// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include "Common.h" #include "VideoCommon.h" #include "VideoConfig.h" #include "MemoryUtil.h" #include "StringUtil.h" #include "x64Emitter.h" #include "ABI.h" #include "PixelEngine.h" #include "Host.h" #include "LookUpTables.h" #include "Statistics.h" #include "VertexLoaderManager.h" #include "VertexLoader.h" #include "BPMemory.h" #include "DataReader.h" #include "VertexManagerBase.h" #include "VertexLoader_Position.h" #include "VertexLoader_Normal.h" #include "VertexLoader_Color.h" #include "VertexLoader_TextCoord.h" //BBox #include "XFMemory.h" extern float GC_ALIGNED16(g_fProjectionMatrix[16]); #define USE_JIT #define COMPILED_CODE_SIZE 4096 NativeVertexFormat *g_nativeVertexFmt; #ifndef _WIN32 #undef inline #define inline #endif // Matrix components are first in GC format but later in PC format - we need to store it temporarily // when decoding each vertex. static u8 s_curposmtx; static u8 s_curtexmtx[8]; static int s_texmtxwrite = 0; static int s_texmtxread = 0; static int loop_counter; // Vertex loaders read these. Although the scale ones should be baked into the shader. int tcIndex; int colIndex; TVtxAttr* pVtxAttr; int colElements[2]; float posScale; float tcScale[8]; static const float fractionTable[32] = { 1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3), 1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7), 1.0f / (1U << 8), 1.0f / (1U << 9), 1.0f / (1U << 10), 1.0f / (1U << 11), 1.0f / (1U << 12), 1.0f / (1U << 13), 1.0f / (1U << 14), 1.0f / (1U << 15), 1.0f / (1U << 16), 1.0f / (1U << 17), 1.0f / (1U << 18), 1.0f / (1U << 19), 1.0f / (1U << 20), 1.0f / (1U << 21), 1.0f / (1U << 22), 1.0f / (1U << 23), 1.0f / (1U << 24), 1.0f / (1U << 25), 1.0f / (1U << 26), 1.0f / (1U << 27), 1.0f / (1U << 28), 1.0f / (1U << 29), 1.0f / (1U << 30), 1.0f / (1U << 31), }; using namespace Gen; void LOADERDECL PosMtx_ReadDirect_UByte() { s_curposmtx = DataReadU8() & 0x3f; PRIM_LOG("posmtx: %d, ", s_curposmtx); } void LOADERDECL PosMtx_Write() { *VertexManager::s_pCurBufferPointer++ = s_curposmtx; *VertexManager::s_pCurBufferPointer++ = 0; *VertexManager::s_pCurBufferPointer++ = 0; *VertexManager::s_pCurBufferPointer++ = 0; } void LOADERDECL UpdateBoundingBox() { if (!PixelEngine::bbox_active) return; // Truly evil hack, reading backwards from the write pointer. If we were writing to write-only // memory like we might have been with a D3D vertex buffer, this would have been a bad idea. float *data = (float *)(VertexManager::s_pCurBufferPointer - 12); // We must transform the just loaded point by the current world and projection matrix - in software. // Then convert to screen space and update the bounding box. float p[3] = {data[0], data[1], data[2]}; const float *world_matrix = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4; const float *proj_matrix = &g_fProjectionMatrix[0]; float t[3]; t[0] = p[0] * world_matrix[0] + p[1] * world_matrix[1] + p[2] * world_matrix[2] + world_matrix[3]; t[1] = p[0] * world_matrix[4] + p[1] * world_matrix[5] + p[2] * world_matrix[6] + world_matrix[7]; t[2] = p[0] * world_matrix[8] + p[1] * world_matrix[9] + p[2] * world_matrix[10] + world_matrix[11]; float o[3]; o[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3]; o[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7]; o[2] = t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15]; o[0] /= o[2]; o[1] /= o[2]; // Max width seems to be 608, while max height is 480 // Here height is set to 484 as BBox bottom always seems to be off by a few pixels o[0] = (o[0] + 1.0f) * 304.0f; o[1] = (1.0f - o[1]) * 242.0f; if (o[0] < PixelEngine::bbox[0]) PixelEngine::bbox[0] = (u16) std::max(0.0f, o[0]); if (o[0] > PixelEngine::bbox[1]) PixelEngine::bbox[1] = (u16) o[0]; if (o[1] < PixelEngine::bbox[2]) PixelEngine::bbox[2] = (u16) std::max(0.0f, o[1]); if (o[1] > PixelEngine::bbox[3]) PixelEngine::bbox[3] = (u16) o[1]; } void LOADERDECL TexMtx_ReadDirect_UByte() { s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f; PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]); s_texmtxread++; } void LOADERDECL TexMtx_Write_Float() { *(float*)VertexManager::s_pCurBufferPointer = (float)s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 4; } void LOADERDECL TexMtx_Write_Float2() { ((float*)VertexManager::s_pCurBufferPointer)[0] = 0; ((float*)VertexManager::s_pCurBufferPointer)[1] = (float)s_curtexmtx[s_texmtxwrite++]; VertexManager::s_pCurBufferPointer += 8; } void LOADERDECL TexMtx_Write_Float4() { ((float*)VertexManager::s_pCurBufferPointer)[0] = 0; ((float*)VertexManager::s_pCurBufferPointer)[1] = 0; ((float*)VertexManager::s_pCurBufferPointer)[2] = s_curtexmtx[s_texmtxwrite++]; ((float*)VertexManager::s_pCurBufferPointer)[3] = 0; // Just to fill out with 0. VertexManager::s_pCurBufferPointer += 16; } VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr) { m_compiledCode = NULL; m_numLoadedVertices = 0; m_VertexSize = 0; m_numPipelineStages = 0; m_NativeFmt = g_vertex_manager->CreateNativeVertexFormat(); loop_counter = 0; VertexLoader_Normal::Init(); VertexLoader_Position::Init(); VertexLoader_TextCoord::Init(); m_VtxDesc = vtx_desc; SetVAT(vtx_attr.g0.Hex, vtx_attr.g1.Hex, vtx_attr.g2.Hex); AllocCodeSpace(COMPILED_CODE_SIZE); CompileVertexTranslator(); WriteProtect(); } VertexLoader::~VertexLoader() { FreeCodeSpace(); delete m_NativeFmt; } void VertexLoader::CompileVertexTranslator() { m_VertexSize = 0; const TVtxAttr &vtx_attr = m_VtxAttr; #ifdef USE_JIT if (m_compiledCode) PanicAlert("trying to recompile a vtx translator"); m_compiledCode = GetCodePtr(); ABI_EmitPrologue(4); // Start loop here const u8 *loop_start = GetCodePtr(); // Reset component counters if present in vertex format only. if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord || m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord) { WriteSetVariable(32, &tcIndex, Imm32(0)); } if (m_VtxDesc.Color0 || m_VtxDesc.Color1) { WriteSetVariable(32, &colIndex, Imm32(0)); } if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx || m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx) { WriteSetVariable(32, &s_texmtxwrite, Imm32(0)); WriteSetVariable(32, &s_texmtxread, Imm32(0)); } #endif // Colors const int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; // TextureCoord // Since m_VtxDesc.Text7Coord is broken across a 32 bit word boundary, retrieve its value manually. // If we didn't do this, the vertex format would be read as one bit offset from where it should be, making // 01 become 00, and 10/11 become 01 const int tc[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, (const int)((m_VtxDesc.Hex >> 31) & 3) }; // Reset pipeline m_numPipelineStages = 0; // It's a bit ugly that we poke inside m_NativeFmt in this function. Planning to fix this. m_NativeFmt->m_components = 0; // Position in pc vertex format. int nat_offset = 0; PortableVertexDeclaration vtx_decl; memset(&vtx_decl, 0, sizeof(vtx_decl)); for (int i = 0; i < 8; i++) { vtx_decl.texcoord_offset[i] = -1; } // m_VBVertexStride for texmtx and posmtx is computed later when writing. // Position Matrix Index if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_ReadDirect_UByte); m_NativeFmt->m_components |= VB_HAS_POSMTXIDX; m_VertexSize += 1; } if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); } if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); } // Write vertex position loader WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements)); m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements); nat_offset += 12; // OK, so we just got a point. Let's go back and read it for the bounding box. if(g_ActiveConfig.bUseBBox) WriteCall(UpdateBoundingBox); // Normals vtx_decl.num_normals = 0; if (m_VtxDesc.Normal != NOT_PRESENT) { m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); if (pFunc == 0) { char temp[256]; sprintf(temp,"%i %i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3); Host_SysMessage("VertexLoader_Normal::GetFunction returned zero!"); } WriteCall(pFunc); vtx_decl.num_normals = vtx_attr.NormalElements ? 