// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The gpu draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #ifndef _COMMON_RENDERBASE_H_ #define _COMMON_RENDERBASE_H_ #include "VideoCommon.h" #include "Thread.h" #include "MathUtil.h" #include "pluginspecs_video.h" #include "NativeVertexFormat.h" #include "FramebufferManagerBase.h" #include "BPMemory.h" #include // TODO: Move these out of here. extern int frameCount; extern int OSDChoice, OSDTime, OSDInternalW, OSDInternalH; extern bool s_bLastFrameDumped; extern SVideoInitialize g_VideoInitialize; extern PLUGIN_GLOBALS* globals; // Renderer really isn't a very good name for this class - it's more like "Misc". // The long term goal is to get rid of this class and replace it with others that make // more sense. class Renderer { public: Renderer(); virtual ~Renderer(); virtual void SetColorMask() = 0; virtual void SetBlendMode(bool forceUpdate) = 0; virtual bool SetScissorRect() = 0; virtual void SetGenerationMode() = 0; virtual void SetDepthMode() = 0; virtual void SetLogicOpMode() = 0; virtual void SetDitherMode() = 0; virtual void SetLineWidth() = 0; virtual void SetSamplerState(int stage,int texindex) = 0; virtual void SetInterlacingMode() = 0; // Return the rendering target width and height static int GetTargetWidth() { return s_target_width; } static int GetTargetHeight() { return s_target_height; } static int GetFullTargetWidth() { return s_Fulltarget_width; } static int GetFullTargetHeight() { return s_Fulltarget_height; } // Multiply any 2D EFB coordinates by these when rendering. static float GetTargetScaleX() { return EFBxScale; } static float GetTargetScaleY() { return EFByScale; } static float GetXFBScaleX() { return xScale; } static float GetXFBScaleY() { return yScale; } static int GetBackbufferWidth() { return s_backbuffer_width; } static int GetBackbufferHeight() { return s_backbuffer_height; } virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0; // Random utilities static void SetScreenshot(const char *filename); static void DrawDebugText(); virtual void RenderText(const char* pstr, int left, int top, u32 color) = 0; virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) = 0; static void RenderToXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc); virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0; // What's the real difference between these? Too similar names. virtual void ResetAPIState() = 0; virtual void RestoreAPIState() = 0; // Finish up the current frame, print some stats virtual void Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight, const EFBRectangle& rc) = 0; virtual void UpdateViewport() = 0; virtual bool SaveScreenshot(const std::string &filename, const TargetRectangle &rc) = 0; protected: static Common::CriticalSection s_criticalScreenshot; static std::string s_sScreenshotName; static bool CalculateTargetSize(float multiplier = 1); static void CalculateXYScale(const TargetRectangle& dst_rect); static volatile bool s_bScreenshot; // The framebuffer size static int s_target_width; static int s_target_height; // The custom resolution static int s_Fulltarget_width; static int s_Fulltarget_height; // TODO: Add functionality to reinit all the render targets when the window is resized. static int s_backbuffer_width; static int s_backbuffer_height; // Internal resolution scale (related to xScale/yScale for "Auto" scaling) static float EFBxScale; static float EFByScale; // ratio of backbuffer size and render area size static float xScale; static float yScale; static unsigned int s_XFB_width; static unsigned int s_XFB_height; // can probably eliminate this static var static int s_LastEFBScale; static bool s_skipSwap; static bool XFBWrited; }; extern Renderer *g_renderer; void UpdateViewport(); template void GetScissorRect(MathUtil::Rectangle &rect) { const int xoff = bpmem.scissorOffset.x * 2 - 342; const int yoff = bpmem.scissorOffset.y * 2 - 342; rect.left = (R)((float)bpmem.scissorTL.x - xoff - 342); rect.top = (R)((float)bpmem.scissorTL.y - yoff - 342); rect.right = (R)((float)bpmem.scissorBR.x - xoff - 341); rect.bottom = (R)((float)bpmem.scissorBR.y - yoff - 341); } #endif // _COMMON_RENDERBASE_H_