// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoBackends/Vulkan/TextureCache.h" #include #include #include #include #include "Common/Assert.h" #include "Common/CommonFuncs.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/FramebufferManager.h" #include "VideoBackends/Vulkan/ObjectCache.h" #include "VideoBackends/Vulkan/Renderer.h" #include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/StreamBuffer.h" #include "VideoBackends/Vulkan/Texture2D.h" #include "VideoBackends/Vulkan/TextureConverter.h" #include "VideoBackends/Vulkan/Util.h" #include "VideoBackends/Vulkan/VKTexture.h" #include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoCommon/ImageWrite.h" #include "VideoCommon/TextureConfig.h" namespace Vulkan { TextureCache::TextureCache() { } TextureCache::~TextureCache() { if (m_render_pass != VK_NULL_HANDLE) vkDestroyRenderPass(g_vulkan_context->GetDevice(), m_render_pass, nullptr); TextureCache::DeleteShaders(); } VkShaderModule TextureCache::GetCopyShader() const { return m_copy_shader; } VkRenderPass TextureCache::GetTextureCopyRenderPass() const { return m_render_pass; } StreamBuffer* TextureCache::GetTextureUploadBuffer() const { return m_texture_upload_buffer.get(); } TextureCache* TextureCache::GetInstance() { return static_cast(g_texture_cache.get()); } bool TextureCache::Initialize() { m_texture_upload_buffer = StreamBuffer::Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, INITIAL_TEXTURE_UPLOAD_BUFFER_SIZE, MAXIMUM_TEXTURE_UPLOAD_BUFFER_SIZE); if (!m_texture_upload_buffer) { PanicAlert("Failed to create texture upload buffer"); return false; } if (!CreateRenderPasses()) { PanicAlert("Failed to create copy render pass"); return false; } m_texture_converter = std::make_unique(); if (!m_texture_converter->Initialize()) { PanicAlert("Failed to initialize texture converter"); return false; } if (!CompileShaders()) { PanicAlert("Failed to compile one or more shaders"); return false; } return true; } void TextureCache::ConvertTexture(TCacheEntry* destination, TCacheEntry* source, void* palette, TlutFormat format) { m_texture_converter->ConvertTexture(destination, source, m_render_pass, palette, format); // Ensure both textures remain in the SHADER_READ_ONLY layout so they can be bound. static_cast(source->texture.get()) ->GetRawTexIdentifier() ->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); static_cast(destination->texture.get()) ->GetRawTexIdentifier() ->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); } void TextureCache::CopyEFB(u8* dst, const EFBCopyFormat& format, u32 native_width, u32 bytes_per_row, u32 num_blocks_y, u32 memory_stride, bool is_depth_copy, const EFBRectangle& src_rect, bool scale_by_half) { // Flush EFB pokes first, as they're expected to be included. FramebufferManager::GetInstance()->FlushEFBPokes(); // MSAA case where we need to resolve first. // An out-of-bounds source region is valid here, and fine for the draw (since it is converted // to texture coordinates), but it's not valid to resolve an out-of-range rectangle. TargetRectangle scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect); VkRect2D region = {{scaled_src_rect.left, scaled_src_rect.top}, {static_cast(scaled_src_rect.GetWidth()), static_cast(scaled_src_rect.GetHeight())}}; region = Util::ClampRect2D(region, FramebufferManager::GetInstance()->GetEFBWidth(), FramebufferManager::GetInstance()->GetEFBHeight()); Texture2D* src_texture; if (is_depth_copy) src_texture = FramebufferManager::GetInstance()->ResolveEFBDepthTexture(region); else src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(region); // End render pass before barrier (since we have no self-dependencies). // The barrier has to happen after the render pass, not inside it, as we are going to be // reading from the texture immediately afterwards. StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->OnReadback(); // Transition to shader resource before reading. VkImageLayout original_layout = src_texture->GetLayout(); src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); m_texture_converter->EncodeTextureToMemory(src_texture->GetView(), dst, format, native_width, bytes_per_row, num_blocks_y, memory_stride, is_depth_copy, src_rect, scale_by_half); // Transition