3 : 1; vtx_decl.normal_offset[0] = -1; vtx_decl.normal_offset[1] = -1; vtx_decl.normal_offset[2] = -1; vtx_decl.normal_gl_type = VAR_FLOAT; vtx_decl.normal_gl_size = 3; vtx_decl.normal_offset[0] = nat_offset; nat_offset += 12; if (vtx_attr.NormalElements) { vtx_decl.normal_offset[1] = nat_offset; nat_offset += 12; vtx_decl.normal_offset[2] = nat_offset; nat_offset += 12; } int numNormals = (m_VtxAttr.NormalElements == 1) ? NRM_THREE : NRM_ONE; m_NativeFmt->m_components |= VB_HAS_NRM0; if (numNormals == NRM_THREE) m_NativeFmt->m_components |= VB_HAS_NRM1 | VB_HAS_NRM2; } vtx_decl.color_gl_type = VAR_UNSIGNED_BYTE; vtx_decl.color_offset[0] = -1; vtx_decl.color_offset[1] = -1; for (int i = 0; i < 2; i++) { m_NativeFmt->m_components |= VB_HAS_COL0 << i; switch (col[i]) { case NOT_PRESENT: m_NativeFmt->m_components &= ~(VB_HAS_COL0 << i); vtx_decl.color_offset[i] = -1; break; case DIRECT: switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break; case FORMAT_24B_888: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break; case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break; case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break; case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break; case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break; default: _assert_(0); break; } break; case INDEX8: m_VertexSize += 1; switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break; default: _assert_(0); break; } break; case INDEX16: m_VertexSize += 2; switch (m_VtxAttr.color[i].Comp) { case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break; case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break; case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break; case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break; case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break; case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break; default: _assert_(0); break; } break; } // Common for the three bottom cases if (col[i] != NOT_PRESENT) { vtx_decl.color_offset[i] = nat_offset; nat_offset += 4; } } // Texture matrix indices (remove if corresponding texture coordinate isn't enabled) for (int i = 0; i < 8; i++) { vtx_decl.texcoord_offset[i] = -1; const int format = m_VtxAttr.texCoord[i].Format; const int elements = m_VtxAttr.texCoord[i].Elements; if (tc[i] == NOT_PRESENT) { m_NativeFmt->m_components &= ~(VB_HAS_UV0 << i); } else { _assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", tc[i]); _assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format); _assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elemnts!\n(elements = %d)", elements); m_NativeFmt->m_components |= VB_HAS_UV0 << i; WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements)); m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements); } if (m_NativeFmt->m_components & (VB_HAS_TEXMTXIDX0 << i)) { if (tc[i] != NOT_PRESENT) { // if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index vtx_decl.texcoord_offset[i] = nat_offset; vtx_decl.texcoord_gl_type[i] = VAR_FLOAT; vtx_decl.texcoord_size[i] = 3; nat_offset += 12; WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2); } else { m_NativeFmt->m_components |= VB_HAS_UV0 << i; // have to include since using now vtx_decl.texcoord_offset[i] = nat_offset; vtx_decl.texcoord_gl_type[i] = VAR_FLOAT; vtx_decl.texcoord_size[i] = 4; nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes WriteCall(TexMtx_Write_Float4); } } else { if (tc[i] != NOT_PRESENT) { vtx_decl.texcoord_offset[i] = nat_offset; vtx_decl.texcoord_gl_type[i] = VAR_FLOAT; vtx_decl.texcoord_size[i] = vtx_attr.texCoord[i].Elements ? 