions + m_out_bytes_used_for_exceptions; if (m_out.bytes_written > expected_out_bytes) return false; // Decompressed size is larger than expected // The reason why we need the m_in.bytes_written == m_in.data.size() check as part of // this conditional is because (for example) zstd can finish writing all data to m_out // before becoming done if we've given it all input data except the checksum at the end. if (m_out.bytes_written == expected_out_bytes && !m_decompressor->Done() && m_in.bytes_written == m_in.data.size()) { return false; // Decompressed size is larger than expected } if (m_decompressor->Done() && m_in_bytes_read != m_in.data.size()) return false; // Compressed size is smaller than expected } } std::memcpy(out_ptr, m_out.data.data() + offset + m_out_bytes_used_for_exceptions, size); return true; } template bool WIARVZFileReader::Chunk::Decompress() { if (m_rvz_packed_size != 0 && m_exception_lists == 0) { const size_t bytes_to_move = m_out.bytes_written - m_out_bytes_used_for_exceptions; DecompressionBuffer in{std::vector(bytes_to_move), bytes_to_move}; std::memcpy(in.data.data(), m_out.data.data() + m_out_bytes_used_for_exceptions, bytes_to_move); m_out.bytes_written = m_out_bytes_used_for_exceptions; m_decompressor = std::make_unique(std::move(m_decompressor), std::move(in), m_data_offset, m_rvz_packed_size); m_rvz_packed_size = 0; } return m_decompressor->Decompress(m_in, &m_out, &m_in_bytes_read); } template bool WIARVZFileReader::Chunk::HandleExceptions(const u8* data, size_t bytes_allocated, size_t bytes_written, size_t* bytes_used, bool align) { while (m_exception_lists > 0) { if (sizeof(u16) + *bytes_used > bytes_allocated) { ERROR_LOG_FMT(DISCIO, "More hash exceptions than expected"); return false; } if (sizeof(u16) + *bytes_used > bytes_written) return true; const u16 exceptions = Common::swap16(data + *bytes_used); size_t exception_list_size = exceptions * sizeof(HashExceptionEntry) + sizeof(u16); if (align && m_exception_lists == 1) exception_list_size = Common::AlignUp(*bytes_used + exception_list_size, 4) - *bytes_used; if (exception_list_size + *bytes_used > bytes_allocated) { ERROR_LOG_FMT(DISCIO, "More hash exceptions than expected"); return false; } if (exception_list_size + *bytes_used > bytes_written) return true; *bytes_used += exception_list_size; --m_exception_lists; } return true; } template void WIARVZFileReader::Chunk::GetHashExceptions( std::vector* exception_list, u64 exception_list_index, u16 additional_offset) const { ASSERT(m_exception_lists == 0); const u8* data_start = m_compressed_exception_lists ? m_out.data.data() : m_in.data.data(); const u8* data = data_start; for (u64 i = exception_list_index; i > 0; --i) data += Common::swap16(data) * sizeof(HashExceptionEntry) + sizeof(u16); const u16 exceptions = Common::swap16(data); data += sizeof(u16); for (size_t i = 0; i < exceptions; ++i) { std::memcpy(&exception_list->emplace_back(), data, sizeof(HashExceptionEntry)); data += sizeof(HashExceptionEntry); u16& offset = exception_list->back().offset; offset = Common::swap16(Common::swap16(offset) + additional_offset); } ASSERT(data <= data_start + (m_compressed_exception_lists ? m_out_bytes_used_for_exceptions : m_in_bytes_used_for_exceptions)); } template size_t WIARVZFileReader::Chunk::GetOutBytesWrittenExcludingExceptions() const { return m_exception_lists == 0 ? m_out.bytes_written - m_out_bytes_used_for_exceptions : 0; } template bool WIARVZFileReader::ApplyHashExceptions( const std::vector& exception_list, VolumeWii::HashBlock hash_blocks[VolumeWii::BLOCKS_PER_GROUP]) { for (const HashExceptionEntry& exception : exception_list) { const u16 offset = Common::swap16(exception.offset); const size_t block_index = offset / VolumeWii::BLOCK_HEADER_SIZE; if (block_index > VolumeWii::BLOCKS_PER_GROUP) return false; const size_t offset_in_block = offset % VolumeWii::BLOCK_HEADER_SIZE; if (offset_in_block + Common::SHA1::DIGEST_LEN > VolumeWii::BLOCK_HEADER_SIZE) return false; std::memcpy(reinterpret_cast(&hash_blocks[block_index]) + offset_in_block, &exception.hash, Common::SHA1::DIGEST_LEN); } return true; } template bool WIARVZFileReader::PadTo4(File::IOFile* file, u64* bytes_written) { constexpr u32 ZEROES = 0; const u64 bytes_to_write = Common::AlignUp(*bytes_written, 4) - *bytes_written; if (bytes_to_write == 0) return true; *bytes_written += bytes_to_write; return file->WriteBytes(&ZEROES, bytes_to_write); } template void WIARVZFileReader::AddRawDataEntry(u64 offset, u64 size, int chunk_size, u32* total_groups, std::vector* raw_data_entries, std::vector* data_entries) { constexpr size_t SKIP_SIZE = sizeof(WIAHeader2::disc_header); const u64 skip = offset < SKIP_SIZE ? std::min(SKIP_SIZE - offset, size) : 0; offset += skip; size -= skip; if (size == 0) return; const u32 group_index = *total_groups; const u32 groups = static_cast(Common::AlignUp(size, chunk_size) / chunk_size); *total_groups += groups; data_entries->emplace_back(raw_data_entries->size()); raw_data_entries->emplace_back(RawDataEntry{Common::swap64(offset), Common::swap64(size), Common::swap32(group_index), Common::swap32(groups)}); } template typename WIARVZFileReader::PartitionDataEntry WIARVZFileReader::CreatePartitionDataEntry( u64 offset, u64 size, u32 index, int chunk_size, u32* total_groups, const std::vector& partition_entries, std::vector* data_entries) { const u32 group_index = *total_groups; const