// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #if defined(_M_X86) || defined(_M_X86_64) #include #endif #include "Common/Align.h" #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/FileUtil.h" #include "Common/Hash.h" #include "Common/Logging/Log.h" #include "Common/MathUtil.h" #include "Common/MemoryUtil.h" #include "Common/StringUtil.h" #include "Core/ConfigManager.h" #include "Core/FifoPlayer/FifoPlayer.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "Core/HW/Memmap.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/HiresTextures.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" static const u64 TEXHASH_INVALID = 0; // Sonic the Fighters (inside Sonic Gems Collection) loops a 64 frames animation static const int TEXTURE_KILL_THRESHOLD = 64; static const int TEXTURE_POOL_KILL_THRESHOLD = 3; std::unique_ptr g_texture_cache; std::bitset<8> TextureCacheBase::valid_bind_points; TextureCacheBase::TCacheEntry::TCacheEntry(std::unique_ptr tex) : texture(std::move(tex)) { } TextureCacheBase::TCacheEntry::~TCacheEntry() { for (auto& reference : references) reference->references.erase(this); } void TextureCacheBase::CheckTempSize(size_t required_size) { if (required_size <= temp_size) return; temp_size = required_size; Common::FreeAlignedMemory(temp); temp = static_cast(Common::AllocateAlignedMemory(temp_size, 16)); } TextureCacheBase::TextureCacheBase() { SetBackupConfig(g_ActiveConfig); temp_size = 2048 * 2048 * 4; temp = static_cast(Common::AllocateAlignedMemory(temp_size, 16)); TexDecoder_SetTexFmtOverlayOptions(backup_config.texfmt_overlay, backup_config.texfmt_overlay_center); HiresTexture::Init(); SetHash64Function(); InvalidateAllBindPoints(); } void TextureCacheBase::Invalidate() { InvalidateAllBindPoints(); for (size_t i = 0; i < bound_textures.size(); ++i) { bound_textures[i] = nullptr; } for (auto& tex : textures_by_address) { delete tex.second; } textures_by_address.clear(); textures_by_hash.clear(); texture_pool.clear(); } TextureCacheBase::~TextureCacheBase() { HiresTexture::Shutdown(); Invalidate(); Common::FreeAlignedMemory(temp); temp = nullptr; } void TextureCacheBase::OnConfigChanged(VideoConfig& config) { if (config.bHiresTextures != backup_config.hires_textures || config.bCacheHiresTextures != backup_config.cache_hires_textures) { HiresTexture::Update(); } // TODO: Invalidating texcache is really stupid in some of these cases if (config.iSafeTextureCache_ColorSamples != backup_config.color_samples || config.bTexFmtOverlayEnable != backup_config.texfmt_overlay || config.bTexFmtOverlayCenter != backup_config.texfmt_overlay_center || config.bHiresTextures != backup_config.hires_textures || config.bEnableGPUTextureDecoding != backup_config.gpu_texture_decoding || config.bDisableCopyToVRAM != backup_config.disable_vram_copies) { Invalidate(); TexDecoder_SetTexFmtOverlayOptions(g_ActiveConfig.bTexFmtOverlayEnable, g_ActiveConfig.bTexFmtOverlayCenter); } if ((config.stereo_mode != StereoMode::Off) != backup_config.stereo_3d || config.bStereoEFBMonoDepth != backup_config.efb_mono_depth) { g_texture_cache->DeleteShaders(); if (!g_texture_cache->CompileShaders()) PanicAlert("Failed to recompile one or more texture conversion shaders."); } SetBackupConfig(config); } void TextureCacheBase::Cleanup(int _frameCount) { TexAddrCache::iterator iter = textures_by_address.begin(); TexAddrCache::iterator tcend = textures_by_address.end(); while (iter != tcend) { if (iter->second->tmem_only) { iter = InvalidateTexture(iter); } else if (iter->second->frameCount == FRAMECOUNT_INVALID) { iter->second->frameCount = _frameCount; ++iter; } else if (_frameCount > TEXTURE_KILL_THRESHOLD + iter->second->frameCount) { if (iter->second->IsCopy()) { // Only remove EFB copies when they wouldn't be used anymore(changed hash), because EFB // copies living on the // host GPU are unrecoverable. Perform this check only every TEXTURE_KILL_THRESHOLD for // performance reasons if ((_frameCount - iter->second->frameCount) % TEXTURE_KILL_THRESHOLD == 1 && iter->second->hash != iter->second->CalculateHash()) { iter = InvalidateTexture(iter); } else { ++iter; } } else { iter = InvalidateTexture(iter); } } else { ++iter; } } TexPool::iterator iter2 = texture_pool.begin(); TexPool::iterator tcend2 = texture_pool.end(); while (iter2 != tcend2) { if (iter2->second.frameCount == FRAMECOUNT_INVALID) { iter2->second.frameCount = _frameCount; } if (_frameCount > TEXTURE_POOL_KILL_THRESHOLD + iter2->second.frameCount) { iter2 = texture_pool.erase(iter2); } else { ++iter2; } } } bool TextureCacheBase::TCacheEntry::OverlapsMemoryRange(u32 range_address, u32 range_size) const { if (addr + size_in_bytes <= range_address) return false; if (addr >= range_address + range_size) return false; return true; } void TextureCacheBase::SetBackupConfig(const VideoConfig& config) { backup_config.color_samples = config.iSafeTextureCache_ColorSamples; backup_config.texfmt_overlay = config.bTexFmtOverlayEnable; backup_config.texfmt_overlay_center = config.bTexFmtOverlayCenter; backup_config.hires_textures = config.bHiresTextures; backup_config.cache_hires_textures = config.bCacheHiresTextures; backup_config.stereo_3d = config.stereo_mode != StereoMode::Off; backup_config.efb_mono_depth = config.bStereoEFBMonoDepth; backup_config.gpu_texture_decoding = config.bEnableGPUTextureDecoding; backup_config.disable_vram_copies = config.bDisableCopyToVRAM; } TextureCacheBase::TCacheEntry* TextureCacheBase::ApplyPaletteToEntry(TCacheEntry* entry, u8* palette, TLUTFormat tlutfmt) { TextureConfig new_config = entry->texture->GetConfig(); new_config.levels = 1; new_config.rendertarget = true; TCacheEntry* decoded_entry = AllocateCacheEntry(new_config); if (!decoded_entry) return nullptr; decoded_entry->SetGeneralParameters(entry->addr, entry->size_in_bytes, entry->format, entry->should_force_safe_hashing); decoded_entry->SetDimensions(entry->native_width, entry->native_height, 1); decoded_entry->SetHashes(entry->base_hash, entry->hash); decoded_entry->frameCount = FRAMECOUNT_INVALID; decoded_entry->should_force_safe_hashing = false; decoded_entry->SetNotCopy(); decoded_entry->may_have_overlapping_textures = entry->may_have_overlapping_textures; ConvertTexture(decoded_entry, entry, palette, tlutfmt); textures_by_address.emplace(entry->addr, decoded_entry); return decoded_entry; } void TextureCacheBase::ScaleTextureCacheEntryTo(TextureCacheBase::TCacheEntry* entry, u32 new_width, u32 new_height) { if (entry->GetWidth() == new_width && entry->GetHeight() == new_height) { return; } const u32 max = g_ActiveConfig.backend_info.MaxTextureSize; if (max < new_width || max < new_height) { ERROR_LOG(VIDEO, "Texture too big, width = %d, height = %d", new_width, new_height); return; } TextureConfig newconfig; newconfig.width = new_width; newconfig.height = new_height; newconfig.layers = entry->GetNumLayers(); newconfig.rendertarget = true; std::unique_ptr new_texture = AllocateTexture(newconfig); if (new_texture) { new_texture->ScaleRectangleFromTexture(entry->texture.get(), entry->texture->GetConfig().GetRect(), new_texture->GetConfig().GetRect()); entry->texture.swap(new_texture); auto config = new_texture->GetConfig(); // At this point new_texture has the old texture in it, // we can potentially reuse this, so let's move it back to the pool texture_pool.emplace(config, TexPoolEntry(std::move(new_texture))); } else { ERROR_LOG(VIDEO, "Scaling failed"); } } TextureCacheBase::TCacheEntry* TextureCacheBase::DoPartialTextureUpdates(TCacheEntry* entry_to_update, u8* palette, TLUTFormat tlutfmt) { // If the flag may_have_overlapping_textures is cleared, there are no overlapping EFB copies, // which aren't applied already. It is set for new textures, and for the affected range // on each EFB copy. if (!entry_to_update->may_have_overlapping_textures) return entry_to_update; entry_to_update->may_have_overlapping_textures = false; const bool isPaletteTexture = IsColorIndexed(entry_to_update->format.texfmt); // EFB copies are excluded from these updates, until there's an example where a game would // benefit from updating. This would require more work to be done. if (entry_to_update->IsCopy()) return