// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The gpu draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #include "RenderBase.h" #include "Atomic.h" #include "BPMemory.h" #include "CommandProcessor.h" #include "CPMemory.h" #include "MainBase.h" #include "VideoConfig.h" #include "FramebufferManagerBase.h" #include "TextureCacheBase.h" #include "Fifo.h" #include "OpcodeDecoding.h" #include "Timer.h" #include "StringUtil.h" #include "Host.h" #include "XFMemory.h" #include "FifoPlayer/FifoRecorder.h" #include "AVIDump.h" #include "VertexShaderManager.h" #include #include // TODO: Move these out of here. int frameCount; int OSDChoice, OSDTime; Renderer *g_renderer = NULL; std::mutex Renderer::s_criticalScreenshot; std::string Renderer::s_sScreenshotName; volatile bool Renderer::s_bScreenshot; // The framebuffer size int Renderer::s_target_width; int Renderer::s_target_height; // TODO: Add functionality to reinit all the render targets when the window is resized. int Renderer::s_backbuffer_width; int Renderer::s_backbuffer_height; // ratio of backbuffer size and render area size float Renderer::xScale; float Renderer::yScale; TargetRectangle Renderer::target_rc; int Renderer::s_LastEFBScale; bool Renderer::s_skipSwap; bool Renderer::XFBWrited; bool Renderer::s_EnableDLCachingAfterRecording; unsigned int Renderer::prev_efb_format = (unsigned int)-1; Renderer::Renderer() : frame_data(NULL), bLastFrameDumped(false) { UpdateActiveConfig(); TextureCache::OnConfigChanged(g_ActiveConfig); #if defined _WIN32 || defined HAVE_LIBAV bAVIDumping = false; #endif } Renderer::~Renderer() { // invalidate previous efb format prev_efb_format = (unsigned int)-1; #if defined _WIN32 || defined HAVE_LIBAV if (g_ActiveConfig.bDumpFrames && bLastFrameDumped && bAVIDumping) AVIDump::Stop(); #else if (pFrameDump.IsOpen()) pFrameDump.Close(); #endif delete[] frame_data; } void Renderer::RenderToXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc, float Gamma) { CheckFifoRecording(); if (!fbWidth || !fbHeight) return; s_skipSwap = g_bSkipCurrentFrame; VideoFifo_CheckEFBAccess(); VideoFifo_CheckSwapRequestAt(xfbAddr, fbWidth, fbHeight); XFBWrited = true; if (g_ActiveConfig.bUseXFB) { FramebufferManagerBase::CopyToXFB(xfbAddr, fbWidth, fbHeight, sourceRc,Gamma); } else { // XXX: Without the VI, how would we know what kind of field this is? So // just use progressive. g_renderer->Swap(xfbAddr, FIELD_PROGRESSIVE, fbWidth, fbHeight,sourceRc,Gamma); Common::AtomicStoreRelease(s_swapRequested, false); } } void Renderer::CalculateTargetScale(int x, int y, int &scaledX, int &scaledY) { switch (g_ActiveConfig.iEFBScale) { case 3: // 1.5x scaledX = (x / 2) * 3; scaledY = (y / 2) * 3; break; case 4: // 2x scaledX = x * 2; scaledY = y * 2; break; case 5: // 2.5x scaledX = (x / 2) * 5; scaledY = (y / 2) * 5; break; case 6: // 3x scaledX = x * 3; scaledY = y * 3; break; case 7: // 4x scaledX = x * 4; scaledY = y * 4; break; default: scaledX = x; scaledY = y; break; }; } // return true if target size changed bool Renderer::CalculateTargetSize(int multiplier) { int newEFBWidth, newEFBHeight; switch (s_LastEFBScale) { case 0: // fractional newEFBWidth = (int)(EFB_WIDTH * xScale); newEFBHeight = (int)(EFB_HEIGHT * yScale); break; case 1: // integral newEFBWidth = EFB_WIDTH * (int)ceilf(xScale); newEFBHeight = EFB_HEIGHT * (int)ceilf(yScale); break; default: CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, newEFBWidth, newEFBHeight); break; } newEFBWidth *= multiplier; newEFBHeight *= multiplier; if (newEFBWidth != s_target_width || newEFBHeight != s_target_height) { s_target_width = newEFBWidth; s_target_height = newEFBHeight; VertexShaderManager::SetViewportChanged(); return true; } return false; } void Renderer::SetScreenshot(const