2 : 1; nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1); } } if (tc[i] == NOT_PRESENT) { // if there's more tex coords later, have to write a dummy call int j = i + 1; for (; j < 8; ++j) { if (tc[j] != NOT_PRESENT) { WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right! break; } } // tricky! if (j == 8 && !((m_NativeFmt->m_components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1)))) { // no more tex coords and tex matrices, so exit loop break; } } } if (m_VtxDesc.PosMatIdx) { WriteCall(PosMtx_Write); vtx_decl.posmtx_offset = nat_offset; nat_offset += 4; } else { vtx_decl.posmtx_offset = -1; } native_stride = nat_offset; vtx_decl.stride = native_stride; #ifdef USE_JIT // End loop here #ifdef _M_X64 MOV(64, R(RAX), Imm64((u64)&loop_counter)); SUB(32, MatR(RAX), Imm8(1)); #else SUB(32, M(&loop_counter), Imm8(1)); #endif J_CC(CC_NZ, loop_start, true); ABI_EmitEpilogue(4); #endif m_NativeFmt->Initialize(vtx_decl); } void VertexLoader::WriteCall(TPipelineFunction func) { #ifdef USE_JIT #ifdef _M_X64 MOV(64, R(RAX), Imm64((u64)func)); CALLptr(R(RAX)); #else CALL((void*)func); #endif #else m_PipelineStages[m_numPipelineStages++] = func; #endif } void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address) { #ifdef USE_JIT #ifdef _M_X64 MOV(64, R(RAX), Imm64((u64)address)); MOV(bits, dest, MatR(RAX)); #else MOV(bits, dest, M(address)); #endif #endif } void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value) { #ifdef USE_JIT #ifdef _M_X64 MOV(64, R(RAX), Imm64((u64)address)); MOV(bits, MatR(RAX), value); #else MOV(bits, M(address), value); #endif #endif } void VertexLoader::RunVertices(int vtx_attr_group, int primitive, int count) { m_numLoadedVertices += count; // Flush if our vertex format is different from the currently set. if (g_nativeVertexFmt != NULL && g_nativeVertexFmt != m_NativeFmt) { // We really must flush here. It's possible that the native representations // of the two vtx formats are the same, but we have no way to easily check that // now. VertexManager::Flush(); // Also move the Set() here? } g_nativeVertexFmt = m_NativeFmt; if (bpmem.genMode.cullmode == 3 && primitive < 5) { // if cull mode is none, ignore triangles and quads DataSkip(count * m_VertexSize); return; } m_NativeFmt->EnableComponents(m_NativeFmt->m_components); // Load position and texcoord scale factors. m_VtxAttr.PosFrac = g_VtxAttr[vtx_attr_group].g0.PosFrac; m_VtxAttr.texCoord[0].Frac = g_VtxAttr[vtx_attr_group].g0.Tex0Frac; m_VtxAttr.texCoord[1].Frac = g_VtxAttr[vtx_attr_group].g1.Tex1Frac; m_VtxAttr.texCoord[2].Frac = g_VtxAttr[vtx_attr_group].g1.Tex2Frac; m_VtxAttr.texCoord[3].Frac = g_VtxAttr[vtx_attr_group].g1.Tex3Frac; m_VtxAttr.texCoord[4].Frac = g_VtxAttr[vtx_attr_group].g2.Tex4Frac; m_VtxAttr.texCoord[5].Frac = g_VtxAttr[vtx_attr_group].g2.Tex5Frac; m_VtxAttr.texCoord[6].Frac = g_VtxAttr[vtx_attr_group].g2.Tex6Frac; m_VtxAttr.texCoord[7].Frac = g_VtxAttr[vtx_attr_group].g2.Tex7Frac; pVtxAttr = &m_VtxAttr; posScale = fractionTable[m_VtxAttr.PosFrac]; if (m_NativeFmt->m_components & VB_HAS_UVALL) for (int i = 0; i < 8; i++) tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac]; for (int i = 0; i < 2; i++) colElements[i] = m_VtxAttr.color[i].Elements; // if strips or fans, make sure all vertices can fit in buffer, otherwise flush int granularity = 1; switch (primitive) { case 3: // strip .. hm, weird case 4: // fan if (VertexManager::GetRemainingSize() < 3 * native_stride) VertexManager::Flush(); break; case 6: // line strip if (VertexManager::GetRemainingSize() < 2 * native_stride) VertexManager::Flush(); break; case 0: granularity = 4; break; // quads case 2: granularity = 3; break; // tris case 5: granularity = 2; break; // lines } int startv = 0, extraverts = 