entry_to_update; u32 block_width = TexDecoder_GetBlockWidthInTexels(entry_to_update->format.texfmt); u32 block_height = TexDecoder_GetBlockHeightInTexels(entry_to_update->format.texfmt); u32 block_size = block_width * block_height * TexDecoder_GetTexelSizeInNibbles(entry_to_update->format.texfmt) / 2; u32 numBlocksX = (entry_to_update->native_width + block_width - 1) / block_width; auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes); while (iter.first != iter.second) { TCacheEntry* entry = iter.first->second; if (entry != entry_to_update && entry->IsCopy() && !entry->tmem_only && entry->references.count(entry_to_update) == 0 && entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) && entry->memory_stride == numBlocksX * block_size) { if (entry->hash == entry->CalculateHash()) { if (isPaletteTexture) { TCacheEntry* decoded_entry = ApplyPaletteToEntry(entry, palette, tlutfmt); if (decoded_entry) { // Link the efb copy with the partially updated texture, so we won't apply this partial // update again entry->CreateReference(entry_to_update); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; entry = decoded_entry; } else { ++iter.first; continue; } } u32 src_x, src_y, dst_x, dst_y; // Note for understanding the math: // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist if (entry->addr >= entry_to_update->addr) { u32 block_offset = (entry->addr - entry_to_update->addr) / block_size; u32 block_x = block_offset % numBlocksX; u32 block_y = block_offset / numBlocksX; src_x = 0; src_y = 0; dst_x = block_x * block_width; dst_y = block_y * block_height; } else { u32 block_offset = (entry_to_update->addr - entry->addr) / block_size; u32 block_x = (~block_offset + 1) % numBlocksX; u32 block_y = (block_offset + block_x) / numBlocksX; src_x = 0; src_y = block_y * block_height; dst_x = block_x * block_width; dst_y = 0; } u32 copy_width = std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x); u32 copy_height = std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y); // If one of the textures is scaled, scale both with the current efb scaling factor if (entry_to_update->native_width != entry_to_update->GetWidth() || entry_to_update->native_height != entry_to_update->GetHeight() || entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight()) { ScaleTextureCacheEntryTo(entry_to_update, g_renderer->EFBToScaledX(entry_to_update->native_width), g_renderer->EFBToScaledY(entry_to_update->native_height)); ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width), g_renderer->EFBToScaledY(entry->native_height)); src_x = g_renderer->EFBToScaledX(src_x); src_y = g_renderer->EFBToScaledY(src_y); dst_x = g_renderer->EFBToScaledX(dst_x); dst_y = g_renderer->EFBToScaledY(dst_y); copy_width = g_renderer->EFBToScaledX(copy_width); copy_height = g_renderer->EFBToScaledY(copy_height); } MathUtil::Rectangle srcrect, dstrect; srcrect.left = src_x; srcrect.top = src_y; srcrect.right = (src_x + copy_width); srcrect.bottom = (src_y + copy_height); dstrect.left = dst_x; dstrect.top = dst_y; dstrect.right = (dst_x + copy_width); dstrect.bottom = (dst_y + copy_height); for (u32 layer = 0; layer < entry->texture->GetConfig().layers; layer++) { entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer, 0, dstrect, layer, 0); } if (isPaletteTexture) { // Remove the temporary converted texture, it won't be used anywhere else // TODO: It would be nice to convert and copy in one step, but this code path isn't common InvalidateTexture(GetTexCacheIter(entry)); } else { // Link the two textures together, so we won't apply this partial update again entry->CreateReference(entry_to_update); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; } } else { // If the hash does not match, this EFB copy will not be used for anything, so remove it iter.first = InvalidateTexture(iter.first); continue; } } ++iter.first; } return entry_to_update; } void TextureCacheBase::DumpTexture(TCacheEntry* entry, std::string basename, unsigned int level, bool is_arbitrary) { std::string szDir = File::GetUserPath(D_DUMPTEXTURES_IDX) + SConfig::GetInstance().GetGameID(); // make sure that the directory exists if (!File::IsDirectory(szDir)) File::CreateDir(szDir); if (is_arbitrary) { basename += "_arb"; } if (level > 0) { basename += StringFromFormat("_mip%i", level); } std::string filename = szDir + "/" + basename + ".png"; if (!File::Exists(filename)) entry->texture->Save(filename, level); } static u32 CalculateLevelSize(u32 level_0_size, u32 level) { return std::max(level_0_size >> level, 1u); } void TextureCacheBase::BindTextures() { for (u32 i = 0; i < bound_textures.size(); i++) { if (IsValidBindPoint(i) && bound_textures[i]) g_renderer->SetTexture(i, bound_textures[i]->texture.get()); } } class ArbitraryMipmapDetector { private: using PixelRGBAf = std::array; public: explicit ArbitraryMipmapDetector() = default; void AddLevel(u32 width, u32 height, u32 row_length, const u8* buffer) { levels.push_back({{width, height, row_length}, buffer}); } bool HasArbitraryMipmaps(u8* downsample_buffer) const { if (levels.size() < 2) return false; // This is the average per-pixel, per-channel difference in percent between what we // expect a normal blurred mipmap to look like and what we actually received // 4.5% was chosen because it's just below the lowest clearly-arbitrary texture // I found in my tests, the background clouds in Mario Galaxy's Observatory lobby. constexpr auto THRESHOLD_PERCENT = 4.5f; auto* src = downsample_buffer; auto* dst = downsample_buffer + levels[1].shape.row_length * levels[1].shape.height * 4; float total_diff = 0.f; for (std::size_t i = 0; i < levels.size() - 1; ++i) { const auto& level = levels[i]; const auto& mip = levels[i + 1]; // Manually downsample the past downsample with a simple box blur // This is not necessarily close to whatever the original artists used, however // It should still be closer than a thing that's not a downscale at all Level::Downsample(i ? src : level.pixels, level.shape, dst, mip.shape); // Find the average difference between pixels in this level but downsampled // and the next level auto diff = mip.AverageDiff(dst); total_diff += diff; std::swap(src, dst); } auto all_levels = total_diff / (levels.size() - 1); return all_levels > THRESHOLD_PERCENT; } private: static float SRGBToLinear(u8 srgb_byte) { auto srgb_float = static_cast(srgb_byte) / 256.f; // approximations found on // http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html return srgb_float * (srgb_float * (srgb_float * 0.305306011f + 0.682171111f) + 0.012522878f); } static u8 LinearToSRGB(float linear) { return static_cast(std::max(1.055f * std::pow(linear, 0.416666667f) - 0.055f, 0.f) * 256.f); } struct Shape { u32 width; u32 height; u32 row_length; }; struct Level { Shape shape; const u8* pixels; static PixelRGBAf Sample(const u8* src, const Shape& src_shape, u32 x, u32 y) { const auto* p = src + (x + y * src_shape.row_length) * 4; return {{SRGBToLinear(p[0]), SRGBToLinear(p[1]), SRGBToLinear(p[2]), SRGBToLinear(p[3])}}; } // Puts a downsampled image in dst. dst must be at least width*height*4 static void Downsample(const u8* src, const Shape& src_shape, u8* dst, const Shape& dst_shape) { for (u32 i = 0; i < dst_shape.height; ++i) { for (u32 j = 0; j < dst_shape.width; ++j) { auto x = j * 2; auto y = i * 2; const std::array samples{{ Sample(src, src_shape, x, y), Sample(src, src_shape, x + 1, y), Sample(src, src_shape, x, y + 1), Sample(src, src_shape, x + 1, y + 1), }}; auto* dst_pixel = dst + (j + i * dst_shape.row_length) * 4; dst_pixel[0] = LinearToSRGB((samples[0][0] + samples[1][0] + samples[2][0] + samples[3][0]) * 0.25f); dst_pixel[1] = LinearToSRGB((samples[0][1] + samples[1][1] + samples[2][1] + samples[3][1]) * 0.25f); dst_pixel[2] = LinearToSRGB((samples[0][2] + samples[1][2] + samples[2][2] + samples[3][2]) * 0.25f); dst_pixel[3] = LinearToSRGB((samples[0][3] + samples[1][3] + samples[2][3] + samples[3][3]) * 0.25f); } } } float AverageDiff(const u8* other) const { float average_diff = 0.f; const auto* ptr1 = pixels; const auto* ptr2 = other; for (u32 i = 0; i < shape.height; ++i) { const auto* row1 = ptr1; const auto* row2 = ptr2; for (u32 j = 0; j < shape.width; ++j, row1 += 4, row2 += 4) { average_diff += std::abs(static_cast(row1[0]) - static_cast(row2[0])); average_diff += std::abs(static_cast(row1[1]) - static_cast(row2[1])); average_diff += std::abs(static_cast(row1[2]) - static_cast(row2[2])); average_diff += std::abs(static_cast(row1[3]) - static_cast(row2[3])); } ptr1 += shape.row_length; ptr2 += shape.row_length; } return average_diff / (shape.width * shape.height * 4) / 2.56f; } }; std::vector levels; }; TextureCacheBase::TCacheEntry* TextureCacheBase::Load(const u32 stage) { // if this stage was not invalidated by changes to texture registers, keep the current texture if (IsValidBindPoint(stage) && bound_textures[stage]) { return bound_textures[stage]; } const FourTexUnits& tex = bpmem.tex[stage >> 2]; const u32 id = stage & 3; const u32 address = (tex.texImage3[id].image_base /* & 0x1FFFFF*/) << 5; u32 width = tex.texImage0[id].width + 1; u32 height = tex.texImage0[id].height + 1; const TextureFormat texformat = static_cast(tex.texImage0[id].format); const u32 tlutaddr = tex.texTlut[id].tmem_offset << 9; const TLUTFormat tlutfmt = static_cast(tex.texTlut[id].tlut_format); const bool use_mipmaps = SamplerCommon::AreBpTexMode0MipmapsEnabled(tex.texMode0[id]); u32 tex_levels = use_mipmaps ? ((tex.texMode1[id].max_lod + 0xf) / 0x10 + 1) : 1; const bool from_tmem = tex.texImage1[id].image_type != 0; const u32 tmem_address_even = from_tmem ? tex.texImage1[id].tmem_even * TMEM_LINE_SIZE : 0; const u32 tmem_address_odd = from_tmem ? tex.texImage2[id].tmem_odd * TMEM_LINE_SIZE : 0; auto entry = GetTexture(address, width, height, texformat, g_ActiveConfig.iSafeTextureCache_ColorSamples, tlutaddr, tlutfmt, use_mipmaps, tex_levels, from_tmem, tmem_address_even, tmem_address_odd); if (!entry) return nullptr; entry->frameCount = FRAMECOUNT_INVALID; bound_textures[stage] = entry; GFX_DEBUGGER_PAUSE_AT(NEXT_TEXTURE_CHANGE, true); // We need to keep track of invalided textures until they have actually been replaced or // re-loaded valid_bind_points.set(stage); return entry; } TextureCacheBase::TCacheEntry* TextureCacheBase::GetTexture(u32 address, u32 width, u32 height, const TextureFormat texformat, const int textureCacheSafetyColorSampleSize, u32 tlutaddr, TLUTFormat tlutfmt, bool use_mipmaps, u32 tex_levels, bool from_tmem, u32 tmem_address_even, u32 tmem_address_odd) { // TexelSizeInNibbles(format) * width * height / 16; const unsigned int bsw = TexDecoder_GetBlockWidthInTexels(texformat); const unsigned int bsh = TexDecoder_GetBlockHeightInTexels(texformat); unsigned int expandedWidth = Common::AlignUp(width, bsw); unsigned int expandedHeight = Common::AlignUp(height, bsh); const unsigned int nativeW = width; const unsigned int nativeH = height; // Hash assigned to texcache entry (also used to generate filenames used for texture dumping and // custom texture lookup) u64 base_hash = TEXHASH_INVALID; u64 full_hash = TEXHASH_INVALID; TextureAndTLUTFormat full_format(texformat, tlutfmt); const bool isPaletteTexture = IsColorIndexed(texformat); // Reject invalid tlut format. if (isPaletteTexture && !IsValidTLUTFormat(tlutfmt)) return nullptr; const u32 texture_size = TexDecoder_GetTextureSizeInBytes(expandedWidth, expandedHeight, texformat); u32 bytes_per_block = (bsw * bsh * TexDecoder_GetTexelSizeInNibbles(texformat)) / 2; u32 additional_mips_size = 0; // not including level 0, which is texture_size // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in // the mipmap chain // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we // limit the mipmap count to 6 there tex_levels = std::min(IntLog2(std::max(width, height)) + 1, tex_levels); for (u32 level = 1; level != tex_levels; ++level) { // We still need to calculate the original size of the mips const u32 expanded_mip_width = Common::AlignUp(CalculateLevelSize(width, level), bsw); const u32 expanded_mip_height = Common::AlignUp(CalculateLevelSize(height, level), bsh); additional_mips_size += TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); } // TODO: the texture cache lookup is based on address, but a texture from tmem has no reason // to have a unique and valid address. This could result in a regular texture and a tmem // texture aliasing onto the same texture cache entry. const u8* src_data; if (from_tmem) src_data = &texMem[tmem_address_even]; else src_data = Memory::GetPointer(address); if (!src_data) { ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", address); return nullptr; } // If we are recording a FifoLog, keep track of what memory we read. FifoRecorder does // its own memory modification tracking independent of the texture hashing below. if (g_bRecordFifoData && !from_tmem) FifoRecorder::GetInstance().UseMemory(address, texture_size + additional_mips_size, MemoryUpdate::TEXTURE_MAP); // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data // from the low tmem bank than it should) base_hash = GetHash64(src_data, texture_size, textureCacheSafetyColorSampleSize); u32 palette_size = 0; if (isPaletteTexture) { palette_size = TexDecoder_GetPaletteSize(texformat); full_hash = base_hash ^ GetHash64(&texMem[tlutaddr], palette_size, textureCacheSafetyColorSampleSize); } else { full_hash = base_hash; } // Search the texture cache for textures by address // // Find all texture cache entries for the current texture address, and decide whether to use one // of // them, or to create a new one // // In most cases, the fastest way is to use only one texture cache entry for the same address. // Usually, // when a texture changes, the old version of the texture is unlikely to be used again. If there // were // new cache entries created for normal texture updates, there would be a slowdown due to a huge // amount // of unused cache entries. Also thanks to texture pooling, overwriting an existing cache entry is // faster than creating a new one from scratch. // // Some games use the same address for different textures though. If the same cache entry was used // in // this case, it would be constantly overwritten, and effectively there wouldn't be any caching // for // those textures. Examples for this are Metroid Prime and Castlevania 3. Metroid Prime has // multiple // sets of fonts on each other stored in a single texture and uses the palette to make different // characters visible or invisible. In Castlevania 3 some textures are used for 2 different things // or // at least in 2 different ways(size 1024x1024 vs 1024x256). // // To determine whether to use multiple cache entries or a single entry, use the following // heuristic: // If the same texture address is used several times during the same frame, assume the address is // used // for different purposes and allow creating an additional cache entry. If there's at least one // entry // that hasn't been used for the same frame, then overwrite it, in order to keep the cache as // small as // possible. If the current texture is found in the cache, use that entry. // // For efb copies, the entry created in CopyRenderTargetToTexture always has to be used, or else // it was // done in vain. auto iter_range = textures_by_address.equal_range(address); TexAddrCache::iterator iter = iter_range.first; TexAddrCache::iterator oldest_entry = iter; int temp_frameCount = 0x7fffffff; TexAddrCache::iterator unconverted_copy = textures_by_address.end(); while (iter != iter_range.second) { TCacheEntry* entry = iter->second; // Skip entries that are only left in our texture cache for the tmem cache emulation if (entry->tmem_only) { ++iter; continue; } // Do not load strided EFB copies, they are not meant to be used directly. // Also do not directly load EFB copies, which were partly overwritten. if (entry->IsEfbCopy() && entry->native_width == nativeW && entry->native_height == nativeH && entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures) { // EFB copies have slightly different rules as EFB copy formats have different // meanings from texture formats. if ((base_hash == entry->hash && (!isPaletteTexture || g_Config.backend_info.bSupportsPaletteConversion)) || IsPlayingBackFifologWithBrokenEFBCopies) { // TODO: We should check format/width/height/levels