// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include "Common/CommonTypes.h" #include "Common/MemoryUtil.h" #include "Common/x64ABI.h" #include "Common/x64Emitter.h" #include "Core/Host.h" #include "VideoCommon/BoundingBox.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/LookUpTables.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/VertexLoader.h" #include "VideoCommon/VertexLoader_Color.h" #include "VideoCommon/VertexLoader_Normal.h" #include "VideoCommon/VertexLoader_Position.h" #include "VideoCommon/VertexLoader_TextCoord.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #define COMPILED_CODE_SIZE 4096 #ifndef _WIN32 #undef inline #define inline #endif // This pointer is used as the source/dst for all fixed function loader calls u8* g_video_buffer_read_ptr; u8* g_vertex_manager_write_ptr; using namespace Gen; void* VertexLoader::operator new (size_t size) { return AllocateAlignedMemory(size, 16); } void VertexLoader::operator delete (void *p) { FreeAlignedMemory(p); } static void LOADERDECL PosMtx_ReadDirect_UByte(VertexLoader* loader) { BoundingBox::posMtxIdx = loader->m_curposmtx = DataReadU8() & 0x3f; PRIM_LOG("posmtx: %d, ", loader->m_curposmtx); } static void LOADERDECL PosMtx_Write(VertexLoader* loader) { // u8, 0, 0, 0 DataWrite(loader->m_curposmtx); } static void LOADERDECL TexMtx_ReadDirect_UByte(VertexLoader* loader) { BoundingBox::texMtxIdx[loader->m_texmtxread] = loader->m_curtexmtx[loader->m_texmtxread] = DataReadU8() & 0x3f; PRIM_LOG("texmtx%d: %d, ", loader->m_texmtxread, loader->m_curtexmtx[loader->m_texmtxread]); loader->m_texmtxread++; } static void LOADERDECL TexMtx_Write_Float(VertexLoader* loader) { DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++])); } static void LOADERDECL TexMtx_Write_Float2(VertexLoader* loader) { DataWrite(0.f); DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++])); } static void LOADERDECL TexMtx_Write_Float4(VertexLoader* loader) { #if _M_SSE >= 0x200 __m128 output = _mm_cvtsi32_ss(_mm_castsi128_ps(_mm_setzero_si128()), loader->m_curtexmtx[loader->m_texmtxwrite++]); _mm_storeu_ps((float*)g_vertex_manager_write_ptr, _mm_shuffle_ps(output, output, 0x45 /* 1, 1, 0, 1 */)); g_vertex_manager_write_ptr += sizeof(float) * 4; #else DataWrite(0.f); DataWrite(0.f); DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++])); // Just to fill out with 0. DataWrite(0.f); #endif } VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr) : VertexLoaderBase(vtx_desc, vtx_attr) { m_compiledCode = nullptr; VertexLoader_Normal::Init(); VertexLoader_Position::Init(); VertexLoader_TextCoord::Init(); #ifdef USE_VERTEX_LOADER_JIT AllocCodeSpace(COMPILED_CODE_SIZE); CompileVertexTranslator(); WriteProtect(); #else m_numPipelineStages = 0; CompileVertexTranslator(); #endif // generate frac factors m_posScale[0] = m_posScale[1] = m_posScale[2] = m_posScale[3] = 1.0f / (1U << m_VtxAttr.PosFrac); for (int i = 0; i < 8; i++) m_tcScale[i][0] = m_tcScale[i][1] = 1.0f / (1U << m_VtxAttr.texCoord[i].Frac); for (int i = 0; i < 2; i++) m_colElements[i] = m_VtxAttr.color[i].Elements; } VertexLoader::~VertexLoader() { #ifdef USE_VERTEX_LOADER_JIT FreeCodeSpace(); #endif } void VertexLoader::CompileVertexTranslator() { m_VertexSize = 0; const TVtxAttr &vtx_attr = m_VtxAttr; #ifdef USE_VERTEX_LOADER_JIT if (m_compiledCode) PanicAlert("Trying to recompile a vertex translator"); m_compiledCode = GetCodePtr(); // We only use RAX (caller saved) and RBX (callee saved). ABI_PushRegistersAndAdjustStack({RBX, RBP}, 8); // save count MOV(64, R(RBX), R(ABI_PARAM1)); // save loader MOV(64, R(RBP), R(ABI_PARAM2)); // Start loop here const u8 *loop_start = GetCodePtr(); // Reset component counters if present in vertex format only. if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord || m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord) { WriteSetVariable(32, &m_tcIndex, Imm32(0)); } if (m_VtxDesc.Color0 || m_VtxDesc.Color1) { WriteSetVariable(32, &m_colIndex, Imm32(0)); } if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx || m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx) { WriteSetVariable(32, &m_texmtxwrite, Imm32(0)); WriteSetVariable(32, &m_texmtxread, Imm32(0)); } #else // Reset pipeline m_numPipelineStages = 0; #endif // Get the pointer to this vertex's buffer data for the bounding box if (!g_ActiveConfig.backend_info.bSupportsBBox) WriteCall(BoundingBox::SetVertexBufferPosition); // Colors const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; // TextureCoord const u64 tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord }; u32 components = 0; // Position in pc vertex format. int nat_offset = 0; memset(&m_native_vtx_decl, 0, sizeof(m_native_vtx_decl)); // Position Matrix Index if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_ReadDirect_UByte); components |= VB_HAS_POSMTXIDX; m_VertexSize += 1; } if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); } // Write vertex position loader WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements)); m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements); nat_offset += 12; m_native_vtx_decl.position.components = 3; m_native_vtx_decl.position.enable = true; m_native_vtx_decl.position.offset = 0; m_native_vtx_decl.position.type = VAR_FLOAT; m_native_vtx_decl.position.integer = false; // Normals if (m_VtxDesc.Normal != NOT_PRESENT) { m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); if (pFunc == nullptr) { PanicAlert("VertexLoader_Normal::GetFunction(%i %i %i %i) returned zero!", (u32)m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); } WriteCall(pFunc); for (int i = 0; i < (vtx_attr.NormalElements ? 3 : 1); i++) { m_native_vtx_decl.normals[i].components = 3; m_native_vtx_decl.normals[i].enable = true; m_native_vtx_decl.normals[i].offset = nat_offset; m_native_vtx_decl.normals[i].type = VAR_FLOAT; m_native_vtx_decl.normals[i].integer = false; nat_offset += 12; } components |= VB_HAS_NRM0; if (m_VtxAttr.NormalElements == 1) components |= VB_HAS_NRM1 | VB_HAS_NRM2; } for (int i = 0; i < 2; i++) { m_native_vtx_decl.colors[i].components = 4; m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE; m_native_vtx_decl.colors[i].integer = false; switch (col[i]) { case NOT_PRESENT: break; case DIRECT: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break; case FORMAT_24B_888: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break; case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break; case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break; case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break; case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break; default: _assert_(0); break; } break; case INDEX8: m_VertexSize += 1; switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break; default: _assert_(0); break; } break; case INDEX16: m_VertexSize += 2; switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break; default: _assert_(0); break; } break; } // Common for the three bottom cases if (col[i] != NOT_PRESENT) { components |= VB_HAS_COL0 << i; m_native_vtx_decl.colors[i].offset = nat_offset; m_native_vtx_decl.colors[i].enable = true; nat_offset += 4; } } // Texture matrix indices (remove if corresponding texture coordinate isn't enabled) for (int i = 0; i < 8; i++) { m_native_vtx_decl.texcoords[i].offset = nat_offset; m_native_vtx_decl.texcoords[i].type = VAR_FLOAT; m_native_vtx_decl.texcoords[i].integer = false; const int format = m_VtxAttr.texCoord[i].Format; const int elements = m_VtxAttr.texCoord[i].Elements; if (tc[i] == NOT_PRESENT) { components &= ~(VB_HAS_UV0 << i); } else { _assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", (u32)tc[i]); _assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format); _assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elements!