u64 rounded_size = Common::AlignDown(size, VolumeWii::BLOCK_TOTAL_SIZE); const u32 groups = static_cast(Common::AlignUp(rounded_size, chunk_size) / chunk_size); *total_groups += groups; data_entries->emplace_back(partition_entries.size(), index); return PartitionDataEntry{Common::swap32(offset / VolumeWii::BLOCK_TOTAL_SIZE), Common::swap32(size / VolumeWii::BLOCK_TOTAL_SIZE), Common::swap32(group_index), Common::swap32(groups)}; } template ConversionResultCode WIARVZFileReader::SetUpDataEntriesForWriting( const VolumeDisc* volume, int chunk_size, u64 iso_size, u32* total_groups, std::vector* partition_entries, std::vector* raw_data_entries, std::vector* data_entries, std::vector* partition_file_systems) { std::vector partitions; if (volume && volume->HasWiiHashes() && volume->HasWiiEncryption()) partitions = volume->GetPartitions(); std::sort(partitions.begin(), partitions.end(), [](const Partition& a, const Partition& b) { return a.offset < b.offset; }); *total_groups = 0; u64 last_partition_end_offset = 0; const auto add_raw_data_entry = [&](u64 offset, u64 size) { return AddRawDataEntry(offset, size, chunk_size, total_groups, raw_data_entries, data_entries); }; const auto create_partition_data_entry = [&](u64 offset, u64 size, u32 index) { return CreatePartitionDataEntry(offset, size, index, chunk_size, total_groups, *partition_entries, data_entries); }; for (const Partition& partition : partitions) { // If a partition is odd in some way that prevents us from encoding it as a partition, // we encode it as raw data instead by skipping the current loop iteration. // Partitions can always be encoded as raw data, but it is less space efficient. if (partition.offset < last_partition_end_offset) { WARN_LOG_FMT(DISCIO, "Overlapping partitions at {:x}", partition.offset); continue; } if (volume->ReadSwapped(partition.offset, PARTITION_NONE) != 0x10001U) { // This looks more like garbage data than an actual partition. // The values of data_offset and data_size will very likely also be garbage. // Some WBFS writing programs scrub the SSBB Masterpiece partitions without // removing them from the partition table, causing this problem. WARN_LOG_FMT(DISCIO, "Invalid partition at {:x}", partition.offset); continue; } std::optional data_offset = volume->ReadSwappedAndShifted(partition.offset + 0x2b8, PARTITION_NONE); std::optional data_size = volume->ReadSwappedAndShifted(partition.offset + 0x2bc, PARTITION_NONE); if (!data_offset || !data_size) return ConversionResultCode::ReadFailed; const u64 data_start = partition.offset + *data_offset; const u64 data_end = data_start + *data_size; if (data_start % VolumeWii::BLOCK_TOTAL_SIZE != 0) { WARN_LOG_FMT(DISCIO, "Misaligned partition at {:x}", partition.offset); continue; } if (*data_size < VolumeWii::BLOCK_TOTAL_SIZE) { WARN_LOG_FMT(DISCIO, "Very small partition at {:x}", partition.offset); continue; } if (data_end > iso_size) { WARN_LOG_FMT(DISCIO, "Too large partition at {:x}", partition.offset); *data_size = iso_size - *data_offset - partition.offset; } const std::optional fst_offset = GetFSTOffset(*volume, partition); const std::optional fst_size = GetFSTSize(*volume, partition); if (!fst_offset || !fst_size) return ConversionResultCode::ReadFailed; const IOS::ES::TicketReader& ticket = volume->GetTicket(partition); if (!ticket.IsValid()) return ConversionResultCode::ReadFailed; add_raw_data_entry(last_partition_end_offset, partition.offset - last_partition_end_offset); add_raw_data_entry(partition.offset, *data_offset); const u64 fst_end = volume->PartitionOffsetToRawOffset(*fst_offset + *fst_size, partition); const u64 split_point = std::min( data_end, Common::AlignUp(fst_end - data_start, VolumeWii::GROUP_TOTAL_SIZE) + data_start); PartitionEntry partition_entry; partition_entry.partition_key = ticket.GetTitleKey(); partition_entry.data_entries[0] = create_partition_data_entry(data_start, split_point - data_start, 0); partition_entry.data_entries[1] = create_partition_data_entry(split_point, data_end - split_point, 1); // Note: We can't simply set last_partition_end_offset to data_end, // because construct_partition_data_entry may have rounded it last_partition_end_offset = (Common::swap32(partition_entry.data_entries[1].first_sector) + Common::swap32(partition_entry.data_entries[1].number_of_sectors)) * VolumeWii::BLOCK_TOTAL_SIZE; partition_entries->emplace_back(std::move(partition_entry)); partition_file_systems->emplace_back(volume->GetFileSystem(partition)); } add_raw_data_entry(last_partition_end_offset, iso_size - last_partition_end_offset); return ConversionResultCode::Success; } template std::optional> WIARVZFileReader::Compress(Compressor* compressor, const u8* data, size_t size) { if (compressor) { if (!compressor->Start(size) || !compressor->Compress(data, size) || !compressor->End()) return std::nullopt; data = compressor->GetData(); size = compressor->GetSize(); } return std::vector(data, data + size); } template void WIARVZFileReader::SetUpCompressor(std::unique_ptr* compressor, WIARVZCompressionType compression_type, int compression_level, WIAHeader2* header_2) { switch (compression_type) { case WIARVZCompressionType::None: *compressor = nullptr; break; case WIARVZCompressionType::Purge: *compressor = std::make_unique(); break; case WIARVZCompressionType::Bzip2: *compressor = std::make_unique(compression_level); break; case