char *filename) { std::lock_guard lk(s_criticalScreenshot); s_sScreenshotName = filename; s_bScreenshot = true; } // Create On-Screen-Messages void Renderer::DrawDebugText() { // OSD Menu messages if (g_ActiveConfig.bOSDHotKey) { if (OSDChoice > 0) { OSDTime = Common::Timer::GetTimeMs() + 3000; OSDChoice = -OSDChoice; } if ((u32)OSDTime > Common::Timer::GetTimeMs()) { const char* res_text = ""; switch (g_ActiveConfig.iEFBScale) { case 0: res_text = "Auto (fractional)"; break; case 1: res_text = "Auto (integral)"; break; case 2: res_text = "Native"; break; case 3: res_text = "1.5x"; break; case 4: res_text = "2x"; break; case 5: res_text = "2.5x"; break; case 6: res_text = "3x"; break; case 7: res_text = "4x"; break; } const char* ar_text = ""; switch(g_ActiveConfig.iAspectRatio) { case ASPECT_AUTO: ar_text = "Auto"; break; case ASPECT_FORCE_16_9: ar_text = "16:9"; break; case ASPECT_FORCE_4_3: ar_text = "4:3"; break; case ASPECT_STRETCH: ar_text = "Stretch"; break; } const char* const efbcopy_text = g_ActiveConfig.bEFBCopyEnable ? (g_ActiveConfig.bCopyEFBToTexture ? "to Texture" : "to RAM") : "Disabled"; // The rows const std::string lines[] = { std::string("3: Internal Resolution: ") + res_text, std::string("4: Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""), std::string("5: Copy EFB: ") + efbcopy_text, std::string("6: Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"), }; enum { lines_count = sizeof(lines)/sizeof(*lines) }; std::string final_yellow, final_cyan; // If there is more text than this we will have a collision if (g_ActiveConfig.bShowFPS) { final_yellow = final_cyan = "\n\n"; } // The latest changed setting in yellow for (int i = 0; i != lines_count; ++i) { if (OSDChoice == -i - 1) final_yellow += lines[i]; final_yellow += '\n'; } // The other settings in cyan for (int i = 0; i != lines_count; ++i) { if (OSDChoice != -i - 1) final_cyan += lines[i]; final_cyan += '\n'; } // Render a shadow g_renderer->RenderText(final_cyan.c_str(), 21, 21, 0xDD000000); g_renderer->RenderText(final_yellow.c_str(), 21, 21, 0xDD000000); //and then the text g_renderer->RenderText(final_cyan.c_str(), 20, 20, 0xFF00FFFF); g_renderer->RenderText(final_yellow.c_str(), 20, 20, 0xFFFFFF00); } } } void Renderer::CalculateXYScale(const TargetRectangle& dst_rect) { if (g_ActiveConfig.RealXFBEnabled()) { xScale = 1.0f; yScale = 1.0f; } else { if (g_ActiveConfig.b3DVision) { // This works, yet the version in the else doesn't. No idea why. xScale = (float)(s_backbuffer_width-1) / (float)(FramebufferManagerBase::LastXfbWidth()-1); yScale = (float)(s_backbuffer_height-1) / (float)(FramebufferManagerBase::LastXfbHeight()-1); } else { xScale = (float)(dst_rect.right - dst_rect.left - 1) / (float)(FramebufferManagerBase::LastXfbWidth()-1); yScale = (float)(dst_rect.bottom - dst_rect.top - 1) / (float)(FramebufferManagerBase::LastXfbHeight()-1); } } } // TODO: remove extern bool g_aspect_wide; void Renderer::UpdateDrawRectangle(int backbuffer_width, int backbuffer_height) { float FloatGLWidth = (float)backbuffer_width; float FloatGLHeight = (float)backbuffer_height; float FloatXOffset = 0; float FloatYOffset = 0; // The rendering window size const float WinWidth = FloatGLWidth; const float WinHeight = FloatGLHeight; // Handle aspect ratio. // Default to auto. bool use16_9 = g_aspect_wide; // Update aspect ratio hack values // Won't take effect until next frame // Don't know if there is a better place for this code so there isn't a 1 frame delay if ( g_ActiveConfig.bWidescreenHack ) { float source_aspect = use16_9 ? (16.0f / 9.0f) : (4.0f / 3.0f); float target_aspect; switch ( g_ActiveConfig.iAspectRatio ) { case ASPECT_FORCE_16_9 : target_aspect = 16.0f / 9.0f; break; case ASPECT_FORCE_4_3 : target_aspect = 4.0f / 