// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/VertexLoaderManager.h" #include #include #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Core/DolphinAnalytics.h" #include "Core/HW/Memmap.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoaderBase.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" namespace VertexLoaderManager { float position_cache[3][4]; // The counter added to the address of the array is 1, 2, or 3, but never zero. // So only index 1 - 3 are used. u32 position_matrix_index[4]; static NativeVertexFormatMap s_native_vertex_map; static NativeVertexFormat* s_current_vtx_fmt; u32 g_current_components; typedef std::unordered_map> VertexLoaderMap; static std::mutex s_vertex_loader_map_lock; static VertexLoaderMap s_vertex_loader_map; // TODO - change into array of pointers. Keep a map of all seen so far. u8* cached_arraybases[NUM_VERTEX_COMPONENT_ARRAYS]; void Init() { MarkAllDirty(); for (auto& map_entry : g_main_cp_state.vertex_loaders) map_entry = nullptr; for (auto& map_entry : g_preprocess_cp_state.vertex_loaders) map_entry = nullptr; SETSTAT(g_stats.num_vertex_loaders, 0); } void Clear() { std::lock_guard lk(s_vertex_loader_map_lock); s_vertex_loader_map.clear(); s_native_vertex_map.clear(); } void UpdateVertexArrayPointers() { // Anything to update? if (!g_main_cp_state.bases_dirty) return; // Some games such as Burnout 2 can put invalid addresses into // the array base registers. (see issue 8591) // But the vertex arrays with invalid addresses aren't actually enabled. // Note: Only array bases 0 through 11 are used by the Vertex loaders. // 12 through 15 are used for loading data into xfmem. // We also only update the array base if the vertex description states we are going to use it. if (IsIndexed(g_main_cp_state.vtx_desc.low.Position)) cached_arraybases[ARRAY_POSITION] = Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_POSITION]); if (IsIndexed(g_main_cp_state.vtx_desc.low.Normal)) cached_arraybases[ARRAY_NORMAL] = Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_NORMAL]); for (size_t i = 0; i < g_main_cp_state.vtx_desc.low.Color.Size(); i++) { if (IsIndexed(g_main_cp_state.vtx_desc.low.Color[i])) cached_arraybases[ARRAY_COLOR0 + i] = Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_COLOR0 + i]); } for (size_t i = 0; i < g_main_cp_state.vtx_desc.high.TexCoord.Size(); i++) { if (IsIndexed(g_main_cp_state.vtx_desc.high.TexCoord[i])) cached_arraybases[ARRAY_TEXCOORD0 + i] = Memory::GetPointer(g_main_cp_state.array_bases[ARRAY_TEXCOORD0 + i]); } g_main_cp_state.bases_dirty = false; } namespace { struct entry { std::string text; u64 num_verts; bool operator<(const entry& other) const { return num_verts > other.num_verts; } }; } // namespace std::string VertexLoadersToString() { std::lock_guard lk(s_vertex_loader_map_lock); std::vector entries; size_t total_size = 0; for (const auto& map_entry : s_vertex_loader_map) { entry e = {map_entry.second->ToString(), static_cast(map_entry.second->m_numLoadedVertices)}; total_size += e.text.size() + 1; entries.push_back(std::move(e)); } sort(entries.begin(), entries.end()); std::string dest; dest.reserve(total_size); for (const entry& entry : entries) { dest += entry.text; dest += '\n'; } return dest; } void MarkAllDirty() { g_main_cp_state.attr_dirty = BitSet32::AllTrue(8); g_preprocess_cp_state.attr_dirty = BitSet32::AllTrue(8); } NativeVertexFormat* GetOrCreateMatchingFormat(const PortableVertexDeclaration& decl) { auto iter = s_native_vertex_map.find(decl); if (iter == s_native_vertex_map.end()) { std::unique_ptr fmt = g_renderer->CreateNativeVertexFormat(decl); auto ipair = s_native_vertex_map.emplace(decl, std::move(fmt)); iter = ipair.first; } return iter->second.get(); } NativeVertexFormat* GetUberVertexFormat(const