0; int v = 0; //int remainingVerts2 = VertexManager::GetRemainingVertices(primitive); while (v < count) { int remainingVerts = VertexManager::GetRemainingSize() / native_stride; //if (remainingVerts2 - v + startv < remainingVerts) //remainingVerts = remainingVerts2 - v + startv; if (remainingVerts < granularity) { INCSTAT(stats.thisFrame.numBufferSplits); // This buffer full - break current primitive and flush, to switch to the next buffer. u8* plastptr = VertexManager::s_pCurBufferPointer; if (v - startv > 0) VertexManager::AddVertices(primitive, v - startv + extraverts); VertexManager::Flush(); //remainingVerts2 = VertexManager::GetRemainingVertices(primitive); // Why does this need to be so complicated? switch (primitive) { case 3: // triangle strip, copy last two vertices // a little trick since we have to keep track of signs if (v & 1) { memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-2*native_stride, native_stride); memcpy_gc(VertexManager::s_pCurBufferPointer+native_stride, plastptr-native_stride*2, 2*native_stride); VertexManager::s_pCurBufferPointer += native_stride*3; extraverts = 3; } else { memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride*2, native_stride*2); VertexManager::s_pCurBufferPointer += native_stride*2; extraverts = 2; } break; case 4: // tri fan, copy first and last vert memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride*(v-startv+extraverts), native_stride); VertexManager::s_pCurBufferPointer += native_stride; memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride, native_stride); VertexManager::s_pCurBufferPointer += native_stride; extraverts = 2; break; case 6: // line strip memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-native_stride, native_stride); VertexManager::s_pCurBufferPointer += native_stride; extraverts = 1; break; default: extraverts = 0; break; } startv = v; } int remainingPrims = remainingVerts / granularity; remainingVerts = remainingPrims * granularity; if (count - v < remainingVerts) remainingVerts = count - v; #ifdef USE_JIT if (remainingVerts > 0) { loop_counter = remainingVerts; ((void (*)())(void*)m_compiledCode)(); } #else for (int s = 0; s < remainingVerts; s++) { tcIndex = 0; colIndex = 0; s_texmtxwrite = s_texmtxread = 0; for (int i = 0; i < m_numPipelineStages; i++) m_PipelineStages[i](); PRIM_LOG("\n"); } #endif v += remainingVerts; } if (startv < count) VertexManager::AddVertices(primitive, count - startv + extraverts); } void VertexLoader::RunCompiledVertices(int vtx_attr_group, int primitive, int count, u8* Data) { m_numLoadedVertices += count; // Flush if our vertex format is different from the currently set. if (g_nativeVertexFmt != NULL && g_nativeVertexFmt != m_NativeFmt) { // We really must flush here. It's possible that the native representations // of the two vtx formats are the same, but we have no way to easily check that // now. VertexManager::Flush(); // Also move the Set() here? } g_nativeVertexFmt = m_NativeFmt; if (bpmem.genMode.cullmode == 3 && primitive < 5) { // if cull mode is none, ignore triangles and quads DataSkip(count * m_VertexSize); return; } m_NativeFmt->EnableComponents(m_NativeFmt->m_components); // Load position and texcoord scale factors. m_VtxAttr.PosFrac = g_VtxAttr[vtx_attr_group].g0.PosFrac; m_VtxAttr.texCoord[0].Frac = g_VtxAttr[vtx_attr_group].g0.Tex0Frac; m_VtxAttr.texCoord[1].Frac = g_VtxAttr[vtx_attr_group].g1.Tex1Frac; m_VtxAttr.texCoord[2].Frac = g_VtxAttr[vtx_attr_group].g1.Tex2Frac; m_VtxAttr.texCoord[3].Frac = g_VtxAttr[vtx_attr_group].g1.Tex3Frac; m_VtxAttr.texCoord[4].Frac = g_VtxAttr[vtx_attr_group].g2.Tex4Frac; m_VtxAttr.texCoord[5].Frac = g_VtxAttr[vtx_attr_group].g2.Tex5Frac; m_VtxAttr.texCoord[6].Frac = g_VtxAttr[vtx_attr_group].g2.Tex6Frac; m_VtxAttr.texCoord[7].Frac = g_VtxAttr[vtx_attr_group].g2.Tex7Frac; pVtxAttr = &m_VtxAttr; posScale = fractionTable[m_VtxAttr.PosFrac]; if (m_NativeFmt->m_components & VB_HAS_UVALL) for (int i = 0; i < 8; i++) tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac]; for (int i = 0; i < 2; i++) colElements[i] = m_VtxAttr.color[i].Elements; if(VertexManager::GetRemainingSize() < native_stride * count) VertexManager::Flush(); memcpy_gc(VertexManager::s_pCurBufferPointer, Data, native_stride * count); VertexManager::s_pCurBufferPointer += native_stride * count; DataSkip(count * m_VertexSize); VertexManager::AddVertices(primitive, count); } void VertexLoader::SetVAT(u32 _group0, u32 _group1, u32 _group2) { VAT vat; vat.g0.Hex = _group0; vat.g1.Hex = _group1; vat.g2.Hex = _group2; m_VtxAttr.PosElements = vat.g0.PosElements; m_VtxAttr.PosFormat = vat.g0.PosFormat; m_VtxAttr.PosFrac = vat.g0.PosFrac; m_VtxAttr.NormalElements = vat.g0.NormalElements; m_VtxAttr.NormalFormat = vat.g0.NormalFormat; m_VtxAttr.color[0].Elements = vat.g0.Color0Elements; m_VtxAttr.color[0].Comp = vat.g0.Color0Comp; m_VtxAttr.color[1].Elements = vat.g0.Color1Elements; m_VtxAttr.color[1].Comp = vat.g0.Color1Comp; m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements; m_VtxAttr.texCoord[0].Format = vat.g0.Tex0CoordFormat; m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac; m_VtxAttr.ByteDequant = vat.g0.ByteDequant; m_VtxAttr.NormalIndex3 = vat.g0.NormalIndex3; m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements; m_VtxAttr.texCoord[1].Format = vat.g1.Tex1CoordFormat; m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac; m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements; m_VtxAttr.texCoord[2].Format = vat.g1.Tex2CoordFormat; m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac; m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements; m_VtxAttr.texCoord[3].Format = vat.g1.Tex3CoordFormat; m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac; m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements; m_VtxAttr.texCoord[4].Format = vat.g1.Tex4CoordFormat; m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac; m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements; m_VtxAttr.texCoord[5].Format = vat.g2.Tex5CoordFormat; m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac; m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements; m_VtxAttr.texCoord[6].Format = vat.g2.Tex6CoordFormat; m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac; m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements; m_VtxAttr.texCoord[7].Format = vat.g2.Tex7CoordFormat; m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac; }; void VertexLoader::AppendToString(std::string *dest) const { dest->reserve(250); static const char *posMode[4] = { "Inv", "Dir", "I8", "I16", }; static const char *posFormats[5] = { "u8", "s8", "u16", "s16", "flt", }; static const char *colorFormat[8] = { "565", "888", "888x", "4444", "6666", "8888", "Inv", "Inv", }; dest->append(StringFromFormat("%ib skin: %i P: %i %s-%s ", m_VertexSize, m_VtxDesc.PosMatIdx, m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat])); if (m_VtxDesc.Normal) { dest->append(StringFromFormat("Nrm: %i %s-%s ", m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat])); } int color_mode[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1}; for (int i = 0; i < 2; i++) { if (color_mode[i]) { dest->append(StringFromFormat("C%i: %i %s-%s ", i, m_VtxAttr.color[i].Elements, posMode[color_mode[i]], colorFormat[m_VtxAttr.color[i].Comp])); } } int tex_mode[8] = { m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord, m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord }; for (int i = 0; i < 8; i++) { if (tex_mode[i]) { dest->append(StringFromFormat("T%i: %i %s-%s ", i, m_VtxAttr.texCoord[i].Elements, posMode[tex_mode[i]], posFormats[m_VtxAttr.texCoord[i].Format])); } } dest->append(StringFromFormat(" - %i v\n", m_numLoadedVertices)); }