/*==================================================================== filename: opcodes.h project: GameCube DSP Tool (gcdsp) created: 2005.03.04 mail: duddie@walla.com Copyright (c) 2005 Duddie This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ====================================================================*/ #include "DSPIntUtil.h" #include "DSPMemoryMap.h" // Extended opcodes do not exist on their own. These opcodes can only be // attached to opcodes that allow extending (8 lower bits of opcode not used by // opcode). Extended opcodes do not modify program counter $pc register. // Most of the suffixes increment or decrement one or more addressing registers // (the first four, ARx). The increment/decrement is either 1, or the corresponding // "index" register (the second four, IXx). The addressing registers will wrap // in odd ways, dictated by the corresponding wrapping register, WP0-3. // The following should be applied as a decrement (and is applied by dsp_decrement_addr_reg): // ar[i] = (ar[i] & wp[i]) == 0 ? ar[i] | wp[i] : ar[i] - 1; // I have not found the corresponding algorithms for increments yet. // It's gotta be fairly simple though. See R3123, R3125 in Google Code. // (May have something to do with (ar[i] ^ wp[i]) == 0) /* namespace DSPInterpreter { namespace Ext { // DR $arR // xxxx xxxx 0000 01rr // Decrement addressing register $arR. void dr(const UDSPInstruction& opc) { dsp_decrement_addr_reg(opc.hex & 0x3); } // IR $arR // xxxx xxxx 0000 10rr // Increment addressing register $arR. void ir(const UDSPInstruction& opc) { dsp_increment_addr_reg(opc.hex & 0x3); } // NR $arR // xxxx xxxx 0000 11rr // Add corresponding indexing register $ixR to addressing register $arR. void nr(const UDSPInstruction& opc) { u8 reg = opc.hex & 0x3; // g_dsp.r[reg] += g_dsp.r[reg + DSP_REG_IX0]; dsp_increase_addr_reg(reg, (s16)g_dsp.r[DSP_REG_IX0 + reg]); } // MV $axD, $acS.l // xxxx xxxx 0001 ddss // Move value of $acS.l to the $axD.l. void mv(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 2) & 0x3); g_dsp.r[dreg + DSP_REG_AXL0] = g_dsp.r[sreg + DSP_REG_ACC0]; } // S @$D, $acD.l // xxxx xxxx 001s s0dd // Store value of $(acS.l) in the memory pointed by register $D. // Post increment register $D. void s(const UDSPInstruction& opc) { u8 dreg = opc.hex & 0x3; u8 sreg = ((opc.hex >> 3) & 0x3) + DSP_REG_ACC0; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); dsp_increment_addr_reg(dreg); } // SN @$D, $acD.l // xxxx xxxx 001s s1dd // Store value of register $acS in the memory pointed by register $D. // Add indexing register $ixD to register $D. void sn(const UDSPInstruction& opc) { u8 dreg = opc.hex & 0x3; u8 sreg = ((opc.hex >> 3) & 0x3) + DSP_REG_ACC0; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); // g_dsp.r[dreg] += g_dsp.r[dreg + DSP_REG_IX0]; dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg]); } // L axD.l, @$S // xxxx xxxx 01dd d0ss // Load $axD with value from memory pointed by register $S. // Post increment register $S. void l(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0; u16 val = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[dreg] = val; dsp_increment_addr_reg(sreg); } // LN axD.l, @$S // xxxx xxxx 01dd d0ss // Load $axD with value from memory pointed by register $S. // Add