PortableVertexDeclaration& decl) { // The padding in the structs can cause the memcmp() in the map to create duplicates. // Avoid this by initializing the padding to zero. PortableVertexDeclaration new_decl; std::memset(&new_decl, 0, sizeof(new_decl)); new_decl.stride = decl.stride; auto MakeDummyAttribute = [](AttributeFormat& attr, VarType type, int components, bool integer) { attr.type = type; attr.components = components; attr.offset = 0; attr.enable = true; attr.integer = integer; }; auto CopyAttribute = [](AttributeFormat& attr, const AttributeFormat& src) { attr.type = src.type; attr.components = src.components; attr.offset = src.offset; attr.enable = src.enable; attr.integer = src.integer; }; if (decl.position.enable) CopyAttribute(new_decl.position, decl.position); else MakeDummyAttribute(new_decl.position, VAR_FLOAT, 1, false); for (size_t i = 0; i < std::size(new_decl.normals); i++) { if (decl.normals[i].enable) CopyAttribute(new_decl.normals[i], decl.normals[i]); else MakeDummyAttribute(new_decl.normals[i], VAR_FLOAT, 1, false); } for (size_t i = 0; i < std::size(new_decl.colors); i++) { if (decl.colors[i].enable) CopyAttribute(new_decl.colors[i], decl.colors[i]); else MakeDummyAttribute(new_decl.colors[i], VAR_UNSIGNED_BYTE, 4, false); } for (size_t i = 0; i < std::size(new_decl.texcoords); i++) { if (decl.texcoords[i].enable) CopyAttribute(new_decl.texcoords[i], decl.texcoords[i]); else MakeDummyAttribute(new_decl.texcoords[i], VAR_FLOAT, 1, false); } if (decl.posmtx.enable) CopyAttribute(new_decl.posmtx, decl.posmtx); else MakeDummyAttribute(new_decl.posmtx, VAR_UNSIGNED_BYTE, 1, true); return GetOrCreateMatchingFormat(new_decl); } static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false) { CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state; state->last_id = vtx_attr_group; VertexLoaderBase* loader; if (state->attr_dirty[vtx_attr_group]) { // We are not allowed to create a native vertex format on preprocessing as this is on the wrong // thread bool check_for_native_format = !preprocess; VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]); std::lock_guard lk(s_vertex_loader_map_lock); VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid); if (iter != s_vertex_loader_map.end()) { loader = iter->second.get(); check_for_native_format &= !loader->m_native_vertex_format; } else { s_vertex_loader_map[uid] = VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]); loader = s_vertex_loader_map[uid].get(); INCSTAT(g_stats.num_vertex_loaders); } if (check_for_native_format) { // search for a cached native vertex format const PortableVertexDeclaration& format = loader->m_native_vtx_decl; std::unique_ptr& native = s_native_vertex_map[format]; if (!native) native = g_renderer->CreateNativeVertexFormat(format); loader->m_native_vertex_format = native.get(); } state->vertex_loaders[vtx_attr_group] = loader; state->attr_dirty[vtx_attr_group] = false; } else { loader = state->vertex_loaders[vtx_attr_group]; } // Lookup pointers for any vertex arrays. if (!preprocess) UpdateVertexArrayPointers(); return loader; } int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bool is_preprocess) { if (!count) return 0; VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess); int size = count * loader->m_VertexSize; if ((int)src.size() < size) return -1; if (is_preprocess) return size; // If the native vertex format changed, force a flush. if (loader->m_native_vertex_format != s_current_vtx_fmt || loader->m_native_components != g_current_components) { g_vertex_manager->Flush(); } s_current_vtx_fmt = loader->m_native_vertex_format; g_current_components = loader->m_native_components; VertexShaderManager::SetVertexFormat(loader->m_native_components); // if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads. // They still need to go