WIARVZCompressionType::LZMA: case WIARVZCompressionType::LZMA2: { u8* compressor_data = nullptr; u8* compressor_data_size = nullptr; if (header_2) { compressor_data = header_2->compressor_data; compressor_data_size = &header_2->compressor_data_size; } const bool lzma2 = compression_type == WIARVZCompressionType::LZMA2; *compressor = std::make_unique(lzma2, compression_level, compressor_data, compressor_data_size); break; } case WIARVZCompressionType::Zstd: *compressor = std::make_unique(compression_level); break; } } template bool WIARVZFileReader::TryReuse(std::map* reusable_groups, std::mutex* reusable_groups_mutex, OutputParametersEntry* entry) { if (entry->reused_group) return true; if (!entry->reuse_id) return false; std::lock_guard guard(*reusable_groups_mutex); const auto it = reusable_groups->find(*entry->reuse_id); if (it == reusable_groups->end()) return false; entry->reused_group = it->second; return true; } static bool AllAre(const std::vector& data, u8 x) { return std::all_of(data.begin(), data.end(), [x](u8 y) { return x == y; }); } static bool AllAre(const u8* begin, const u8* end, u8 x) { return std::all_of(begin, end, [x](u8 y) { return x == y; }); } static bool AllZero(const std::vector& data) { return AllAre(data, 0); } static bool AllSame(const std::vector& data) { return AllAre(data, data.front()); } static bool AllSame(const u8* begin, const u8* end) { return AllAre(begin, end, *begin); } template static void RVZPack(const u8* in, OutputParametersEntry* out, u64 bytes_per_chunk, size_t chunks, u64 total_size, u64 data_offset, bool multipart, bool allow_junk_reuse, bool compression, const FileSystem* file_system) { using Seed = std::array; struct JunkInfo { size_t start_offset; Seed seed; }; constexpr size_t SEED_SIZE = LaggedFibonacciGenerator::SEED_SIZE * sizeof(u32); // Maps end_offset -> (start_offset, seed) std::map junk_info; size_t position = 0; while (position < total_size) { // Skip the 0 to 32 zero bytes that typically come after a file size_t zeroes = 0; while (position + zeroes < total_size && in[position + zeroes] == 0) ++zeroes; // If there are very many zero bytes (perhaps the PRNG junk data has been scrubbed?) // and we aren't using compression, it makes sense to encode the zero bytes as junk. // If we are using compression, the compressor will likely encode zeroes better than we can if (!compression && zeroes > SEED_SIZE) junk_info.emplace(position + zeroes, JunkInfo{position, {}}); position += zeroes; data_offset += zeroes; const size_t bytes_to_read = std::min(Common::AlignUp(data_offset + 1, VolumeWii::BLOCK_TOTAL_SIZE) - data_offset, total_size - position); const size_t data_offset_mod = static_cast(data_offset % VolumeWii::BLOCK_TOTAL_SIZE); Seed seed; const size_t bytes_reconstructed = LaggedFibonacciGenerator::GetSeed( in + position, bytes_to_read, data_offset_mod, seed.data()); if (bytes_reconstructed > 0) junk_info.emplace(position + bytes_reconstructed, JunkInfo{position, seed}); if (file_system) { const std::unique_ptr file_info = file_system->FindFileInfo(data_offset + bytes_reconstructed); // If we're at a file and there's more space in this block after the file, // continue after the file instead of skipping to the next block if (file_info) { const u64 file_end_offset = file_info->GetOffset() + file_info->GetSize(); if (file_end_offset < data_offset + bytes_to_read) { position += file_end_offset - data_offset; data_offset = file_end_offset; continue; } } } position += bytes_to_read; data_offset += bytes_to_read; } for (size_t i = 0; i < chunks; ++i) { OutputParametersEntry& entry = out[i]; if (entry.reused_group) continue; u64 current_offset = i * bytes_per_chunk; const u64 end_offset = std::min(current_offset + bytes_per_chunk, total_size); const bool store_junk_efficiently = allow_junk_reuse || !entry.reuse_id; // TODO: It would be possible to support skipping RVZ packing even when the chunk size is larger // than 2 MiB (multipart == true), but it would be more effort than it's worth since Dolphin's // converter doesn't expose chunk sizes larger than 2 MiB to the user anyway bool first_loop_iteration = !multipart; while (current_offset < end_offset) { u64 next_junk_start = end_offset; u64 next_junk_end = end_offset; Seed* seed = nullptr; if (store_junk_efficiently && end_offset - current_offset > SEED_SIZE) { const auto next_junk_it = junk_info.upper_bound(current_offset + SEED_SIZE); if (next_junk_it != junk_info.end() && next_junk_it->second.start_offset + SEED_SIZE < end_offset) { next_junk_start = std::max(current_offset, next_junk_it->second.start_offset); next_junk_end = std::min(end_offset, next_junk_it->first); seed = &next_junk_it->second.seed; } } if (first_loop_iteration) { if (next_junk_start == end_offset) { // Storing this chunk without RVZ packing would be inefficient, so store it without PushBack(&entry.main_data, in + current_offset, in + end_offset); break; } first_loop_iteration = false; } const u64 non_junk_bytes = next_junk_start - current_offset; if (non_junk_bytes > 0) { const u8* ptr = in + current_offset; PushBack(&entry.main_data, Common::swap32(static_cast(non_junk_bytes))); PushBack(&entry.main_data, ptr, ptr + non_junk_bytes); current_offset += non_junk_bytes; entry.rvz_packed_size += sizeof(u32) + non_junk_bytes; } const u64 junk_bytes = next_junk_end - current_offset; if (junk_bytes > 0) { PushBack(&entry.main_data, Common::swap32(static_cast(junk_bytes) | 