// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include <vector> #include "Common/Assert.h" #include "Common/Logging/Log.h" #include "VideoBackends/Vulkan/BoundingBox.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/Renderer.h" #include "VideoBackends/Vulkan/StagingBuffer.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VulkanContext.h" namespace Vulkan { BoundingBox::BoundingBox() { } BoundingBox::~BoundingBox() { if (m_gpu_buffer != VK_NULL_HANDLE) { vkDestroyBuffer(g_vulkan_context->GetDevice(), m_gpu_buffer, nullptr); vkFreeMemory(g_vulkan_context->GetDevice(), m_gpu_memory, nullptr); } } bool BoundingBox::Initialize() { if (!g_vulkan_context->SupportsBoundingBox()) { WARN_LOG(VIDEO, "Vulkan: Bounding box is unsupported by your device."); return true; } if (!CreateGPUBuffer()) return false; if (!CreateReadbackBuffer()) return false; return true; } void BoundingBox::Flush() { if (m_gpu_buffer == VK_NULL_HANDLE) return; // Combine updates together, chances are the game would have written all 4. bool updated_buffer = false; for (size_t start = 0; start < 4; start++) { if (!m_values_dirty[start]) continue; size_t count = 0; std::array<s32, 4> write_values; for (; (start + count) < 4; count++) { if (!m_values_dirty[start + count]) break; m_readback_buffer->Read((start + count) * sizeof(s32), &write_values[count], sizeof(s32), false); m_values_dirty[start + count] = false; } // We can't issue vkCmdUpdateBuffer within a render pass. // However, the writes must be serialized, so we can't put it in the init buffer. if (!updated_buffer) { StateTracker::GetInstance()->EndRenderPass(); // Ensure GPU buffer is in a state where it can be transferred to. Util::BufferMemoryBarrier( g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT, 0, BUFFER_SIZE, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); updated_buffer = true; } vkCmdUpdateBuffer(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, start * sizeof(s32), count * sizeof(s32), reinterpret_cast<const u32*>(write_values.data())); } // Restore fragment shader access to the buffer. if (updated_buffer) { Util::BufferMemoryBarrier( g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); } // We're now up-to-date. m_valid = true; } void BoundingBox::Invalidate() { if (m_gpu_buffer == VK_NULL_HANDLE) return; m_valid = false; } s32 BoundingBox::Get(size_t index) { _assert_(index < NUM_VALUES); if (!m_valid) Readback(); s32 value; m_readback_buffer->Read(index * sizeof(s32), &value, sizeof(value), false); return value; } void BoundingBox::Set(size_t index, s32 value) { _assert_(index < NUM_VALUES); // If we're currently valid, update the stored value in both our cache and the GPU buffer. if (m_valid) { // Skip when it hasn't changed. s32 current_value; m_readback_buffer->Read(index * sizeof(s32), ¤t_value, sizeof(current_value), false); if (current_value == value) return; } // Flag as dirty, and update values. m_readback_buffer->Write(index * sizeof(s32), &value, sizeof(value), true); m_values_dirty[index] = true; } bool BoundingBox::CreateGPUBuffer() { VkBufferUsageFlags buffer_usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; VkBufferCreateInfo info = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType nullptr, // const void* pNext 0, // VkBufferCreateFlags flags BUFFER_SIZE, // VkDeviceSize size buffer_usage, // VkBufferUsageFlags usage VK_SHARING_MODE_EXCLUSIVE, // VkSharingMode sharingMode 0, // uint32_t queueFamilyIndexCount nullptr // const uint32_t* pQueueFamilyIndices }; VkBuffer buffer; VkResult res = vkCreateBuffer(g_vulkan_context->GetDevice(), &info, nullptr, &buffer); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: "); return false; } VkMemoryRequirements memory_requirements; vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), buffer, &memory_requirements); uint32_t memory_type_index = g_vulkan_context->GetMemoryType(memory_requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VkMemoryAllocateInfo memory_allocate_info = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType nullptr, // const void* pNext memory_requirements.size, // VkDeviceSize allocationSize memory_type_index // uint32_t memoryTypeIndex }; VkDeviceMemory memory; res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, &memory); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: "); vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr); return false; } res = vkBindBufferMemory(g_vulkan_context->GetDevice(), buffer, memory, 0); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: "); vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr); vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr); return false; } m_gpu_buffer = buffer; m_gpu_memory = memory; return true; } bool BoundingBox::CreateReadbackBuffer() { m_readback_buffer = StagingBuffer::Create(STAGING_BUFFER_TYPE_READBACK, BUFFER_SIZE, VK_BUFFER_USAGE_TRANSFER_DST_BIT); if (!m_readback_buffer || !m_readback_buffer->Map()) return false; return true; } void BoundingBox::Readback() { // Can't be done within a render pass. StateTracker::GetInstance()->EndRenderPass(); // Ensure all writes are completed to the GPU buffer prior to the transfer. Util::BufferMemoryBarrier( g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, 0, BUFFER_SIZE, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); m_readback_buffer->PrepareForGPUWrite(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); // Copy from GPU -> readback buffer. VkBufferCopy region = {0, 0, BUFFER_SIZE}; vkCmdCopyBuffer(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, m_readback_buffer->GetBuffer(), 1, ®ion); // Restore GPU buffer access. Util::BufferMemoryBarrier(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); m_readback_buffer->FlushGPUCache(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); // Wait until these commands complete. Util::ExecuteCurrentCommandsAndRestoreState(false, true); // Cache is now valid. m_readback_buffer->InvalidateCPUCache(); m_valid = true; } } // namespace Vulkan