indexing register register $ixS to register $S. void ln(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0; u16 val = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[dreg] = val; // g_dsp.r[sreg] += g_dsp.r[sreg + DSP_REG_IX0]; dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]); } // Not in duddie's doc // LD $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 00ss void ld(const UDSPInstruction& opc) { u8 dreg = (((opc.hex >> 5) & 0x1) << 1) + DSP_REG_AXL0; u8 rreg = (((opc.hex >> 4) & 0x1) << 1) + DSP_REG_AXL1; u8 sreg = opc.hex & 0x3; g_dsp.r[dreg] = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[rreg] = dsp_dmem_read(g_dsp.r[DSP_REG_AR3]); dsp_increment_addr_reg(sreg); dsp_increment_addr_reg(DSP_REG_AR3); } // Not in duddie's doc // LDN $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 01ss void ldn(const UDSPInstruction& opc) { u8 dreg = (((opc.hex >> 5) & 0x1) << 1) + DSP_REG_AXL0; u8 rreg = (((opc.hex >> 4) & 0x1) << 1) + DSP_REG_AXL1; u8 sreg = opc.hex & 0x3; g_dsp.r[dreg] = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[rreg] = dsp_dmem_read(g_dsp.r[DSP_REG_AR3]); g_dsp.r[sreg] += g_dsp.r[sreg + DSP_REG_IX0]; dsp_increment_addr_reg(DSP_REG_AR3); } // Not in duddie's doc // LDM $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 10ss void ldm(const UDSPInstruction& opc) { u8 dreg = (((opc.hex >> 5) & 0x1) << 1) + DSP_REG_AXL0; u8 rreg = (((opc.hex >> 4) & 0x1) << 1) + DSP_REG_AXL1; u8 sreg = opc.hex & 0x3; g_dsp.r[dreg] = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[rreg] = dsp_dmem_read(g_dsp.r[DSP_REG_AR3]); dsp_increment_addr_reg(sreg); g_dsp.r[DSP_REG_AR3] += g_dsp.r[DSP_REG_IX3]; } // Not in duddie's doc // LDNM $ax0.d $ax1.r @$arS // xxxx xxxx 11dr 11ss void ldnm(const UDSPInstruction& opc) { u8 dreg = (((opc.hex >> 5) & 0x1) << 1) + DSP_REG_AXL0; u8 rreg = (((opc.hex >> 4) & 0x1) << 1) + DSP_REG_AXL1; u8 sreg = opc.hex & 0x3; g_dsp.r[dreg] = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[rreg] = dsp_dmem_read(g_dsp.r[DSP_REG_AR3]); g_dsp.r[sreg] += g_dsp.r[sreg + DSP_REG_IX0]; g_dsp.r[DSP_REG_AR3] += g_dsp.r[DSP_REG_IX3]; } } // end namespace ext } // end namespace DSPInterpeter */ void dsp_op_ext_r_epi(const UDSPInstruction& opc) { u8 op = (opc.hex >> 2) & 0x3; u8 reg = opc.hex & 0x3; switch (op) { case 0x00: // g_dsp.r[reg] = 0; break; case 0x01: // DR dsp_decrement_addr_reg(reg); break; case 0x02: // IR dsp_increment_addr_reg(reg); break; case 0x03: // NR // g_dsp.r[reg] += g_dsp.r[reg + 4]; dsp_increase_addr_reg(reg, (s16)g_dsp.r[DSP_REG_IX0 + reg]); break; } } void dsp_op_ext_mv(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 2) & 0x3); g_dsp.r[dreg + 0x18] = g_dsp.r[sreg + 0x1c]; } void dsp_op_ext_s(const UDSPInstruction& opc) { u8 dreg = opc.hex & 0x3; u8 sreg = ((opc.hex >> 3) & 0x3) + 0x1c; dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]); if (opc.hex & 0x04) // SN { // g_dsp.r[dreg] += g_dsp.r[dreg + 4]; dsp_increase_addr_reg(dreg, (s16)g_dsp.r[DSP_REG_IX0 + dreg]); } else { dsp_increment_addr_reg(dreg); // S } } void dsp_op_ext_l(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x3; u8 dreg = ((opc.hex >> 3) & 0x7) + DSP_REG_AXL0; u16 val = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[dreg] = val; if (opc.hex & 