0x80000000)); PushBack(&entry.main_data, *seed); current_offset += junk_bytes; entry.rvz_packed_size += sizeof(u32) + SEED_SIZE; } } } } template static void RVZPack(const u8* in, OutputParametersEntry* out, u64 size, u64 data_offset, bool allow_junk_reuse, bool compression, const FileSystem* file_system) { RVZPack(in, out, size, 1, size, data_offset, false, allow_junk_reuse, compression, file_system); } template ConversionResult::OutputParameters> WIARVZFileReader::ProcessAndCompress(CompressThreadState* state, CompressParameters parameters, const std::vector& partition_entries, const std::vector& data_entries, const FileSystem* file_system, std::map* reusable_groups, std::mutex* reusable_groups_mutex, u64 chunks_per_wii_group, u64 exception_lists_per_chunk, bool compressed_exception_lists, bool compression) { std::vector output_entries; if (!parameters.data_entry->is_partition) { OutputParametersEntry& entry = output_entries.emplace_back(); std::vector& data = parameters.data; if (AllSame(data)) entry.reuse_id = ReuseID{WiiKey{}, data.size(), false, data.front()}; if constexpr (RVZ) { RVZPack(data.data(), output_entries.data(), data.size(), parameters.data_offset, true, compression, file_system); } else { entry.main_data = std::move(data); } } else { const PartitionEntry& partition_entry = partition_entries[parameters.data_entry->index]; auto aes_context = Common::AES::CreateContextDecrypt(partition_entry.partition_key.data()); const u64 groups = Common::AlignUp(parameters.data.size(), VolumeWii::GROUP_TOTAL_SIZE) / VolumeWii::GROUP_TOTAL_SIZE; ASSERT(parameters.data.size() % VolumeWii::BLOCK_TOTAL_SIZE == 0); const u64 blocks = parameters.data.size() / VolumeWii::BLOCK_TOTAL_SIZE; const u64 blocks_per_chunk = chunks_per_wii_group == 1 ? exception_lists_per_chunk * VolumeWii::BLOCKS_PER_GROUP : VolumeWii::BLOCKS_PER_GROUP / chunks_per_wii_group; const u64 chunks = Common::AlignUp(blocks, blocks_per_chunk) / blocks_per_chunk; const u64 in_data_per_chunk = blocks_per_chunk * VolumeWii::BLOCK_TOTAL_SIZE; const u64 out_data_per_chunk = blocks_per_chunk * VolumeWii::BLOCK_DATA_SIZE; const size_t first_chunk = output_entries.size(); const auto create_reuse_id = [&partition_entry, blocks, blocks_per_chunk](u8 value, bool encrypted, u64 block) { const u64 size = std::min(blocks - block, blocks_per_chunk) * VolumeWii::BLOCK_DATA_SIZE; return ReuseID{partition_entry.partition_key, size, encrypted, value}; }; const u8* parameters_data_end = parameters.data.data() + parameters.data.size(); for (u64 i = 0; i < chunks; ++i) { const u64 block_index = i * blocks_per_chunk; OutputParametersEntry& entry = output_entries.emplace_back(); std::optional& reuse_id = entry.reuse_id; // Set this chunk as reusable if the encrypted data is AllSame const u8* data = parameters.data.data() + block_index * VolumeWii::BLOCK_TOTAL_SIZE; if (AllSame(data, std::min(parameters_data_end, data + in_data_per_chunk))) reuse_id = create_reuse_id(parameters.data.front(), true, i * blocks_per_chunk); TryReuse(reusable_groups, reusable_groups_mutex, &entry); if (!entry.reused_group && reuse_id) { const auto it = std::find_if(output_entries.begin(), output_entries.begin() + i, [reuse_id](const auto& e) { return e.reuse_id == reuse_id; }); if (it != output_entries.begin() + i) entry.reused_group = it->reused_group; } } if (!std::all_of(output_entries.begin(), output_entries.end(), [](const OutputParametersEntry& entry) { return entry.reused_group; })) { const u64 number_of_exception_lists = chunks_per_wii_group == 1 ? exception_lists_per_chunk : chunks; std::vector> exception_lists(number_of_exception_lists); for (u64 i = 0; i < groups; ++i) { const u64 offset_of_group = i * VolumeWii::GROUP_TOTAL_SIZE; const u64 write_offset_of_group = i * VolumeWii::GROUP_DATA_SIZE; const u64 blocks_in_this_group = std::min(VolumeWii::BLOCKS_PER_GROUP, blocks - i * VolumeWii::BLOCKS_PER_GROUP); for (u32 j = 0; j < VolumeWii::BLOCKS_PER_GROUP; ++j) { if (j < blocks_in_this_group) { const u64 offset_of_block = offset_of_group + j * VolumeWii::BLOCK_TOTAL_SIZE; VolumeWii::DecryptBlockData(parameters.data.data() + offset_of_block, state->decryption_buffer[j].data(), aes_context.get()); } else { state->decryption_buffer[j].fill(0); } } VolumeWii::HashGroup(state->decryption_buffer.data(), state->hash_buffer.data()); for (u64 j = 0; j < blocks_in_this_group; ++j) { const u64 chunk_index = j / blocks_per_chunk; const u64 block_index_in_chunk = j % blocks_per_chunk; if (output_entries[chunk_index].reused_group) continue; const u64 exception_list_index = chunks_per_wii_group == 1 ? i : chunk_index; const u64 offset_of_block = offset_of_group + j * VolumeWii::BLOCK_TOTAL_SIZE; const u64 hash_offset_of_block = block_index_in_chunk * VolumeWii::BLOCK_HEADER_SIZE; VolumeWii::HashBlock hashes; VolumeWii::DecryptBlockHashes(parameters.data.data() + offset_of_block, &hashes, aes_context.get()); const auto compare_hash = [&](size_t offset_in_block) { ASSERT(offset_in_block + Common::SHA1::DIGEST_LEN <= VolumeWii::BLOCK_HEADER_SIZE); const u8* desired_hash = reinterpret_cast(&hashes) + offset_in_block; const u8* computed_hash = reinterpret_cast(&state->hash_buffer[j]) + offset_in_block; // We want to store a hash exception either if there is a hash mismatch, or if this // chunk might get reused in a context where it is paired up (within a 2 MiB Wii