for EFB copies. Checking // format is complicated because EFB copy formats don't exactly match // texture formats. I'm not sure what effect checking width/height/levels // would have. if (!isPaletteTexture || !g_Config.backend_info.bSupportsPaletteConversion) return entry; // Note that we found an unconverted EFB copy, then continue. We'll // perform the conversion later. Currently, we only convert EFB copies to // palette textures; we could do other conversions if it proved to be // beneficial. unconverted_copy = iter; } else { // Aggressively prune EFB copies: if it isn't useful here, it will probably // never be useful again. It's theoretically possible for a game to do // something weird where the copy could become useful in the future, but in // practice it doesn't happen. iter = InvalidateTexture(iter); continue; } } else { // For normal textures, all texture parameters need to match if (!entry->IsEfbCopy() && entry->hash == full_hash && entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt); return entry; } } // Find the texture which hasn't been used for the longest time. Count paletted // textures as the same texture here, when the texture itself is the same. This // improves the performance a lot in some games that use paletted textures. // Example: Sonic the Fighters (inside Sonic Gems Collection) // Skip EFB copies here, so they can be used for partial texture updates if (entry->frameCount != FRAMECOUNT_INVALID && entry->frameCount < temp_frameCount && !entry->IsEfbCopy() && !(isPaletteTexture && entry->base_hash == base_hash)) { temp_frameCount = entry->frameCount; oldest_entry = iter; } ++iter; } if (unconverted_copy != textures_by_address.end()) { TCacheEntry* decoded_entry = ApplyPaletteToEntry(unconverted_copy->second, &texMem[tlutaddr], tlutfmt); if (decoded_entry) { return decoded_entry; } } // Search the texture cache for normal textures by hash // // If the texture was fully hashed, the address does not need to match. Identical duplicate // textures cause unnecessary slowdowns // Example: Tales of Symphonia (GC) uses over 500 small textures in menus, but only around 70 // different ones if (textureCacheSafetyColorSampleSize == 0 || std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8) { auto hash_range = textures_by_hash.equal_range(full_hash); TexHashCache::iterator hash_iter = hash_range.first; while (hash_iter != hash_range.second) { TCacheEntry* entry = hash_iter->second; // All parameters, except the address, need to match here if (entry->format == full_format && entry->native_levels >= tex_levels && entry->native_width == nativeW && entry->native_height == nativeH) { entry = DoPartialTextureUpdates(hash_iter->second, &texMem[tlutaddr], tlutfmt); return entry; } ++hash_iter; } } // If at least one entry was not used for the same frame, overwrite the oldest one if (temp_frameCount != 0x7fffffff) { // pool this texture and make a new one later InvalidateTexture(oldest_entry); } std::shared_ptr hires_tex; if (g_ActiveConfig.bHiresTextures) { hires_tex = HiresTexture::Search(src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps); if (hires_tex) { const auto& level = hires_tex->m_levels[0]; if (level.width != width || level.height != height) { width = level.width; height = level.height; } expandedWidth = level.width; expandedHeight = level.height; } } // how many levels the allocated texture shall have const u32 texLevels = hires_tex ? (u32)hires_tex->m_levels.size() : tex_levels; // We can decode on the GPU if it is a supported format and the flag is enabled. // Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both // banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since // there's no conversion between formats. In the future this could be extended with a separate // shader, however. bool decode_on_gpu = !hires_tex && g_ActiveConfig.UseGPUTextureDecoding() && g_texture_cache->SupportsGPUTextureDecode(texformat, tlutfmt) && !(from_tmem && texformat == TextureFormat::RGBA8); // create the entry/texture TextureConfig config; config.width = width; config.height = height; config.levels = texLevels; config.format = hires_tex ? hires_tex->GetFormat() : AbstractTextureFormat::RGBA8; ArbitraryMipmapDetector arbitrary_mip_detector; TCacheEntry* entry = AllocateCacheEntry(config); GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true); if (!entry) return nullptr; const u8* tlut = &texMem[tlutaddr]; if (hires_tex) { const auto& level = hires_tex->m_levels[0]; entry->texture->Load(0, level.width, level.height, level.row_length, level.data.get(), level.data_size); } // Initialized to null because only software loading uses this buffer u8* dst_buffer = nullptr; if (!hires_tex) { if (decode_on_gpu) { u32 row_stride = bytes_per_block * (expandedWidth / bsw); g_texture_cache->DecodeTextureOnGPU(entry, 0, src_data, texture_size, texformat, width, height, expandedWidth, expandedHeight, row_stride, tlut, tlutfmt); } else { size_t decoded_texture_size = expandedWidth * sizeof(u32) * expandedHeight; // Allocate memory for all levels at once size_t total_texture_size = decoded_texture_size; // For the downsample, we need 2 buffers; 1 is 1/4 of the original texture, the other 1/16 size_t mip_downsample_buffer_size = decoded_texture_size * 5 / 16; size_t prev_level_size = decoded_texture_size; for (u32 i = 1; i < tex_levels; ++i) { prev_level_size /= 4; total_texture_size += prev_level_size; } // Add space for the downsampling at the end total_texture_size += mip_downsample_buffer_size; CheckTempSize(total_texture_size); dst_buffer = temp; if (!(texformat == TextureFormat::RGBA8 && from_tmem)) { TexDecoder_Decode(dst_buffer, src_data, expandedWidth, expandedHeight, texformat, tlut, tlutfmt); } else { u8* src_data_gb = &texMem[tmem_address_odd]; TexDecoder_DecodeRGBA8FromTmem(dst_buffer, src_data, src_data_gb, expandedWidth, expandedHeight); } entry->texture->Load(0, width, height, expandedWidth, dst_buffer, decoded_texture_size); arbitrary_mip_detector.AddLevel(width, height, expandedWidth, dst_buffer); dst_buffer += decoded_texture_size; } } iter = textures_by_address.emplace(address, entry); if (textureCacheSafetyColorSampleSize == 0 || std::max(texture_size, palette_size) <= (u32)textureCacheSafetyColorSampleSize * 8) { entry->textures_by_hash_iter = textures_by_hash.emplace(full_hash, entry); } entry->SetGeneralParameters(address, texture_size, full_format, false); entry->SetDimensions(nativeW, nativeH, tex_levels); entry->SetHashes(base_hash, full_hash); entry->is_custom_tex = hires_tex != nullptr; entry->memory_stride = entry->BytesPerRow(); entry->SetNotCopy(); std::string basename = ""; if (g_ActiveConfig.bDumpTextures && !hires_tex) { basename = HiresTexture::GenBaseName(src_data, texture_size, &texMem[tlutaddr], palette_size, width, height, texformat, use_mipmaps, true); } if (hires_tex) { for (u32 level_index = 1; level_index != texLevels; ++level_index) { const auto& level = hires_tex->m_levels[level_index]; entry->texture->Load(level_index, level.width, level.height, level.row_length, level.data.get(), level.data_size); } } else { // load mips - TODO: Loading mipmaps from tmem is untested! src_data += texture_size; const u8* ptr_even = nullptr; const u8* ptr_odd = nullptr; if (from_tmem) { ptr_even = &texMem[tmem_address_even + texture_size]; ptr_odd = &texMem[tmem_address_odd]; } for (u32 level = 1; level != texLevels; ++level) { const u32 mip_width = CalculateLevelSize(width, level); const u32 mip_height = CalculateLevelSize(height, level); const u32 expanded_mip_width = Common::AlignUp(mip_width, bsw); const u32 expanded_mip_height = Common::AlignUp(mip_height, bsh); const u8*& mip_src_data = from_tmem ? ((level % 2) ? ptr_odd : ptr_even) : src_data; size_t mip_size = TexDecoder_GetTextureSizeInBytes(expanded_mip_width, expanded_mip_height, texformat); if (decode_on_gpu) { u32 row_stride = bytes_per_block * (expanded_mip_width / bsw); g_texture_cache->DecodeTextureOnGPU(entry, level, mip_src_data, mip_size, texformat, mip_width, mip_height, expanded_mip_width, expanded_mip_height, row_stride, tlut, tlutfmt); } else { // No need to call CheckTempSize here, as the whole