0x04) // LN/LSMN { dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]); // g_dsp.r[sreg] += g_dsp.r[sreg + 4]; } else { dsp_increment_addr_reg(sreg); // LS } } void dsp_op_ext_ls_pro(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + 0x1e; dsp_dmem_write(g_dsp.r[0x03], g_dsp.r[areg]); u8 sreg = 0x03; if (opc.hex & 0x8) // LSM/LSMN { dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]); // g_dsp.r[0x03] += g_dsp.r[0x07]; } else // LS { dsp_increment_addr_reg(sreg); } } void dsp_op_ext_ls_epi(const UDSPInstruction& opc) { u8 dreg = ((opc.hex >> 4) & 0x3) + DSP_REG_AXL0; u16 val = dsp_dmem_read(g_dsp.r[0x00]); dsp_op_write_reg(dreg, val); if (opc.hex & 0x4) // LSN/LSMN { //g_dsp.r[0x00] += g_dsp.r[0x04]; dsp_increase_addr_reg(0x00, (s16)g_dsp.r[DSP_REG_IX0]); } else // LS { dsp_increment_addr_reg(0x00); } } void dsp_op_ext_sl_pro(const UDSPInstruction& opc) { u8 areg = (opc.hex & 0x1) + 0x1e; dsp_dmem_write(g_dsp.r[0x00], g_dsp.r[areg]); if (opc.hex & 0x4) // SLN/SLNM { dsp_increase_addr_reg(0x00, (s16)g_dsp.r[DSP_REG_IX0]); // g_dsp.r[0x00] += g_dsp.r[0x04]; } else // SL { dsp_increment_addr_reg(0x00); } } void dsp_op_ext_sl_epi(const UDSPInstruction& opc) { u8 dreg = ((opc.hex >> 4) & 0x3) + 0x18; const u8 sreg = 0x03; u16 val = dsp_dmem_read(g_dsp.r[sreg]); dsp_op_write_reg(dreg, val); if (opc.hex & 0x8) // SLM/SLMN { dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]); // g_dsp.r[0x03] += g_dsp.r[0x07]; } else // SL { dsp_increment_addr_reg(sreg); } } void dsp_op_ext_ld(const UDSPInstruction& opc) { u8 dreg1 = (((opc.hex >> 5) & 0x1) << 1) + 0x18; u8 dreg2 = (((opc.hex >> 4) & 0x1) << 1) + 0x19; u8 sreg = opc.hex & 0x3; // TODO: test the 0x00 in the else if (sreg != 0x3) { g_dsp.r[dreg1] = dsp_dmem_read(g_dsp.r[sreg]); g_dsp.r[dreg2] = dsp_dmem_read(g_dsp.r[0x03]); } else { g_dsp.r[dreg1] = dsp_dmem_read(g_dsp.r[0x00]); } if (opc.hex & 0x04) // N { dsp_increase_addr_reg(sreg, (s16)g_dsp.r[DSP_REG_IX0 + sreg]); } else { dsp_increment_addr_reg(sreg); } if (opc.hex & 0x08) // M { // TODO test if (sreg != 0x3) dsp_increase_addr_reg(0x03, (s16)g_dsp.r[DSP_REG_IX0 + 0x03]); else dsp_increase_addr_reg(0x00, (s16)g_dsp.r[DSP_REG_IX0 + 0x03]); } else { // Tested if (sreg != 0x3) dsp_increment_addr_reg(0x03); else dsp_increment_addr_reg(0x00); } } // ================================================================================ // // // // ================================================================================ void dsp_op_ext_ops_pro(const UDSPInstruction& opc) { if ((opc.hex & 0xFF) == 0){return;} switch ((opc.hex >> 4) & 0xf) { case 0x00: dsp_op_ext_r_epi(opc.hex); break; case 0x01: dsp_op_ext_mv(opc.hex); break; case 0x02: case 0x03: dsp_op_ext_s(opc.hex); break; case 0x04: case 0x05: case 0x06: case 0x07: dsp_op_ext_l(opc.hex); break; case 0x08: case 0x09: case 0x0a: case 0x0b: if (opc.hex & 0x2) dsp_op_ext_sl_pro(opc.hex); else dsp_op_ext_ls_pro(opc.hex); break; case 0x0c: case 0x0d: case 0x0e: case 0x0f: dsp_op_ext_ld(opc.hex); break; } } void dsp_op_ext_ops_epi(const UDSPInstruction& opc) { if ((opc.hex & 0xFF) == 0) return; switch ((opc.hex >> 4) & 0xf) { case 0x08: case 0x09: case 0x0a: case 0x0b: if (opc.hex & 0x2) { dsp_op_ext_sl_epi(opc.hex); } else { dsp_op_ext_ls_epi(opc.hex); } break; return; } }