group) // with chunks that are different from the chunks it currently is paired up with, since // that affects the recalculated hashes. Chunks which have been marked as reusable at // this point normally have zero matching hashes anyway, so this shouldn't waste space. if ((chunks_per_wii_group != 1 && output_entries[chunk_index].reuse_id) || !std::equal(desired_hash, desired_hash + Common::SHA1::DIGEST_LEN, computed_hash)) { const u64 hash_offset = hash_offset_of_block + offset_in_block; ASSERT(hash_offset <= std::numeric_limits::max()); HashExceptionEntry& exception = exception_lists[exception_list_index].emplace_back(); exception.offset = static_cast(Common::swap16(hash_offset)); std::memcpy(exception.hash.data(), desired_hash, Common::SHA1::DIGEST_LEN); } }; const auto compare_hashes = [&compare_hash](size_t offset, size_t size) { for (size_t l = 0; l < size; l += Common::SHA1::DIGEST_LEN) // The std::min is to ensure that we don't go beyond the end of HashBlock with // padding_2, which is 32 bytes long (not divisible by SHA1::DIGEST_LEN, which is 20). compare_hash(offset + std::min(l, size - Common::SHA1::DIGEST_LEN)); }; using HashBlock = VolumeWii::HashBlock; compare_hashes(offsetof(HashBlock, h0), sizeof(HashBlock::h0)); compare_hashes(offsetof(HashBlock, padding_0), sizeof(HashBlock::padding_0)); compare_hashes(offsetof(HashBlock, h1), sizeof(HashBlock::h1)); compare_hashes(offsetof(HashBlock, padding_1), sizeof(HashBlock::padding_1)); compare_hashes(offsetof(HashBlock, h2), sizeof(HashBlock::h2)); compare_hashes(offsetof(HashBlock, padding_2), sizeof(HashBlock::padding_2)); } static_assert(std::is_trivially_copyable_v< typename decltype(CompressThreadState::decryption_buffer)::value_type>); if constexpr (RVZ) { // We must not store junk efficiently for chunks that may get reused at a position // which has a different value of data_offset % VolumeWii::BLOCK_TOTAL_SIZE const bool allow_junk_reuse = chunks_per_wii_group == 1; const u64 bytes_per_chunk = std::min(out_data_per_chunk, VolumeWii::GROUP_DATA_SIZE); const u64 total_size = blocks_in_this_group * VolumeWii::BLOCK_DATA_SIZE; const u64 data_offset = parameters.data_offset + write_offset_of_group; RVZPack(state->decryption_buffer[0].data(), output_entries.data() + first_chunk, bytes_per_chunk, chunks, total_size, data_offset, groups > 1, allow_junk_reuse, compression, file_system); } else { const u8* in_ptr = state->decryption_buffer[0].data(); for (u64 j = 0; j < chunks; ++j) { OutputParametersEntry& entry = output_entries[first_chunk + j]; if (!entry.reused_group) { const u64 bytes_left = (blocks - j * blocks_per_chunk) * VolumeWii::BLOCK_DATA_SIZE; const u64 bytes_to_write_total = std::min(out_data_per_chunk, bytes_left); if (i == 0) entry.main_data.resize(bytes_to_write_total); const u64 bytes_to_write = std::min(bytes_to_write_total, VolumeWii::GROUP_DATA_SIZE); std::memcpy(entry.main_data.data() + write_offset_of_group, in_ptr, bytes_to_write); // Set this chunk as reusable if the decrypted data is AllSame. // There is also a requirement that it lacks exceptions, but this is checked later if (i == 0 && !entry.reuse_id) { if (AllSame(in_ptr, in_ptr + bytes_to_write)) entry.reuse_id = create_reuse_id(*in_ptr, false, j * blocks_per_chunk); } else { if (entry.reuse_id && !entry.reuse_id->encrypted && (!AllSame(in_ptr, in_ptr + bytes_to_write) || entry.reuse_id->value != *in_ptr)) { entry.reuse_id.reset(); } } } in_ptr += out_data_per_chunk; } } } for (size_t i = 0; i < exception_lists.size(); ++i) { OutputParametersEntry& entry = output_entries[chunks_per_wii_group == 1 ? 0 : i]; if (entry.reused_group) continue; const std::vector& in = exception_lists[i]; std::vector& out = entry.exception_lists; const u16 exceptions = Common::swap16(static_cast(in.size())); PushBack(&out, exceptions); for (const HashExceptionEntry& exception : in) PushBack(&out, exception); } for (u64 i = 0; i < output_entries.size(); ++i) { OutputParametersEntry& entry = output_entries[i]; // If this chunk was set as reusable because the decrypted data is AllSame, // but it has exceptions, unmark it as reusable if (entry.reuse_id && !entry.reuse_id->encrypted && !AllZero(entry.exception_lists)) entry.reuse_id.reset(); } } } for (OutputParametersEntry& entry : output_entries) { TryReuse(reusable_groups, reusable_groups_mutex, &entry); if (entry.reused_group) continue; // Special case - a compressed size of zero is treated by WIA as meaning the data is all zeroes if (entry.reuse_id && !entry.reuse_id->encrypted && entry.reuse_id->value == 0) { entry.exception_lists.clear(); entry.main_data.clear(); if constexpr (RVZ) { entry.rvz_packed_size = 0; entry.compressed = false; } continue; } const auto pad_exception_lists = [&entry]() { while (entry.exception_lists.size() % 4 != 0) entry.exception_lists.push_back(0); }; if (state->compressor) { if (!state->compressor->Start(entry.exception_lists.size() + entry.main_data.size())) return ConversionResultCode::InternalError; } if (!entry.exception_lists.empty()) { if (compressed_exception_lists && state->compressor) { if (!state->compressor->Compress(entry.exception_lists.data(), entry.exception_lists.size())) { return ConversionResultCode::InternalError; } } else { if (!compressed_exception_lists) pad_exception_lists(); if (state->compressor) { if (!state->compressor->AddPrecedingDataOnlyForPurgeHashing(entry.exception_lists.data(), entry.exception_lists.size())) { return