\n(elements = %d)", elements); components |= VB_HAS_UV0 << i; WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements)); m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements); } if (components & (VB_HAS_TEXMTXIDX0 << i)) { m_native_vtx_decl.texcoords[i].enable = true; if (tc[i] != NOT_PRESENT) { // if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index m_native_vtx_decl.texcoords[i].components = 3; nat_offset += 12; WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2); } else { components |= VB_HAS_UV0 << i; // have to include since using now m_native_vtx_decl.texcoords[i].components = 4; nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes WriteCall(TexMtx_Write_Float4); } } else { if (tc[i] != NOT_PRESENT) { m_native_vtx_decl.texcoords[i].enable = true; m_native_vtx_decl.texcoords[i].components = vtx_attr.texCoord[i].Elements ? 2 : 1; nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1); } } if (tc[i] == NOT_PRESENT) { // if there's more tex coords later, have to write a dummy call int j = i + 1; for (; j < 8; ++j) { if (tc[j] != NOT_PRESENT) { WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right! break; } } // tricky! if (j == 8 && !((components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1)))) { // no more tex coords and tex matrices, so exit loop break; } } } // Update the bounding box if (!g_ActiveConfig.backend_info.bSupportsBBox) WriteCall(BoundingBox::Update); if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_Write); m_native_vtx_decl.posmtx.components = 4; m_native_vtx_decl.posmtx.enable = true; m_native_vtx_decl.posmtx.offset = nat_offset; m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE; m_native_vtx_decl.posmtx.integer = true; nat_offset += 4; } m_native_components = components; m_native_vtx_decl.stride = nat_offset; #ifdef USE_VERTEX_LOADER_JIT // End loop here SUB(64, R(RBX), Imm8(1)); J_CC(CC_NZ, loop_start); ABI_PopRegistersAndAdjustStack({RBX, RBP}, 8); RET(); #endif } void VertexLoader::WriteCall(TPipelineFunction func) { #ifdef USE_VERTEX_LOADER_JIT MOV(64, R(ABI_PARAM1), R(RBP)); ABI_CallFunction((const void*)func); #else m_PipelineStages[m_numPipelineStages++] = func; #endif } // ARMTODO: This should be done in a better way #ifndef _M_GENERIC void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address) { #ifdef USE_VERTEX_LOADER_JIT MOV(64, R(RAX), Imm64((u64)address)); MOV(bits, dest, MatR(RAX)); #endif } void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value) { #ifdef USE_VERTEX_LOADER_JIT MOV(64, R(RAX), Imm64((u64)address)); MOV(bits, MatR(RAX), value); #endif } #endif void VertexLoader::SetupRunVertices(int primitive, int const count) { m_numLoadedVertices += count; // Prepare bounding box if (!g_ActiveConfig.backend_info.bSupportsBBox) BoundingBox::Prepare(m_vat, primitive, m_VtxDesc, m_native_vtx_decl); } void VertexLoader::ConvertVertices ( int count ) { #ifdef USE_VERTEX_LOADER_JIT if (count > 0) { ((void (*)(int, VertexLoader* loader))(void*)m_compiledCode)(count, this); } #else for (int s = 0; s < count; s++) { m_tcIndex = 0; m_colIndex = 0; m_texmtxwrite = m_texmtxread = 0; for (int i = 0; i < m_numPipelineStages; i++) m_PipelineStages[i](this); PRIM_LOG("\n"); } #endif } int VertexLoader::RunVertices(int primitive, int count, DataReader src, DataReader dst) { dst.WritePointer(&g_vertex_manager_write_ptr); src.WritePointer(&g_video_buffer_read_ptr); SetupRunVertices(primitive, count); ConvertVertices(count); return count; }