back to original state src_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), original_layout); } bool TextureCache::SupportsGPUTextureDecode(TextureFormat format, TlutFormat palette_format) { return m_texture_converter->SupportsTextureDecoding(format, palette_format); } void TextureCache::DecodeTextureOnGPU(TCacheEntry* entry, u32 dst_level, const u8* data, size_t data_size, TextureFormat format, u32 width, u32 height, u32 aligned_width, u32 aligned_height, u32 row_stride, const u8* palette, TlutFormat palette_format) { // Group compute shader dispatches together in the init command buffer. That way we don't have to // pay a penalty for switching from graphics->compute, or end/restart our render pass. VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentInitCommandBuffer(); m_texture_converter->DecodeTexture(command_buffer, entry, dst_level, data, data_size, format, width, height, aligned_width, aligned_height, row_stride, palette, palette_format); // Last mip level? Ensure the texture is ready for use. if (dst_level == (entry->GetNumLevels() - 1)) { static_cast(entry->texture.get()) ->GetRawTexIdentifier() ->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); } } std::unique_ptr TextureCache::CreateTexture(const TextureConfig& config) { return VKTexture::Create(config); } bool TextureCache::CreateRenderPasses() { static constexpr VkAttachmentDescription update_attachment = { 0, TEXTURECACHE_TEXTURE_FORMAT, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}; static constexpr VkAttachmentReference color_attachment_reference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}; static constexpr VkSubpassDescription subpass_description = { 0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &color_attachment_reference, nullptr, nullptr, 0, nullptr}; VkRenderPassCreateInfo update_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, &update_attachment, 1, &subpass_description, 0, nullptr}; VkResult res = vkCreateRenderPass(g_vulkan_context->GetDevice(), &update_info, nullptr, &m_render_pass); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: "); return false; } return true; } bool TextureCache::CompileShaders() { static const char COPY_SHADER_SOURCE[] = R"( layout(set = 1, binding = 0) uniform sampler2DArray samp0; layout(location = 0) in float3 uv0; layout(location = 1) in float4 col0; layout(location = 0) out float4 ocol0; void main() { ocol0 = texture(samp0, uv0); } )"; static const char EFB_COLOR_TO_TEX_SOURCE[] = R"( SAMPLER_BINDING(0) uniform sampler2DArray samp0; layout(std140, push_constant) uniform PSBlock { vec4 colmat[7]; } C; layout(location = 0) in vec3 uv0; layout(location = 1) in vec4 col0; layout(location = 0) out vec4 ocol0; void main() { float4 texcol = texture(samp0, uv0); texcol = floor(texcol * C.colmat[5]) * C.colmat[6]; ocol0 = texcol * mat4(C.colmat[0], C.colmat[1], C.colmat[2], C.colmat[3]) + C.colmat[4]; } )"; static const char EFB_DEPTH_TO_TEX_SOURCE[] = R"( SAMPLER_BINDING(0) uniform sampler2DArray samp0; layout(std140, push_constant) uniform PSBlock { vec4 colmat[5]; } C; layout(location = 0) in vec3 uv0; layout(location = 1) in vec4 col0; layout(location = 0) out vec4 ocol0; void main() { #if MONO_DEPTH vec4 texcol = texture(samp0, vec3(uv0.xy, 0.0f)); #else vec4 texcol = texture(samp0, uv0); #endif int depth = int((1.0 - texcol.x) * 16777216.0); // Convert to Z24 format ivec4 workspace; workspace.r = (depth >> 16) & 255; workspace.g = (depth >> 8) & 255; workspace.b = depth & 255; // Convert to Z4 format workspace.a = (depth >> 16) & 0xF0; // Normalize components to [0.0..1.0] texcol = vec4(workspace) / 255.0; ocol0 = texcol * mat4(C.colmat[0], C.colmat[1], C.colmat[2], C.colmat[3]) + C.colmat[4]; } )"; std::string header = g_shader_cache->GetUtilityShaderHeader(); std::string source; source = header + COPY_SHADER_SOURCE; m_copy_shader = Util::CompileAndCreateFragmentShader(source); source = header + EFB_COLOR_TO_TEX_SOURCE; m_efb_color_to_tex_shader = Util::CompileAndCreateFragmentShader(source); if (g_ActiveConfig.bStereoEFBMonoDepth) source = header + "#define MONO_DEPTH 1\n" + EFB_DEPTH_TO_TEX_SOURCE; else