3.0f; break; case ASPECT_STRETCH : target_aspect = WinWidth / WinHeight; break; default : // ASPECT_AUTO == no hacking target_aspect = source_aspect; break; } float adjust = source_aspect / target_aspect; if ( adjust > 1 ) { // Vert+ g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1/adjust; } else { // Hor+ g_Config.fAspectRatioHackW = adjust; g_Config.fAspectRatioHackH = 1; } } else { // Hack is disabled g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1; } // Check for force-settings and override. if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_16_9) use16_9 = true; else if (g_ActiveConfig.iAspectRatio == ASPECT_FORCE_4_3) use16_9 = false; if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH) { // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio float Ratio = (WinWidth / WinHeight) / (!use16_9 ? (4.0f / 3.0f) : (16.0f / 9.0f)); // Check if height or width is the limiting factor. If ratio > 1 the picture is too wide and have to limit the width. if (Ratio > 1.0f) { // Scale down and center in the X direction. FloatGLWidth /= Ratio; FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f; } // The window is too high, we have to limit the height else { // Scale down and center in the Y direction. FloatGLHeight *= Ratio; FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f; } } // ----------------------------------------------------------------------- // Crop the picture from 4:3 to 5:4 or from 16:9 to 16:10. // Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset // ------------------ if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop) { float Ratio = !use16_9 ? ((4.0f / 3.0f) / (5.0f / 4.0f)) : (((16.0f / 9.0f) / (16.0f / 10.0f))); // The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is adjusted) float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth; float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight; // The new width and height FloatGLWidth = FloatGLWidth * Ratio; FloatGLHeight = FloatGLHeight * Ratio; // Adjust the X and Y offset FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f); FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f); } int XOffset = (int)(FloatXOffset + 0.5f); int YOffset = (int)(FloatYOffset + 0.5f); int iWhidth = (int)ceil(FloatGLWidth); int iHeight = (int)ceil(FloatGLHeight); iWhidth -= iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders iHeight -= iHeight % 4; target_rc.left = XOffset; target_rc.top = YOffset; target_rc.right = XOffset + iWhidth; target_rc.bottom = YOffset + iHeight; } void Renderer::SetWindowSize(int width, int height) { if (width < 1) width = 1; if (height < 1) height = 1; // Scale the window size by the EFB scale. CalculateTargetScale(width, height, width, height); Host_RequestRenderWindowSize(width, height); } void Renderer::CheckFifoRecording() { bool wasRecording = g_bRecordFifoData; g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording(); if (g_bRecordFifoData) { if (!wasRecording) { // Disable display list caching because the recorder does not handle it s_EnableDLCachingAfterRecording = g_ActiveConfig.bDlistCachingEnable; g_ActiveConfig.bDlistCachingEnable = false; RecordVideoMemory(); } FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd); } else if (wasRecording) { g_ActiveConfig.bDlistCachingEnable = s_EnableDLCachingAfterRecording; } } void Renderer::RecordVideoMemory() { u32 *bpMem = (u32*)&bpmem; u32 cpMem[256]; u32 *xfMem = (u32*)xfmem; u32 *xfRegs = (u32*)&xfregs; memset(cpMem, 0, 256 * 4); FillCPMemoryArray(cpMem); FifoRecorder::GetInstance().SetVideoMemory(bpMem, cpMem, xfMem, xfRegs, sizeof(XFRegisters) / 4); } void UpdateViewport(Matrix44& vpCorrection) { if (xfregs.viewport.wd != 0 && xfregs.viewport.ht != 0) g_renderer->UpdateViewport(vpCorrection); }