through vertex loading, because we need to calculate a zfreeze refrence // slope. bool cullall = (bpmem.genMode.cullmode == CullMode::All && primitive < 5); DataReader dst = g_vertex_manager->PrepareForAdditionalData( primitive, count, loader->m_native_vtx_decl.stride, cullall); count = loader->RunVertices(src, dst, count); g_vertex_manager->AddIndices(primitive, count); g_vertex_manager->FlushData(count, loader->m_native_vtx_decl.stride); ADDSTAT(g_stats.this_frame.num_prims, count); INCSTAT(g_stats.this_frame.num_primitive_joins); return size; } NativeVertexFormat* GetCurrentVertexFormat() { return s_current_vtx_fmt; } } // namespace VertexLoaderManager void LoadCPReg(u32 sub_cmd, u32 value, bool is_preprocess) { bool update_global_state = !is_preprocess; CPState* state = is_preprocess ? &g_preprocess_cp_state : &g_main_cp_state; switch (sub_cmd & CP_COMMAND_MASK) { case MATINDEX_A: if (sub_cmd != MATINDEX_A) DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); if (update_global_state) VertexShaderManager::SetTexMatrixChangedA(value); break; case MATINDEX_B: if (sub_cmd != MATINDEX_B) DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); if (update_global_state) VertexShaderManager::SetTexMatrixChangedB(value); break; case VCD_LO: if (sub_cmd != VCD_LO) // Stricter than YAGCD DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); state->vtx_desc.low.Hex = value; state->attr_dirty = BitSet32::AllTrue(CP_NUM_VAT_REG); state->bases_dirty = true; break; case VCD_HI: if (sub_cmd != VCD_HI) // Stricter than YAGCD DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); state->vtx_desc.high.Hex = value; state->attr_dirty = BitSet32::AllTrue(CP_NUM_VAT_REG); state->bases_dirty = true; break; case CP_VAT_REG_A: if ((sub_cmd - CP_VAT_REG_A) >= CP_NUM_VAT_REG) { DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); WARN_LOG_FMT(VIDEO, "CP_VAT_REG_A: Invalid VAT {}", sub_cmd - CP_VAT_REG_A); } state->vtx_attr[sub_cmd & CP_VAT_MASK].g0.Hex = value; state->attr_dirty[sub_cmd & CP_VAT_MASK] = true; break; case CP_VAT_REG_B: if ((sub_cmd - CP_VAT_REG_B) >= CP_NUM_VAT_REG) { DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); WARN_LOG_FMT(VIDEO, "CP_VAT_REG_B: Invalid VAT {}", sub_cmd - CP_VAT_REG_B); } state->vtx_attr[sub_cmd & CP_VAT_MASK].g1.Hex = value; state->attr_dirty[sub_cmd & CP_VAT_MASK] = true; break; case CP_VAT_REG_C: if ((sub_cmd - CP_VAT_REG_C) >= CP_NUM_VAT_REG) { DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_MAYBE_INVALID_CP_COMMAND); WARN_LOG_FMT(VIDEO, "CP_VAT_REG_C: Invalid VAT {}", sub_cmd - CP_VAT_REG_C); } state->vtx_attr[sub_cmd & CP_VAT_MASK].g2.Hex = value; state->attr_dirty[sub_cmd & CP_VAT_MASK] = true; break; // Pointers to vertex arrays in GC RAM case ARRAY_BASE: state->array_bases[sub_cmd & CP_ARRAY_MASK] = value & CommandProcessor::GetPhysicalAddressMask(); state->bases_dirty = true; break; case ARRAY_STRIDE: state->array_strides[sub_cmd & CP_ARRAY_MASK] = value & 0xFF; break; default: DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::USES_UNKNOWN_CP_COMMAND); WARN_LOG_FMT(VIDEO, "Unknown CP register {:02x} set to {:08x}", sub_cmd, value); } } void FillCPMemoryArray(u32* memory) { memory[MATINDEX_A] = g_main_cp_state.matrix_index_a.Hex; memory[MATINDEX_B] = g_main_cp_state.matrix_index_b.Hex; memory[VCD_LO] = g_main_cp_state.vtx_desc.low.Hex; memory[VCD_HI] = g_main_cp_state.vtx_desc.high.Hex; for (int i = 0; i < CP_NUM_VAT_REG; ++i) { memory[CP_VAT_REG_A + i] = g_main_cp_state.vtx_attr[i].g0.Hex; memory[CP_VAT_REG_B + i] = g_main_cp_state.vtx_attr[i].g1.Hex; memory[CP_VAT_REG_C + i] = g_main_cp_state.vtx_attr[i].g2.Hex; } for (int i = 0; i < CP_NUM_ARRAYS; ++i) { memory[ARRAY_BASE + i] = g_main_cp_state.array_bases[i]; memory[ARRAY_STRIDE + i] = g_main_cp_state.array_strides[i]; } }