buffer is preallocated at the beginning size_t decoded_mip_size = expanded_mip_width * sizeof(u32) * expanded_mip_height; TexDecoder_Decode(dst_buffer, mip_src_data, expanded_mip_width, expanded_mip_height, texformat, tlut, tlutfmt); entry->texture->Load(level, mip_width, mip_height, expanded_mip_width, dst_buffer, decoded_mip_size); arbitrary_mip_detector.AddLevel(mip_width, mip_height, expanded_mip_width, dst_buffer); dst_buffer += decoded_mip_size; } mip_src_data += mip_size; } } entry->has_arbitrary_mips = hires_tex ? hires_tex->HasArbitraryMipmaps() : arbitrary_mip_detector.HasArbitraryMipmaps(dst_buffer); if (g_ActiveConfig.bDumpTextures && !hires_tex) { for (u32 level = 0; level < texLevels; ++level) { DumpTexture(entry, basename, level, entry->has_arbitrary_mips); } } INCSTAT(stats.numTexturesUploaded); SETSTAT(stats.numTexturesAlive, textures_by_address.size()); entry = DoPartialTextureUpdates(iter->second, &texMem[tlutaddr], tlutfmt); return entry; } TextureCacheBase::TCacheEntry* TextureCacheBase::GetXFBTexture(u32 address, u32 width, u32 height, TextureFormat tex_format, int texture_cache_safety_color_sample_size) { auto tex_info = ComputeTextureInformation(address, width, height, tex_format, texture_cache_safety_color_sample_size, false, 0, 0, 0, TLUTFormat::IA8, 1); if (!tex_info) { return nullptr; } const TextureLookupInformation tex_info_value = tex_info.value(); TCacheEntry* entry = GetXFBFromCache(tex_info_value); if (entry != nullptr) { return entry; } entry = CreateNormalTexture(tex_info.value()); // XFBs created for the purpose of being a container for textures from memory // or as a container for overlapping textures, never need to be combined // with other textures entry->may_have_overlapping_textures = false; // At this point, the XFB wasn't found in cache // this means the address is most likely not pointing at an xfb copy but instead // an area of memory. Let's attempt to stitch all entries in this memory space // together bool loaded_from_overlapping = LoadTextureFromOverlappingTextures(entry, tex_info_value); if (!loaded_from_overlapping) { // At this point, the xfb address is truly "bogus" // it likely is an area of memory defined by the CPU // so load it from memory LoadTextureFromMemory(entry, tex_info_value); } if (g_ActiveConfig.bDumpXFBTarget) { // While this isn't really an xfb copy, we can treat it as such // for dumping purposes static int xfb_count = 0; const std::string xfb_type = loaded_from_overlapping ? "combined" : "from_memory"; entry->texture->Save(StringFromFormat("%sxfb_%s_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), xfb_type.c_str(), xfb_count++), 0); } return entry; } std::optional TextureCacheBase::ComputeTextureInformation( u32 address, u32 width, u32 height, TextureFormat tex_format, int texture_cache_safety_color_sample_size, bool from_tmem, u32 tmem_address_even, u32 tmem_address_odd, u32 tlut_address, TLUTFormat tlut_format, u32 levels) { TextureLookupInformation tex_info; tex_info.from_tmem = from_tmem; tex_info.tmem_address_even = tmem_address_even; tex_info.tmem_address_odd = tmem_address_odd; tex_info.address = address; if (from_tmem) tex_info.src_data = &texMem[tex_info.tmem_address_even]; else tex_info.src_data = Memory::GetPointer(tex_info.address); if (tex_info.src_data == nullptr) { ERROR_LOG(VIDEO, "Trying to use an invalid texture address 0x%8x", tex_info.address); return {}; } tex_info.texture_cache_safety_color_sample_size = texture_cache_safety_color_sample_size; // TexelSizeInNibbles(format) * width * height / 16; tex_info.block_width = TexDecoder_GetBlockWidthInTexels(tex_format); tex_info.block_height = TexDecoder_GetBlockHeightInTexels(tex_format); tex_info.bytes_per_block = (tex_info.block_width * tex_info.block_height * TexDecoder_GetTexelSizeInNibbles(tex_format)) / 2; tex_info.expanded_width = Common::AlignUp(width, tex_info.block_width); tex_info.expanded_height = Common::AlignUp(height, tex_info.block_height); tex_info.total_bytes = TexDecoder_GetTextureSizeInBytes(tex_info.expanded_width, tex_info.expanded_height, tex_format); tex_info.native_width = width; tex_info.native_height = height; tex_info.native_levels = levels; // GPUs don't like when the specified mipmap count would require more than one 1x1-sized LOD in // the mipmap chain // e.g. 64x64 with 7 LODs would have the mipmap chain 64x64,32x32,16x16,8x8,4x4,2x2,1x1,0x0, so we // limit the mipmap count to 6 there tex_info.computed_levels = std::min( IntLog2(std::max(tex_info.native_width, tex_info.native_height)) + 1, tex_info.native_levels); tex_info.full_format = TextureAndTLUTFormat(tex_format, tlut_format); tex_info.tlut_address = tlut_address; // TODO: This doesn't hash GB tiles for preloaded RGBA8 textures (instead, it's hashing more data // from the low tmem bank than it should) tex_info.base_hash = GetHash64(tex_info.src_data, tex_info.total_bytes, tex_info.texture_cache_safety_color_sample_size); tex_info.is_palette_texture = IsColorIndexed(tex_format); if (tex_info.is_palette_texture) { tex_info.palette_size = TexDecoder_GetPaletteSize(tex_format); tex_info.full_hash = tex_info.base_hash ^ GetHash64(&texMem[tex_info.tlut_address], tex_info.palette_size, tex_info.texture_cache_safety_color_sample_size); } else { tex_info.full_hash = tex_info.base_hash; } return tex_info; } TextureCacheBase::TCacheEntry* TextureCacheBase::GetXFBFromCache(const TextureLookupInformation& tex_info) { auto iter_range = textures_by_address.equal_range(tex_info.address); TexAddrCache::iterator iter = iter_range.first; while (iter != iter_range.second) { TCacheEntry* entry = iter->second; if ((entry->is_xfb_copy || entry->format.texfmt == TextureFormat::XFB) && entry->native_width == tex_info.native_width && entry->native_height == tex_info.native_height && entry->memory_stride == entry->BytesPerRow() && !entry->may_have_overlapping_textures) { if (tex_info.base_hash == entry->hash && !entry->reference_changed) { return entry; } else { // At this point, we either have an xfb copy that has changed its hash // or an xfb created by stitching or from memory that has been changed // we are safe to invalidate this iter = InvalidateTexture(iter); continue; } } ++iter; } return nullptr; } bool TextureCacheBase::LoadTextureFromOverlappingTextures(TCacheEntry* entry_to_update, const TextureLookupInformation& tex_info) { bool updated_entry = false; u32 numBlocksX = entry_to_update->native_width / tex_info.block_width; auto iter = FindOverlappingTextures(entry_to_update->addr, entry_to_update->size_in_bytes); while (iter.first != iter.second) { TCacheEntry* entry = iter.first->second; if (entry != entry_to_update && entry->IsCopy() && !entry->tmem_only && entry->references.count(entry_to_update) == 0 && entry->OverlapsMemoryRange(entry_to_update->addr, entry_to_update->size_in_bytes) && entry->memory_stride == entry_to_update->memory_stride) { if (entry->hash == entry->CalculateHash()) { if (tex_info.is_palette_texture) { TCacheEntry* decoded_entry = ApplyPaletteToEntry(entry, nullptr, tex_info.full_format.tlutfmt); if (decoded_entry) { // Link the efb copy with the partially updated texture, so we won't apply this partial // update again entry->CreateReference(entry_to_update); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; entry = decoded_entry; } else { ++iter.first; continue; } } s32 src_x, src_y, dst_x, dst_y; // Note for understanding the math: // Normal textures can't be strided, so the 2 missing cases with src_x > 0 don't exist if (entry->addr >= entry_to_update->addr) { s32 block_offset = (entry->addr - entry_to_update->addr) / tex_info.bytes_per_block; s32 block_x = block_offset % numBlocksX; s32 block_y = block_offset / numBlocksX; src_x = 0; src_y = 0; dst_x = block_x * tex_info.block_width; dst_y = block_y * tex_info.block_height; } else { s32 block_offset = (entry_to_update->addr - entry->addr) / tex_info.bytes_per_block; s32 block_x = block_offset % numBlocksX; s32 block_y = block_offset / numBlocksX; src_x = block_x * tex_info.block_width; src_y = block_y * tex_info.block_height; dst_x = 0; dst_y = 0; } u32 copy_width = std::min(entry->native_width - src_x, entry_to_update->native_width - dst_x); u32 copy_height = std::min(entry->native_height - src_y, entry_to_update->native_height - dst_y); // If one of the textures is scaled, scale both with the current efb scaling factor if (entry_to_update->native_width != entry_to_update->GetWidth() || entry_to_update->native_height != entry_to_update->GetHeight() || entry->native_width != entry->GetWidth() || entry->native_height != entry->GetHeight()) { ScaleTextureCacheEntryTo(entry_to_update, g_renderer->EFBToScaledX(entry_to_update->native_width), g_renderer->EFBToScaledY(entry_to_update->native_height)); ScaleTextureCacheEntryTo(entry, g_renderer->EFBToScaledX(entry->native_width), g_renderer->EFBToScaledY(entry->native_height)); src_x = g_renderer->EFBToScaledX(src_x); src_y = g_renderer->EFBToScaledY(src_y); dst_x = g_renderer->EFBToScaledX(dst_x); dst_y = g_renderer->EFBToScaledY(dst_y); copy_width = g_renderer->EFBToScaledX(copy_width); copy_height = g_renderer->EFBToScaledY(copy_height); } MathUtil::Rectangle srcrect, dstrect; srcrect.left = src_x; srcrect.top = src_y; srcrect.right = (src_x + copy_width); srcrect.bottom = (src_y + copy_height); dstrect.left = dst_x; dstrect.top = dst_y; dstrect.right = (dst_x + copy_width); dstrect.bottom = (dst_y + copy_height); for (u32 layer = 0; layer < entry->texture->GetConfig().layers; layer++) { entry_to_update->texture->CopyRectangleFromTexture(entry->texture.get(), srcrect, layer, 0, dstrect, layer, 0); } updated_entry = true; if (tex_info.is_palette_texture) { // Remove the temporary converted texture, it won't be used anywhere else // TODO: It would be nice to convert and copy in one step, but this code path isn't common InvalidateTexture(GetTexCacheIter(entry)); } else { // Link the two textures together, so we won't apply this partial update again entry->CreateReference(entry_to_update); // Mark the texture update as used, as if it was loaded directly entry->frameCount = FRAMECOUNT_INVALID; } } else { // If the hash does not match, this EFB copy will not be used for anything, so remove it iter.first = InvalidateTexture(iter.first); continue; } } ++iter.first; } return updated_entry; } TextureCacheBase::TCacheEntry* TextureCacheBase::CreateNormalTexture(const TextureLookupInformation& tex_info) { // create the entry/texture TextureConfig config; config.width = tex_info.native_width; config.height = tex_info.native_height; config.levels = tex_info.computed_levels; config.format = AbstractTextureFormat::RGBA8; config.rendertarget = true; TCacheEntry* entry = AllocateCacheEntry(config); GFX_DEBUGGER_PAUSE_AT(NEXT_NEW_TEXTURE, true); if (!entry) return nullptr; textures_by_address.emplace(tex_info.address, entry); if (tex_info.texture_cache_safety_color_sample_size == 0 || std::max(tex_info.total_bytes, tex_info.palette_size) <= (u32)tex_info.texture_cache_safety_color_sample_size * 8) { entry->textures_by_hash_iter = textures_by_hash.emplace(tex_info.full_hash, entry); } entry->SetGeneralParameters(tex_info.address, tex_info.total_bytes, tex_info.full_format, false); entry->SetDimensions(tex_info.native_width, tex_info.native_height, tex_info.computed_levels); entry->SetHashes(tex_info.base_hash, tex_info.full_hash); entry->is_custom_tex = false; entry->memory_stride = entry->BytesPerRow(); entry->SetNotCopy(); INCSTAT(stats.numTexturesUploaded); SETSTAT(stats.numTexturesAlive, textures_by_address.size()); return entry; } void TextureCacheBase::LoadTextureFromMemory(TCacheEntry* entry_to_update, const TextureLookupInformation& tex_info) { // We can decode on the GPU if it is a supported format and the flag is enabled. // Currently we don't decode RGBA8 textures from Tmem, as that would require copying from both // banks, and if we're doing an copy we may as well just do the whole thing on the CPU, since // there's no conversion between formats. In the future this could be extended with a separate // shader, however. bool decode_on_gpu = g_ActiveConfig.UseGPUTextureDecoding() && g_texture_cache->SupportsGPUTextureDecode(tex_info.full_format.texfmt, tex_info.full_format.tlutfmt) && !(tex_info.from_tmem && tex_info.full_format.texfmt == TextureFormat::RGBA8); LoadTextureLevelZeroFromMemory(entry_to_update, tex_info, decode_on_gpu); } void TextureCacheBase::LoadTextureLevelZeroFromMemory(TCacheEntry* entry_to_update, const TextureLookupInformation& tex_info, bool decode_on_gpu) { const u8* tlut = &texMem[tex_info.tlut_address]; if (decode_on_gpu) { u32 row_stride = tex_info.bytes_per_block * (tex_info.expanded_width / tex_info.block_width); g_texture_cache->DecodeTextureOnGPU( entry_to_update, 0, tex_info.src_data, tex_info.total_bytes, tex_info.full_format.texfmt, tex_info.native_width, tex_info.native_height, tex_info.expanded_width, tex_info.expanded_height, row_stride, tlut, tex_info.full_format.tlutfmt); } else { size_t decoded_texture_size = tex_info.expanded_width * sizeof(u32) * tex_info.expanded_height; CheckTempSize(decoded_texture_size); if (!(tex_info.full_format.texfmt == TextureFormat::RGBA8 && tex_info.from_tmem)) { TexDecoder_Decode(temp, tex_info.src_data, tex_info.expanded_width, tex_info.expanded_height, tex_info.full_format.texfmt, tlut, tex_info.full_format.tlutfmt); } else { u8* src_data_gb = &texMem[tex_info.tmem_address_odd]; TexDecoder_DecodeRGBA8FromTmem(temp, tex_info.src_data, src_data_gb, tex_info.expanded_width, tex_info.expanded_height); } entry_to_update->texture->Load(0, tex_info.native_width, tex_info.native_height, tex_info.expanded_width, temp, decoded_texture_size); } } TextureCacheBase::CopyFilterCoefficientArray TextureCacheBase::GetRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients) { // To simplify the backend, we precalculate the three coefficients in common. Coefficients 0, 1 // are for the row above, 2, 3, 4 are for the current pixel, and 5, 6 are for the row below. return {static_cast(coefficients[0]) + static_cast(coefficients[1]), static_cast(coefficients[2]) + static_cast(coefficients[3]) + static_cast(coefficients[4]), static_cast(coefficients[5]) + static_cast(coefficients[6])}; } TextureCacheBase::CopyFilterCoefficientArray TextureCacheBase::GetVRAMCopyFilterCoefficients(const CopyFilterCoefficients::Values& coefficients) { // If the user disables the copy filter, only apply it to the VRAM copy. // This way games which are sensitive to changes to the RAM copy of the XFB will be unaffected. CopyFilterCoefficientArray res = GetRAMCopyFilterCoefficients(coefficients); if (!g_ActiveConfig.bDisableCopyFilter) return res; // Disabling the copy filter in options should not ignore the values the game sets completely, // as some games use the filter coefficients to control the brightness of the screen. Instead, // add all coefficients to the middle sample, so the deflicker/vertical filter has no effect. res[1] += res[0] + res[2]; res[0] = 0; res[2] = 0; return res; } void TextureCacheBase::CopyRenderTargetToTexture( u32 dstAddr, EFBCopyFormat dstFormat, u32 width, u32 height, u32 dstStride, bool is_depth_copy, const EFBRectangle& srcRect, bool isIntensity, bool scaleByHalf, float y_scale, float gamma, bool clamp_top, bool clamp_bottom, const CopyFilterCoefficients::Values& filter_coefficients) { // Emulation methods: // // - EFB to RAM: // Encodes the requested EFB data at its native resolution to the emulated RAM using shaders. // Load() decodes the data from there again (using TextureDecoder) if the EFB copy is being // used as a texture again. // Advantage: CPU can read data from the EFB copy and we don't lose any important updates to // the texture // Disadvantage: Encoding+decoding steps often are redundant because only some games read or // modify EFB copies before using them as textures. // // - EFB to texture: // Copies the requested EFB data to a texture object in VRAM, performing any color conversion // using shaders. // Advantage: Works for many games, since in most cases EFB copies aren't read or modified at // all before being used as a texture again. // Since we don't do any further encoding or decoding here, this method is much // faster. // It also allows enhancing the visual quality by doing scaled EFB copies. // // - Hybrid EFB copies: // 