ConversionResultCode::InternalError; } } } } if (state->compressor) { if (!state->compressor->Compress(entry.main_data.data(), entry.main_data.size())) return ConversionResultCode::InternalError; if (!state->compressor->End()) return ConversionResultCode::InternalError; } bool compressed = !!state->compressor; if constexpr (RVZ) { size_t uncompressed_size = entry.main_data.size(); if (compressed_exception_lists) uncompressed_size += Common::AlignUp(entry.exception_lists.size(), 4); compressed = state->compressor && state->compressor->GetSize() < uncompressed_size; entry.compressed = compressed; if (!compressed) pad_exception_lists(); } if (compressed) { const u8* data = state->compressor->GetData(); const size_t size = state->compressor->GetSize(); entry.main_data.resize(size); std::copy(data, data + size, entry.main_data.data()); if (compressed_exception_lists) entry.exception_lists.clear(); } } return OutputParameters{std::move(output_entries), parameters.bytes_read, parameters.group_index}; } template ConversionResultCode WIARVZFileReader::Output(std::vector* entries, File::IOFile* outfile, std::map* reusable_groups, std::mutex* reusable_groups_mutex, GroupEntry* group_entry, u64* bytes_written) { for (OutputParametersEntry& entry : *entries) { TryReuse(reusable_groups, reusable_groups_mutex, &entry); if (entry.reused_group) { *group_entry = *entry.reused_group; ++group_entry; continue; } if (*bytes_written >> 2 > std::numeric_limits::max()) return ConversionResultCode::InternalError; ASSERT((*bytes_written & 3) == 0); group_entry->data_offset = Common::swap32(static_cast(*bytes_written >> 2)); u32 data_size = static_cast(entry.exception_lists.size() + entry.main_data.size()); if constexpr (RVZ) { data_size = (data_size & 0x7FFFFFFF) | (static_cast(entry.compressed) << 31); group_entry->rvz_packed_size = Common::swap32(static_cast(entry.rvz_packed_size)); } group_entry->data_size = Common::swap32(data_size); if (!outfile->WriteArray(entry.exception_lists.data(), entry.exception_lists.size())) return ConversionResultCode::WriteFailed; if (!outfile->WriteArray(entry.main_data.data(), entry.main_data.size())) return ConversionResultCode::WriteFailed; *bytes_written += entry.exception_lists.size() + entry.main_data.size(); if (entry.reuse_id) { std::lock_guard guard(*reusable_groups_mutex); reusable_groups->emplace(*entry.reuse_id, *group_entry); } if (!PadTo4(outfile, bytes_written)) return ConversionResultCode::WriteFailed; ++group_entry; } return ConversionResultCode::Success; } template ConversionResultCode WIARVZFileReader::RunCallback(size_t groups_written, u64 bytes_read, u64 bytes_written, u32 total_groups, u64 iso_size, CompressCB callback) { int ratio = 0; if (bytes_read != 0) ratio = static_cast(100 * bytes_written / bytes_read); const std::string text = Common::FmtFormatT("{0} of {1} blocks. Compression ratio {2}%", groups_written, total_groups, ratio); const float completion = static_cast(bytes_read) / iso_size; return callback(text, completion) ? ConversionResultCode::Success : ConversionResultCode::Canceled; } template bool WIARVZFileReader::WriteHeader(File::IOFile* file, const u8* data, size_t size, u64 upper_bound, u64* bytes_written, u64* offset_out) { // The first part of the check is to prevent this from running more than once. If *bytes_written // is past the upper bound, we are already at the end of the file, so we don't need to do anything if (*bytes_written <= upper_bound && *bytes_written + size > upper_bound) { WARN_LOG_FMT(DISCIO, "Headers did not fit in the allocated space. Writing to end of file instead"); if (!file->Seek(0, File::SeekOrigin::End)) return false; *bytes_written = file->Tell(); } *offset_out = *bytes_written; if (!file->WriteArray(data, size)) return false; *bytes_written += size; return PadTo4(file, bytes_written); } template ConversionResultCode WIARVZFileReader::Convert(BlobReader* infile, const VolumeDisc* infile_volume, File::IOFile* outfile, WIARVZCompressionType compression_type, int compression_level, int chunk_size, CompressCB callback) { ASSERT(infile->GetDataSizeType() == DataSizeType::Accurate); ASSERT(chunk_size > 0); const u64 iso_size = infile->GetDataSize(); const u64 chunks_per_wii_group = std::max(1, VolumeWii::GROUP_TOTAL_SIZE / chunk_size); const u64 exception_lists_per_chunk = std::max(1, chunk_size / VolumeWii::GROUP_TOTAL_SIZE); const bool compressed_exception_lists = compression_type > WIARVZCompressionType::Purge; u64 bytes_read = 0; u64 bytes_written = 0; size_t groups_processed = 0; WIAHeader1 header_1{}; WIAHeader2 header_2{}; std::vector partition_entries; std::vector raw_data_entries; std::vector group_entries; u32 total_groups; std::vector data_entries; const FileSystem* non_partition_file_system = infile_volume ? infile_volume->GetFileSystem(PARTITION_NONE) : nullptr; std::vector partition_file_systems; const ConversionResultCode set_up_data_entries_result = SetUpDataEntriesForWriting( infile_volume, chunk_size, iso_size, &total_groups, &partition_entries, &raw_data_entries, &data_entries, &partition_file_systems); if (set_up_data_entries_result != ConversionResultCode::Success) return set_up_data_entries_result; group_entries.resize(total_groups); const size_t partition_entries_size = partition_entries.size() * sizeof(PartitionEntry); const size_t raw_data_entries_size = raw_data_entries.size() * sizeof(RawDataEntry); const size_t group_entries_size = group_entries.size() * sizeof(GroupEntry); // An estimate for how much space will be taken up by headers. // We will reserve this much space at the beginning of the file, and if the headers don't // fit in that space, we will need to write them at the end of the file instead. const u64 headers_size_upper_bound = [&] { // 0x100 is added to account for compression overhead (in particular for Purge). u64 upper_bound = sizeof(WIAHeader1) + sizeof(WIAHeader2) + partition_entries_size + raw_data_entries_size + 0x100; // Compared to WIA, RVZ adds an extra member to the GroupEntry struct. This added data usually // compresses well, so we'll assume the compression ratio for RVZ GroupEntries is 9 / 16 or // better. This constant is somehwat arbitrarily chosen, but no games were found that get a // worse compression ratio than that. There are some games that get a worse ratio than 1 / 2, // such as Metroid: Other M (PAL) with the default settings. if (RVZ && compression_type > WIARVZCompressionType::Purge) upper_bound += static_cast(group_entries_size) * 9 / 16; else upper_bound += group_entries_size; // This alignment is also somewhat arbitrary. return Common::AlignUp(upper_bound, VolumeWii::BLOCK_TOTAL_SIZE); }(); std::vector buffer; buffer.resize(headers_size_upper_bound); outfile->WriteBytes(buffer.data(), buffer.size()); bytes_written = headers_size_upper_bound; if (!infile->Read(0, header_2.disc_header.size(), header_2.disc_header.data())) return ConversionResultCode::ReadFailed; // We intentionally do not increment bytes_read here, since these bytes will be read again std::map reusable_groups; std::mutex reusable_groups_mutex; const auto set_up_compress_thread_state = [&](CompressThreadState* state) { SetUpCompressor(&state->compressor, compression_type, compression_level, nullptr); return ConversionResultCode::Success; }; const auto process_and_compress = [&](CompressThreadState* state, CompressParameters parameters) { const DataEntry& data_entry = *parameters.data_entry; const FileSystem* file_system = data_entry.is_partition ? partition_file_systems[data_entry.index] : non_partition_file_system; const bool compression = compression_type != WIARVZCompressionType::None; return ProcessAndCompress(state, std::move(parameters), partition_entries, data_entries, file_system, &reusable_groups, &reusable_groups_mutex, chunks_per_wii_group, exception_lists_per_chunk, compressed_exception_lists, compression); }; const auto output = [&](OutputParameters parameters) { const ConversionResultCode result = Output(¶meters.entries, outfile, &reusable_groups, &reusable_groups_mutex, &group_entries[parameters.group_index], &bytes_written); if (result != ConversionResultCode::Success) return result; return RunCallback(parameters.group_index + parameters.entries.size(), parameters.bytes_read, bytes_written, total_groups, iso_size, callback); }; MultithreadedCompressor mt_compressor( set_up_compress_thread_state, process_and_compress, output); for (const DataEntry& data_entry : data_entries) { u32 first_group; u32 last_group; u64 data_offset; u64 data_size; u64 data_offset_in_partition; if (data_entry.is_partition) { const PartitionEntry& partition_entry = partition_entries[data_entry.index]; const PartitionDataEntry& partition_data_entry = partition_entry.data_entries[data_entry.partition_data_index]; first_group = Common::swap32(partition_data_entry.group_index); last_group = first_group + Common::swap32(partition_data_entry.number_of_groups); const u32 first_sector = Common::swap32(partition_data_entry.first_sector); data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE; data_size = Common::swap32(partition_data_entry.number_of_sectors) * VolumeWii::BLOCK_TOTAL_SIZE; const u32 block_in_partition = first_sector - Common::swap32(partition_entry.data_entries[0].first_sector); data_offset_in_partition = block_in_partition * VolumeWii::BLOCK_DATA_SIZE; } else { const RawDataEntry& raw_data_entry = raw_data_entries[data_entry.index]; first_group = Common::swap32(raw_data_entry.group_index); last_group = first_group + Common::swap32(raw_data_entry.number_of_groups); data_offset = Common::swap64(raw_data_entry.data_offset); data_size = Common::swap64(raw_data_entry.data_size); const u64 skipped_data = data_offset % VolumeWii::BLOCK_TOTAL_SIZE; data_offset -= skipped_data; data_size += skipped_data; data_offset_in_partition = data_offset; } ASSERT(groups_processed == first_group); ASSERT(bytes_read == data_offset); while (groups_processed < last_group) { const ConversionResultCode status = mt_compressor.GetStatus(); if (status != ConversionResultCode::Success) return status; u64 bytes_to_read = chunk_size; if (data_entry.is_partition) bytes_to_read = std::max(bytes_to_read, VolumeWii::GROUP_TOTAL_SIZE); bytes_to_read = std::min(bytes_to_read, data_offset + data_size - bytes_read); buffer.resize(bytes_to_read); if (!infile->Read(bytes_read, bytes_to_read, buffer.data())) return ConversionResultCode::ReadFailed; bytes_read += bytes_to_read; mt_compressor.CompressAndWrite(CompressParameters{ buffer, &data_entry, data_offset_in_partition, bytes_read, groups_processed}); data_offset += bytes_to_read; data_size -= bytes_to_read; if (data_entry.is_partition) { data_offset_in_partition += bytes_to_read / VolumeWii::BLOCK_TOTAL_SIZE * VolumeWii::BLOCK_DATA_SIZE; } else { data_offset_in_partition += bytes_to_read; } groups_processed += Common::AlignUp(bytes_to_read, chunk_size) / chunk_size; } ASSERT(data_size == 0); } ASSERT(groups_processed == total_groups); ASSERT(bytes_read == iso_size); mt_compressor.Shutdown(); const ConversionResultCode status = mt_compressor.GetStatus(); if (status != ConversionResultCode::Success) return status; std::unique_ptr compressor; SetUpCompressor(&compressor, compression_type, compression_level, &header_2); const std::optional> compressed_raw_data_entries = Compress( compressor.get(), reinterpret_cast(raw_data_entries.data()), raw_data_entries_size); if (!compressed_raw_data_entries) return ConversionResultCode::InternalError; const std::optional> compressed_group_entries = Compress(compressor.get(), reinterpret_cast(group_entries.data()), group_entries_size); if (!compressed_group_entries) return ConversionResultCode::InternalError; bytes_written = sizeof(WIAHeader1) + sizeof(WIAHeader2); if (!outfile->Seek(sizeof(WIAHeader1) + sizeof(WIAHeader2), File::SeekOrigin::Begin)) return ConversionResultCode::WriteFailed; u64 partition_entries_offset; if (!WriteHeader(outfile, reinterpret_cast(partition_entries.data()), partition_entries_size, headers_size_upper_bound, &bytes_written, &partition_entries_offset)) { return ConversionResultCode::WriteFailed; } u64 raw_data_entries_offset; if (!WriteHeader(outfile, compressed_raw_data_entries->data(), compressed_raw_data_entries->size(), headers_size_upper_bound, &bytes_written, &raw_data_entries_offset)) { return ConversionResultCode::WriteFailed; } u64 group_entries_offset; if (!WriteHeader(outfile, compressed_group_entries->data(), compressed_group_entries->size(), headers_size_upper_bound, &bytes_written, &group_entries_offset)) { return ConversionResultCode::WriteFailed; } u32 disc_type = 0; if (infile_volume) { if (infile_volume->GetVolumeType() == Platform::GameCubeDisc) disc_type = 1; else if (infile_volume->GetVolumeType() == Platform::WiiDisc) disc_type = 2; } header_2.disc_type = Common::swap32(disc_type); header_2.compression_type = Common::swap32(static_cast(compression_type)); header_2.compression_level = static_cast(Common::swap32(static_cast(compression_level))); header_2.chunk_size = Common::swap32(static_cast(chunk_size)); header_2.number_of_partition_entries = Common::swap32(static_cast(partition_entries.size())); header_2.partition_entry_size = Common::swap32(sizeof(PartitionEntry)); header_2.partition_entries_offset = Common::swap64(partition_entries_offset); header_2.partition_entries_hash = Common::SHA1::CalculateDigest(partition_entries); header_2.number_of_raw_data_entries = Common::swap32(static_cast(raw_data_entries.size())); header_2.raw_data_entries_offset = Common::swap64(raw_data_entries_offset); header_2.raw_data_entries_size = Common::swap32(static_cast(compressed_raw_data_entries->size())); header_2.number_of_group_entries = Common::swap32(static_cast(group_entries.size())); header_2.group_entries_offset = Common::swap64(group_entries_offset); header_2.group_entries_size = Common::swap32(static_cast(compressed_group_entries->size())); header_1.magic = RVZ ? RVZ_MAGIC : WIA_MAGIC; header_1.version = Common::swap32(RVZ ? RVZ_VERSION : WIA_VERSION); header_1.version_compatible = Common::swap32(RVZ ? RVZ_VERSION_WRITE_COMPATIBLE : WIA_VERSION_WRITE_COMPATIBLE); header_1.header_2_size = Common::swap32(sizeof(WIAHeader2)); header_1.header_2_hash = Common::SHA1::CalculateDigest(reinterpret_cast(&header_2), sizeof(header_2)); header_1.iso_file_size = Common::swap64(infile->GetDataSize()); header_1.wia_file_size = Common::swap64(outfile->GetSize()); header_1.header_1_hash = Common::SHA1::CalculateDigest(reinterpret_cast(&header_1), offsetof(WIAHeader1, header_1_hash)); if (!outfile->Seek(0, File::SeekOrigin::Begin)) return ConversionResultCode::WriteFailed; if (!outfile->WriteArray(&header_1, 1)) return ConversionResultCode::WriteFailed; if (!outfile->WriteArray(&header_2, 1)) return ConversionResultCode::WriteFailed; return ConversionResultCode::Success; } bool ConvertToWIAOrRVZ(BlobReader* infile, const std::string& infile_path, const std::string& outfile_path, bool rvz, WIARVZCompressionType compression_type, int compression_level, int chunk_size, CompressCB callback) { File::IOFile outfile(outfile_path, "wb"); if (!outfile) { PanicAlertFmtT( "Failed to open the output file \"{0}\".\n" "Check that you have permissions to write the target folder and that the media can " "be written.", outfile_path); return false; } std::unique_ptr infile_volume = CreateDisc(infile_path); const auto convert = rvz ? RVZFileReader::Convert : WIAFileReader::Convert; const ConversionResultCode result = convert(infile, infile_volume.get(), &outfile, compression_type, compression_level, chunk_size, callback); if (result == ConversionResultCode::ReadFailed) PanicAlertFmtT("Failed to read from the input file \"{0}\".", infile_path); if (result == ConversionResultCode::WriteFailed) { PanicAlertFmtT("Failed to write the output file \"{0}\".\n" "Check that you have enough space available on the target drive.", outfile_path); } if (result != ConversionResultCode::Success) { // Remove the incomplete output file outfile.Close(); File::Delete(outfile_path); } return result == ConversionResultCode::Success; } template class WIARVZFileReader; template class WIARVZFileReader; } // namespace DiscIO