source = header + EFB_DEPTH_TO_TEX_SOURCE; m_efb_depth_to_tex_shader = Util::CompileAndCreateFragmentShader(source); return m_copy_shader != VK_NULL_HANDLE && m_efb_color_to_tex_shader != VK_NULL_HANDLE && m_efb_depth_to_tex_shader != VK_NULL_HANDLE; } void TextureCache::DeleteShaders() { // It is safe to destroy shader modules after they are consumed by creating a pipeline. // Therefore, no matter where this function is called from, it won't cause an issue due to // pending commands, although at the time of writing should only be called at the end of // a frame. See Vulkan spec, section 2.3.1. Object Lifetime. if (m_copy_shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_copy_shader, nullptr); m_copy_shader = VK_NULL_HANDLE; } if (m_efb_color_to_tex_shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_efb_color_to_tex_shader, nullptr); m_efb_color_to_tex_shader = VK_NULL_HANDLE; } if (m_efb_depth_to_tex_shader != VK_NULL_HANDLE) { vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_efb_depth_to_tex_shader, nullptr); m_efb_depth_to_tex_shader = VK_NULL_HANDLE; } } void TextureCache::CopyEFBToCacheEntry(TCacheEntry* entry, bool is_depth_copy, const EFBRectangle& src_rect, bool scale_by_half, unsigned int cbuf_id, const float* colmat) { VKTexture* texture = static_cast(entry->texture.get()); // A better way of doing this would be nice. FramebufferManager* framebuffer_mgr = static_cast(g_framebuffer_manager.get()); TargetRectangle scaled_src_rect = g_renderer->ConvertEFBRectangle(src_rect); // Flush EFB pokes first, as they're expected to be included. framebuffer_mgr->FlushEFBPokes(); // Has to be flagged as a render target. _assert_(texture->GetFramebuffer() != VK_NULL_HANDLE); // Can't be done in a render pass, since we're doing our own render pass! VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer(); StateTracker::GetInstance()->EndRenderPass(); // Transition EFB to shader resource before binding. // An out-of-bounds source region is valid here, and fine for the draw (since it is converted // to texture coordinates), but it's not valid to resolve an out-of-range rectangle. VkRect2D region = {{scaled_src_rect.left, scaled_src_rect.top}, {static_cast(scaled_src_rect.GetWidth()), static_cast(scaled_src_rect.GetHeight())}}; region = Util::ClampRect2D(region, FramebufferManager::GetInstance()->GetEFBWidth(), FramebufferManager::GetInstance()->GetEFBHeight()); Texture2D* src_texture; if (is_depth_copy) src_texture = FramebufferManager::GetInstance()->ResolveEFBDepthTexture(region); else src_texture = FramebufferManager::GetInstance()->ResolveEFBColorTexture(region); VkSampler src_sampler = scale_by_half ? g_object_cache->GetLinearSampler() : g_object_cache->GetPointSampler(); VkImageLayout original_layout = src_texture->GetLayout(); src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); texture->GetRawTexIdentifier()->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); UtilityShaderDraw draw(command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_PUSH_CONSTANT), m_render_pass, g_shader_cache->GetPassthroughVertexShader(), g_shader_cache->GetPassthroughGeometryShader(), is_depth_copy ? m_efb_depth_to_tex_shader : m_efb_color_to_tex_shader); draw.SetPushConstants(colmat, (is_depth_copy ? sizeof(float) * 20 : sizeof(float) * 28)); draw.SetPSSampler(0, src_texture->GetView(), src_sampler); VkRect2D dest_region = {{0, 0}, {texture->GetConfig().width, texture->GetConfig().height}}; draw.BeginRenderPass(texture->GetFramebuffer(), dest_region); draw.DrawQuad(0, 0, texture->GetConfig().width, texture->GetConfig().height, scaled_src_rect.left, scaled_src_rect.top, 0, scaled_src_rect.GetWidth(), scaled_src_rect.GetHeight(), framebuffer_mgr->GetEFBWidth(), framebuffer_mgr->GetEFBHeight()); draw.EndRenderPass(); // We touched everything, so put it back. StateTracker::GetInstance()->SetPendingRebind(); // Transition the EFB back to its original layout. src_texture->TransitionToLayout(command_buffer, original_layout); // Ensure texture is in SHADER_READ_ONLY layout, ready for usage. texture->GetRawTexIdentifier()->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); } } // namespace Vulkan