1a) Whenever this function gets called, encode the requested EFB data to RAM (like EFB to // RAM) // 1b) Set type to TCET_EC_DYNAMIC for all texture cache entries in the destination address // range. // If EFB copy caching is enabled, further checks will (try to) prevent redundant EFB // copies. // 2) Check if a texture cache entry for the specified dstAddr already exists (i.e. if an EFB // copy was triggered to that address before): // 2a) Entry doesn't exist: // - Also copy the requested EFB data to a texture object in VRAM (like EFB to texture) // - Create a texture cache entry for the target (type = TCET_EC_VRAM) // - Store a hash of the encoded RAM data in the texcache entry. // 2b) Entry exists AND type is TCET_EC_VRAM: // - Like case 2a, but reuse the old texcache entry instead of creating a new one. // 2c) Entry exists AND type is TCET_EC_DYNAMIC: // - Only encode the texture to RAM (like EFB to RAM) and store a hash of the encoded // data in the existing texcache entry. // - Do NOT copy the requested EFB data to a VRAM object. Reason: the texture is dynamic, // i.e. the CPU is modifying it. Storing a VRAM copy is useless, because we'd always end // up deleting it and reloading the data from RAM anyway. // 3) If the EFB copy gets used as a texture, compare the source RAM hash with the hash you // stored when encoding the EFB data to RAM. // 3a) If the two hashes match AND type is TCET_EC_VRAM, reuse the VRAM copy you created // 3b) If the two hashes differ AND type is TCET_EC_VRAM, screw your existing VRAM copy. Set // type to TCET_EC_DYNAMIC. // Redecode the source RAM data to a VRAM object. The entry basically behaves like a // normal texture now. // 3c) If type is TCET_EC_DYNAMIC, treat the EFB copy like a normal texture. // Advantage: Non-dynamic EFB copies can be visually enhanced like with EFB to texture. // Compatibility is as good as EFB to RAM. // Disadvantage: Slower than EFB to texture and often even slower than EFB to RAM. // EFB copy cache depends on accurate texture hashing being enabled. However, // with accurate hashing you end up being as slow as without a copy cache // anyway. // // Disadvantage of all methods: Calling this function requires the GPU to perform a pipeline flush // which stalls any further CPU processing. const bool is_xfb_copy = !is_depth_copy && !isIntensity && dstFormat == EFBCopyFormat::XFB; bool copy_to_vram = g_ActiveConfig.backend_info.bSupportsCopyToVram && !g_ActiveConfig.bDisableCopyToVRAM; bool copy_to_ram = !(is_xfb_copy ? g_ActiveConfig.bSkipXFBCopyToRam : g_ActiveConfig.bSkipEFBCopyToRam) || !copy_to_vram; u8* dst = Memory::GetPointer(dstAddr); if (dst == nullptr) { ERROR_LOG(VIDEO, "Trying to copy from EFB to invalid address 0x%8x", dstAddr); return; } // tex_w and tex_h are the native size of the texture in the GC memory. // The size scaled_* represents the emulated texture. Those differ // because of upscaling and because of yscaling of XFB copies. // For the latter, we keep the EFB resolution for the virtual XFB blit. u32 tex_w = width; u32 tex_h = height; u32 scaled_tex_w = g_renderer->EFBToScaledX(srcRect.GetWidth()); u32 scaled_tex_h = g_renderer->EFBToScaledY(srcRect.GetHeight()); if (scaleByHalf) { tex_w /= 2; tex_h /= 2; scaled_tex_w /= 2; scaled_tex_h /= 2; } if (!is_xfb_copy && !g_ActiveConfig.bCopyEFBScaled) { // No upscaling scaled_tex_w = tex_w; scaled_tex_h = tex_h; } // Get the base (in memory) format of this efb copy. TextureFormat baseFormat = TexDecoder_GetEFBCopyBaseFormat(dstFormat); u32 blockH = TexDecoder_GetBlockHeightInTexels(baseFormat); const u32 blockW = TexDecoder_GetBlockWidthInTexels(baseFormat); // Round up source height to multiple of block size u32 actualHeight = Common::AlignUp(tex_h, blockH); const u32 actualWidth = Common::AlignUp(tex_w, blockW); u32 num_blocks_y = actualHeight / blockH; const u32 num_blocks_x = actualWidth / blockW; // RGBA takes two cache lines per block; all others take one const u32 bytes_per_block = baseFormat == TextureFormat::RGBA8 ? 64 : 32; const u32 bytes_per_row = num_blocks_x * bytes_per_block; const u32 covered_range = num_blocks_y * dstStride; if (copy_to_ram) { PEControl::PixelFormat srcFormat = bpmem.zcontrol.pixel_format; EFBCopyParams format(srcFormat, dstFormat, is_depth_copy, isIntensity); CopyEFB(dst, format, tex_w, bytes_per_row, num_blocks_y, dstStride, srcRect, scaleByHalf, y_scale, gamma, clamp_top, clamp_bottom, GetRAMCopyFilterCoefficients(filter_coefficients)); } else { if (is_xfb_copy) { UninitializeXFBMemory(dst, dstStride, bytes_per_row, num_blocks_y); } else { // Hack: Most games don't actually need the correct texture data in RAM // and we can just keep a copy in VRAM. We zero the memory so we // can check it hasn't changed before using our copy in VRAM. u8* ptr = dst; for (u32 i = 0; i < num_blocks_y; i++) { memset(ptr, 0, bytes_per_row); ptr += dstStride; } } } if (g_bRecordFifoData) { // Mark the memory behind this efb copy as dynamicly generated for the Fifo log u32 address = dstAddr; for (u32 i = 0; i < num_blocks_y; i++) { FifoRecorder::GetInstance().UseMemory(address, bytes_per_row, MemoryUpdate::TEXTURE_MAP, true); address += dstStride; } } if (dstStride < bytes_per_row) { // This kind of efb copy results in a scrambled image. // I'm pretty sure no game actually wants to do this, it might be caused by a // programming bug in the game, or a CPU/Bounding box emulation issue with dolphin. // The copy_to_ram code path above handles this "correctly" and scrambles the image // but the copy_to_vram code path just saves and uses unscrambled texture instead. // To avoid a "incorrect" result, we simply skip doing the copy_to_vram code path // so if the game does try to use the scrambled texture, dolphin will grab the scrambled // texture (or black if copy_to_ram is also disabled) out of ram. ERROR_LOG(VIDEO, "Memory stride too small (%i < %i)", dstStride, bytes_per_row); copy_to_vram = false; } // Invalidate all textures, if they are either fully overwritten by our efb copy, or if they // have a different stride than our efb copy. Partly overwritten textures with the same stride // as our efb copy are marked to check them for partial texture updates. // TODO: The logic to detect overlapping strided efb copies is not 100% accurate. bool strided_efb_copy = dstStride != bytes_per_row; auto iter = FindOverlappingTextures(dstAddr, covered_range); while (iter.first != iter.second) { TCacheEntry* entry = iter.first->second; if (entry->addr == dstAddr && entry->is_xfb_copy) { for (auto& reference : entry->references) { reference->reference_changed = true; } } if (entry->OverlapsMemoryRange(dstAddr, covered_range)) { u32 overlap_range = std::min(entry->addr + entry->size_in_bytes, dstAddr + covered_range) - std::max(entry->addr, dstAddr); if (!copy_to_vram || entry->memory_stride != dstStride || (!strided_efb_copy && entry->size_in_bytes == overlap_range) || (strided_efb_copy && entry->size_in_bytes == overlap_range && entry->addr == dstAddr)) { iter.first = InvalidateTexture(iter.first); continue; } entry->may_have_overlapping_textures = true; // There are cases (Rogue Squadron 2 / Texas Holdem on Wiiware) where // for xfb copies the textures overlap which causes the hash of the first copy // to be different (from when it was originally created). This has no implications // for XFB2Tex because the underlying memory doesn't change (dummy values) but // can affect XFB2Ram when we compare the texture cache copy hash with the // newly computed hash // By calculating the hash when we receive overlapping xfbs, we are able // to mitigate this if (entry->is_xfb_copy && copy_to_ram) { entry->hash = entry->CalculateHash(); } // Do not load textures by hash, if they were at least partly overwritten by an efb copy. // In this case, comparing the hash is not enough to check, if two textures are identical. if (entry->textures_by_hash_iter != textures_by_hash.end()) { textures_by_hash.erase(entry->textures_by_hash_iter); entry->textures_by_hash_iter = textures_by_hash.end(); } } ++iter.first; } if (copy_to_vram) { // create the texture TextureConfig config; config.rendertarget = true; config.width = scaled_tex_w; config.height = scaled_tex_h; config.layers = FramebufferManagerBase::GetEFBLayers(); TCacheEntry* entry = AllocateCacheEntry(config); if (entry) { entry->SetGeneralParameters(dstAddr, 0, baseFormat, is_xfb_copy); entry->SetDimensions(tex_w, tex_h, 1); entry->frameCount = FRAMECOUNT_INVALID; if (is_xfb_copy) { entry->should_force_safe_hashing = is_xfb_copy; entry->SetXfbCopy(dstStride); } else { entry->SetEfbCopy(dstStride); } entry->may_have_overlapping_textures = false; entry->is_custom_tex = false; CopyEFBToCacheEntry(entry, is_depth_copy, srcRect, scaleByHalf, dstFormat, isIntensity, gamma, clamp_top, clamp_bottom, GetVRAMCopyFilterCoefficients(filter_coefficients)); u64 hash = entry->CalculateHash(); entry->SetHashes(hash, hash); if (g_ActiveConfig.bDumpEFBTarget && !is_xfb_copy) { static int efb_count = 0; entry->texture->Save(StringFromFormat("%sefb_frame_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), efb_count++), 0); } if (g_ActiveConfig.bDumpXFBTarget && is_xfb_copy) { static int xfb_count = 0; entry->texture->Save(StringFromFormat("%sxfb_copy_%i.png", File::GetUserPath(D_DUMPTEXTURES_IDX).c_str(), xfb_count++), 0); } textures_by_address.emplace(dstAddr, entry); } } } void TextureCacheBase::UninitializeXFBMemory(u8* dst, u32 stride, u32 bytes_per_row, u32 num_blocks_y) { // Originally, we planned on using a 'key color' // for alpha to address partial xfbs (Mario Strikers / Chicken Little). // This work was removed since it was unfinished but there // was still a desire to differentiate between the old and the new approach // which is why we still set uninitialized xfb memory to fuchsia // (Y=1,U=254,V=254) instead of dark green (Y=0,U=0,V=0) in YUV // like is done in the EFB path. // This comment is indented wrong because of the silly linter, btw. #if defined(_M_X86) || defined(_M_X86_64) __m128i sixteenBytes = _mm_set1_epi16((s16)(u16)0xFE01); #endif for (u32 i = 0; i < num_blocks_y; i++) { u32 size = bytes_per_row; u8* rowdst = dst; #if defined(_M_X86) || defined(_M_X86_64) while (size >= 16) { _mm_storeu_si128((__m128i*)rowdst, sixteenBytes); size -= 16; rowdst += 16; } #endif for (u32 offset = 0; offset < size; offset++) { if (offset & 1) { rowdst[offset] = 254; } else { rowdst[offset] = 1; } } dst += stride; } } TextureCacheBase::TCacheEntry* TextureCacheBase::AllocateCacheEntry(const TextureConfig& config) { std::unique_ptr texture = AllocateTexture(config); if (!texture) { return nullptr; } TCacheEntry* cacheEntry = new TCacheEntry(std::move(texture)); cacheEntry->textures_by_hash_iter = textures_by_hash.end(); cacheEntry->id = last_entry_id++; return cacheEntry; } std::unique_ptr TextureCacheBase::AllocateTexture(const TextureConfig& config) { TexPool::iterator iter = FindMatchingTextureFromPool(config); std::unique_ptr entry; if (iter != texture_pool.end()) { entry = std::move(iter->second.texture); texture_pool.erase(iter); } else { entry = g_renderer->CreateTexture(config); if (!entry) return nullptr; INCSTAT(stats.numTexturesCreated); } return entry; } TextureCacheBase::TexPool::iterator TextureCacheBase::FindMatchingTextureFromPool(const TextureConfig& config) { // Find a texture from the pool that does not have a frameCount of FRAMECOUNT_INVALID. // This prevents a texture from being used twice in a single frame with different data, // which potentially means that a driver has to maintain two copies of the texture anyway. // Render-target textures are fine through, as they have to be generated in a seperated pass. // As non-render-target textures are usually static, this should not matter much. auto range = texture_pool.equal_range(config); auto matching_iter = std::find_if(range.first, range.second, [](const auto& iter) { return iter.first.rendertarget || iter.second.frameCount != FRAMECOUNT_INVALID; }); return matching_iter != range.second ? matching_iter : texture_pool.end(); } TextureCacheBase::TexAddrCache::iterator TextureCacheBase::GetTexCacheIter(TextureCacheBase::TCacheEntry* entry) { auto iter_range = textures_by_address.equal_range(entry->addr); TexAddrCache::iterator iter = iter_range.first; while (iter != iter_range.second) { if (iter->second == entry) { return iter; } ++iter; } return textures_by_address.end(); } std::pair TextureCacheBase::FindOverlappingTextures(u32 addr, u32 size_in_bytes) { // We index by the starting address only, so there is no way to query all textures // which end after the given addr. But the GC textures have a limited size, so we // look for all textures which have a start address bigger than addr minus the maximal // texture size. But this yields false-positives which must be checked later on. // 1024 x 1024 texel times 8 nibbles per texel constexpr u32 max_texture_size = 1024 * 1024 * 4; u32 lower_addr = addr > max_texture_size ? addr - max_texture_size : 0; auto begin = textures_by_address.lower_bound(lower_addr); auto end = textures_by_address.upper_bound(addr + size_in_bytes); return std::make_pair(begin, end); } TextureCacheBase::TexAddrCache::iterator TextureCacheBase::InvalidateTexture(TexAddrCache::iterator iter) { if (iter == textures_by_address.end()) return textures_by_address.end(); TCacheEntry* entry = iter->second; if (entry->textures_by_hash_iter != textures_by_hash.end()) { textures_by_hash.erase(entry->textures_by_hash_iter); entry->textures_by_hash_iter = textures_by_hash.end(); } for (size_t i = 0; i < bound_textures.size(); ++i) { // If the entry is currently bound and not invalidated, keep it, but mark it as invalidated. // This way it can still be used via tmem cache emulation, but nothing else. // Spyro: A Hero's Tail is known for using such overwritten textures. if (bound_textures[i] == entry && IsValidBindPoint(static_cast(i))) { bound_textures[i]->tmem_only = true; return ++iter; } } auto config = entry->texture->GetConfig(); texture_pool.emplace(config, TexPoolEntry(std::move(entry->texture))); return textures_by_address.erase(iter); } u32 TextureCacheBase::TCacheEntry::BytesPerRow() const { const u32 blockW = TexDecoder_GetBlockWidthInTexels(format.texfmt); // Round up source height to multiple of block size const u32 actualWidth = Common::AlignUp(native_width, blockW); const u32 numBlocksX = actualWidth / blockW; // RGBA takes two cache lines per block; all others take one const u32 bytes_per_block = format == TextureFormat::RGBA8 ? 64 : 32; return numBlocksX * bytes_per_block; } u32 TextureCacheBase::TCacheEntry::NumBlocksY() const { u32 blockH = TexDecoder_GetBlockHeightInTexels(format.texfmt); // Round up source height to multiple of block size u32 actualHeight = Common::AlignUp(native_height, blockH); return actualHeight / blockH; } void TextureCacheBase::TCacheEntry::SetXfbCopy(u32 stride) { is_efb_copy = false; is_xfb_copy = true; memory_stride = stride; ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small"); size_in_bytes = memory_stride * NumBlocksY(); } void TextureCacheBase::TCacheEntry::SetEfbCopy(u32 stride) { is_efb_copy = true; is_xfb_copy = false; memory_stride = stride; ASSERT_MSG(VIDEO, memory_stride >= BytesPerRow(), "Memory stride is too small"); size_in_bytes = memory_stride * NumBlocksY(); } void TextureCacheBase::TCacheEntry::SetNotCopy() { is_xfb_copy = false; is_efb_copy = false; } int TextureCacheBase::TCacheEntry::HashSampleSize() const { if (should_force_safe_hashing) { return 0; } return g_ActiveConfig.iSafeTextureCache_ColorSamples; } u64 TextureCacheBase::TCacheEntry::CalculateHash() const { u8* ptr = Memory::GetPointer(addr); if (memory_stride == BytesPerRow()) { return GetHash64(ptr, size_in_bytes, HashSampleSize()); } else { u32 blocks = NumBlocksY(); u64 temp_hash = size_in_bytes; u32 samples_per_row = 0; if (HashSampleSize() != 0) { // Hash at least 4 samples per row to avoid hashing in a bad pattern, like just on the left // side of the efb copy samples_per_row = std::max(HashSampleSize() / blocks, 4u); } for (u32 i = 0; i < blocks; i++) { // Multiply by a prime number to mix the hash up a bit. This prevents identical blocks from // canceling each other out temp_hash = (temp_hash * 397) ^ GetHash64(ptr, BytesPerRow(), samples_per_row); ptr += memory_stride; } return temp_hash; } }