#include "VideoCommon/FramebufferShaderGen.h" #include #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VertexShaderGen.h" namespace FramebufferShaderGen { static APIType GetAPIType() { return g_ActiveConfig.backend_info.api_type; } static void EmitUniformBufferDeclaration(std::stringstream& ss) { if (GetAPIType() == APIType::D3D) ss << "cbuffer UBO : register(b0)\n"; else ss << "UBO_BINDING(std140, 1) uniform UBO\n"; } static void EmitSamplerDeclarations(std::stringstream& ss, u32 start = 0, u32 end = 1, bool multisampled = false) { switch (GetAPIType()) { case APIType::D3D: { for (u32 i = start; i < end; i++) { ss << (multisampled ? "Texture2DMSArray" : "Texture2DArray") << " tex" << i << " : register(t" << i << ");\n"; ss << "SamplerState" << " samp" << i << " : register(s" << i << ");\n"; } } break; case APIType::OpenGL: case APIType::Vulkan: { for (u32 i = start; i < end; i++) { ss << "SAMPLER_BINDING(" << i << ") uniform " << (multisampled ? "sampler2DMSArray" : "sampler2DArray") << " samp" << i << ";\n"; } } break; default: break; } } static void EmitSampleTexture(std::stringstream& ss, u32 n, const char* coords) { switch (GetAPIType()) { case APIType::D3D: ss << "tex" << n << ".Sample(samp" << n << ", " << coords << ")"; break; case APIType::OpenGL: case APIType::Vulkan: ss << "texture(samp" << n << ", " << coords << ")"; break; default: break; } } // Emits a texel fetch/load instruction. Assumes that "coords" is a 4-element vector, with z // containing the layer, and w containing the mipmap level. static void EmitTextureLoad(std::stringstream& ss, u32 n, const char* coords) { switch (GetAPIType()) { case APIType::D3D: ss << "tex" << n << ".Load(" << coords << ")"; break; case APIType::OpenGL: case APIType::Vulkan: ss << "texelFetch(samp" << n << ", (" << coords << ").xyz, (" << coords << ").w)"; break; default: break; } } static void EmitVertexMainDeclaration(std::stringstream& ss, u32 num_tex_inputs, u32 num_color_inputs, bool position_input, u32 num_tex_outputs, u32 num_color_outputs, const char* extra_inputs = "") { switch (GetAPIType()) { case APIType::D3D: { ss << "void main("; for (u32 i = 0; i < num_tex_inputs; i++) ss << "in float3 rawtex" << i << " : TEXCOORD" << i << ", "; for (u32 i = 0; i < num_color_inputs; i++) ss << "in float4 rawcolor" << i << " : COLOR" << i << ", "; if (position_input) ss << "in float4 rawpos : POSITION, "; ss << extra_inputs; for (u32 i = 0; i < num_tex_outputs; i++) ss << "out float3 v_tex" << i << " : TEXCOORD" << i << ", "; for (u32 i = 0; i < num_color_outputs; i++) ss << "out float4 v_col" << i << " : COLOR" << i << ", "; ss << "out float4 opos : SV_Position)\n"; } break; case APIType::OpenGL: case APIType::Vulkan: { for (u32 i = 0; i < num_tex_inputs; i++) ss << "ATTRIBUTE_LOCATION(" << (SHADER_TEXTURE0_ATTRIB + i) << ") in float3 rawtex" << i << ";\n"; for (u32 i = 0; i < num_color_inputs; i++) ss << "ATTRIBUTE_LOCATION(" << (SHADER_COLOR0_ATTRIB + i) << ") in float4 rawcolor" << i << ";\n"; if (position_input) ss << "ATTRIBUTE_LOCATION(" << SHADER_POSITION_ATTRIB << ") in float4 rawpos;\n"; if (g_ActiveConfig.backend_info.bSupportsGeometryShaders) { ss << "VARYING_LOCATION(0) out VertexData {\n"; for (u32 i = 0; i < num_tex_outputs; i++) ss << " float3 v_tex" << i << ";\n"; for (u32 i = 0; i < num_color_outputs; i++) ss << " float4 v_col" << i << ";\n"; ss << "};\n"; } else { for (u32 i = 0; i < num_tex_outputs; i++) ss << "VARYING_LOCATION(" << i << ") out float3 v_tex" << i << ";\n"; for (u32 i = 0; i < num_color_outputs; i++) ss << "VARYING_LOCATION(" << (num_tex_inputs + i) << ") out float4 v_col" << i << ";\n"; } ss << "#define opos gl_Position\n"; ss << extra_inputs << "\n"; ss << "void main()\n"; } break; default: break; } } static void EmitPixelMainDeclaration(std::stringstream& ss, u32 num_tex_inputs, u32 num_color_inputs, const char* output_type = "float4", const char* extra_vars = "", bool emit_frag_coord = false) { switch (GetAPIType()) { case APIType::D3D: { ss << "void main("; for (u32 i = 0; i < num_tex_inputs; i++) ss << "in float3 v_tex" << i << " : TEXCOORD" << i << ", "; for (u32 i = 0; i < num_color_inputs; i++) ss << "in float4 v_col" << i << " : COLOR" << i << ", "; if (emit_frag_coord) ss << "in float4 frag_coord : SV_Position, "; ss << extra_vars << "out " << output_type << " ocol0 : SV_Target)\n"; } break; case APIType::OpenGL: case APIType::Vulkan: { if (g_ActiveConfig.backend_info.bSupportsGeometryShaders) { ss << "VARYING_LOCATION(0) in VertexData {\n"; for (u32 i = 0; i < num_tex_inputs; i++) ss << " in float3 v_tex" << i << ";\n"; for (u32 i = 0; i < num_color_inputs; i++) ss << " in float4 v_col" << i << ";\n"; ss << "};\n"; } else { for (u32 i = 0; i < num_tex_inputs; i++) ss << "VARYING_LOCATION(" << i << ") in float3 v_tex" << i << ";\n"; for (u32 i = 0; i < num_color_inputs; i++) ss << "VARYING_LOCATION(" << (num_tex_inputs + i) << ") in float4 v_col" << i << ";\n"; } ss << "FRAGMENT_OUTPUT_LOCATION(0) out " << output_type << " ocol0;\n"; ss << extra_vars << "\n"; if (emit_frag_coord) ss << "#define frag_coord gl_FragCoord\n"; ss << "void main()\n"; } break; default: break; } } std::string GenerateScreenQuadVertexShader() { std::stringstream ss; EmitVertexMainDeclaration(ss, 0, 0, false, 1, 0, GetAPIType() == APIType::D3D ? "in uint id : SV_VertexID, " : "#define id gl_VertexID\n"); ss << "{\n"; ss << " v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n"; ss << " opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n"; // NDC space is flipped in Vulkan. We also flip in GL so that (0,0) is in the lower-left. if (GetAPIType() == APIType::Vulkan || GetAPIType() == APIType::OpenGL) ss << " opos.y = -opos.y;\n"; ss << "}\n"; return ss.str(); } std::string GeneratePassthroughGeometryShader(u32 num_tex, u32 num_colors) { std::stringstream ss; if (GetAPIType() == APIType::D3D) { ss << "struct VS_OUTPUT\n"; ss << "{\n"; for (u32 i = 0; i < num_tex; i++) ss << " float3 tex" << i << " : TEXCOORD" << i << ";\n"; for (u32 i = 0; i < num_colors; i++) ss << " float4 color" << i << " : COLOR" << i << ";\n"; ss << " float4 position : SV_Position;\n"; ss << "};\n"; ss << "struct GS_OUTPUT\n"; ss << "{"; for (u32 i = 0; i < num_tex; i++) ss << " float3 tex" << i << " : TEXCOORD" << i << ";\n"; for (u32 i = 0; i < num_colors; i++) ss << " float4 color" << i << " : COLOR" << i << ";\n"; ss << " float4 position : SV_Position;\n"; ss << " uint slice : SV_RenderTargetArrayIndex;\n"; ss << "};\n\n"; ss << "[maxvertexcount(6)]\n"; ss << "void main(triangle VS_OUTPUT vso[3], inout TriangleStream output)\n"; ss << "{\n"; ss << " for (uint slice = 0; slice < 2u; slice++)\n"; ss << " {\n"; ss << " for (int i = 0; i < 3; i++)\n"; ss << " {\n"; ss << " GS_OUTPUT gso;\n"; ss << " gso.position = vso[i].position;\n"; for (u32 i = 0; i < num_tex; i++) ss << " gso.tex" << i << " = float3(vso[i].tex" << i << ".xy, float(slice));\n"; for (u32 i = 0; i < num_colors; i++) ss << " gso.color" << i << " = vso[i].color" << i << ";\n"; ss << " gso.slice = slice;\n"; ss << " output.Append(gso);\n"; ss << " }\n"; ss << " output.RestartStrip();\n"; ss << " }\n"; ss << "}\n"; } else if (GetAPIType() == APIType::OpenGL || GetAPIType() == APIType::Vulkan) { ss << "layout(triangles) in;\n"; ss << "layout(triangle_strip, max_vertices = 6) out;\n"; if (num_tex > 0 || num_colors > 0) { ss << "VARYING_LOCATION(0) in VertexData {\n"; for (u32 i = 0; i < num_tex; i++) ss << " float3 v_tex" << i << ";\n"; for (u32 i = 0; i < num_colors; i++) ss << " float4 v_col" << i << ";\n"; ss << "} v_in[];\n"; ss << "VARYING_LOCATION(0) out VertexData {\n"; for (u32 i = 0; i < num_tex; i++) ss << " float3 v_tex" << i << ";\n"; for (u32 i = 0; i < num_colors; i++) ss << " float4 v_col" << i << ";\n"; ss << "} v_out;\n"; } ss << "\n"; ss << "void main()\n"; ss << "{\n"; ss << " for (int j = 0; j < 2; j++)\n"; ss << " {\n"; ss << " gl_Layer = j;\n"; // We have to explicitly unroll this loop otherwise the GL compiler gets cranky. for (u32 v = 0; v < 3; v++) { ss << " gl_Position = gl_in[" << v << "].gl_Position;\n"; for (u32 i = 0; i < num_tex; i++) ss << " v_out.v_tex" << i << " = float3(v_in[" << v << "].v_tex" << i << ".xy, float(j));\n"; for (u32 i = 0; i < num_colors; i++) ss << " v_out.v_col" << i << " = v_in[" << v << "].v_col" << i << ";\n"; ss << " EmitVertex();\n\n"; } ss << " EndPrimitive();\n"; ss << " }\n"; ss << "}\n"; } return ss.str(); } std::string GenerateTextureCopyVertexShader() { std::stringstream ss; EmitUniformBufferDeclaration(ss); ss << "{"; ss << " float2 src_offset;\n"; ss << " float2 src_size;\n"; ss << "};\n\n"; EmitVertexMainDeclaration(ss, 0, 0, false, 1, 0, GetAPIType() == APIType::D3D ? "in uint id : SV_VertexID, " : "#define id gl_VertexID"); ss << "{\n"; ss << " v_tex0 = float3(float((id << 1) & 2), float(id & 2), 0.0f);\n"; ss << " opos = float4(v_tex0.xy * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), 0.0f, 1.0f);\n"; ss << " v_tex0 = float3(src_offset + (src_size * v_tex0.xy), 0.0f);\n"; // NDC space is flipped in Vulkan. We also flip in GL so that (0,0) is in the lower-left. if (GetAPIType() == APIType::Vulkan || GetAPIType() == APIType::OpenGL) ss << " opos.y = -opos.y;\n"; ss << "}\n"; return ss.str(); } std::string GenerateTextureCopyPixelShader() { std::stringstream ss; EmitSamplerDeclarations(ss, 0, 1, false); EmitPixelMainDeclaration(ss, 1, 0); ss << "{\n"; ss << " ocol0 = "; EmitSampleTexture(ss, 0, "v_tex0"); ss << ";\n"; ss << "}\n"; return ss.str(); } std::string GenerateColorPixelShader() { std::stringstream ss; EmitPixelMainDeclaration(ss, 0, 1); ss << "{\n"; ss << " ocol0 = v_col0;\n"; ss << "}\n"; return ss.str(); } std::string GenerateResolveDepthPixelShader(u32 samples) { std::stringstream ss; EmitSamplerDeclarations(ss, 0, 1, true); EmitPixelMainDeclaration(ss, 1, 0, "float", GetAPIType() == APIType::D3D ? "in float4 ipos : SV_Position, " : ""); ss << "{\n"; ss << " int layer = int(v_tex0.z);\n"; if (GetAPIType() == APIType::D3D) ss << " int3 coords = int3(int2(ipos.xy), layer);\n"; else ss << " int3 coords = int3(int2(gl_FragCoord.xy), layer);\n"; // Take the minimum of all depth samples. if (GetAPIType() == APIType::D3D) ss << " ocol0 = tex0.Load(coords, 0).r;\n"; else ss << " ocol0 = texelFetch(samp0, coords, 0).r;\n"; ss << " for (int i = 1; i < " << samples << "; i++)\n"; if (GetAPIType() == APIType::D3D) ss << " ocol0 = min(ocol0, tex0.Load(coords, i).r);\n"; else ss << " ocol0 = min(ocol0, texelFetch(samp0, coords, i).r);\n"; ss << "}\n"; return ss.str(); } std::string GenerateClearVertexShader() { std::stringstream ss; EmitUniformBufferDeclaration(ss); ss << "{\n"; ss << " float4 clear_color;\n"; ss << " float clear_depth;\n"; ss << "};\n"; EmitVertexMainDeclaration(ss, 0, 0, false, 0, 1, GetAPIType() == APIType::D3D ? "in uint id : SV_VertexID, " : "#define id gl_VertexID\n"); ss << "{\n"; ss << " float2 coord = float2(float((id << 1) & 2), float(id & 2));\n"; ss << " opos = float4(coord * float2(2.0f, -2.0f) + float2(-1.0f, 1.0f), clear_depth, 1.0f);\n"; ss << " v_col0 = clear_color;\n"; // NDC space is flipped in Vulkan if (GetAPIType() == APIType::Vulkan) ss << " opos.y = -opos.y;\n"; ss << "}\n"; return ss.str(); } std::string GenerateEFBPokeVertexShader() { std::stringstream ss; EmitVertexMainDeclaration(ss, 0, 1, true, 0, 1); ss << "{\n"; ss << " v_col0 = rawcolor0;\n"; ss << " opos = float4(rawpos.xyz, 1.0f);\n"; if (g_ActiveConfig.backend_info.bSupportsLargePoints) ss << " gl_PointSize = rawpos.w;\n"; // NDC space is flipped in Vulkan. if (GetAPIType() == APIType::Vulkan) ss << " opos.y = -opos.y;\n"; ss << "}\n"; return ss.str(); } std::string GenerateFormatConversionShader(EFBReinterpretType convtype, u32 samples) { std::stringstream ss; EmitSamplerDeclarations(ss, 0, 1, samples > 1); EmitPixelMainDeclaration( ss, 1, 0, "float4", GetAPIType() == APIType::D3D ? (g_ActiveConfig.bSSAA ? "in float4 ipos : SV_Position, in uint isample : SV_SampleIndex, " : "in float4 ipos : SV_Position, ") : ""); ss << "{\n"; ss << " int layer = int(v_tex0.z);\n"; if (GetAPIType() == APIType::D3D) ss << " int3 coords = int3(int2(ipos.xy), layer);\n"; else ss << " int3 coords = int3(int2(gl_FragCoord.xy), layer);\n"; if (samples == 1) { // No MSAA at all. if (GetAPIType() == APIType::D3D) ss << " float4 val = tex0.Load(int4(coords, 0));\n"; else ss << " float4 val = texelFetch(samp0, coords, 0);\n"; } else if (g_ActiveConfig.bSSAA) { // Sample shading, shader runs once per sample if (GetAPIType() == APIType::D3D) ss << " float4 val = tex0.Load(coords, isample);"; else ss << " float4 val = texelFetch(samp0, coords, gl_SampleID);"; } else { // MSAA without sample shading, average out all samples. ss << " float4 val = float4(0.0f, 0.0f, 0.0f, 0.0f);\n"; ss << " for (int i = 0; i < " << samples << "; i++)\n"; if (GetAPIType() == APIType::D3D) ss << " val += tex0.Load(coords, i);\n"; else ss << " val += texelFetch(samp0, coords, i);\n"; ss << " val /= float(" << samples << ");\n"; } switch (convtype) { case EFBReinterpretType::RGB8ToRGBA6: ss << " int4 src8 = int4(round(val * 255.f));\n"; ss << " int4 dst6;\n"; ss << " dst6.r = src8.r >> 2;\n"; ss << " dst6.g = ((src8.r & 0x3) << 4) | (src8.g >> 4);\n"; ss << " dst6.b = ((src8.g & 0xF) << 2) | (src8.b >> 6);\n"; ss << " dst6.a = src8.b & 0x3F;\n"; ss << " ocol0 = float4(dst6) / 63.f;\n"; break; case EFBReinterpretType::RGB8ToRGB565: ss << " ocol0 = val;\n"; break; case EFBReinterpretType::RGBA6ToRGB8: ss << " int4 src6 = int4(round(val * 63.f));\n"; ss << " int4 dst8;\n"; ss << " dst8.r = (src6.r << 2) | (src6.g >> 4);\n"; ss << " dst8.g = ((src6.g & 0xF) << 4) | (src6.b >> 2);\n"; ss << " dst8.b = ((src6.b & 0x3) << 6) | src6.a;\n"; ss << " dst8.a = 255;\n"; ss << " ocol0 = float4(dst8) / 255.f;\n"; break; case EFBReinterpretType::RGBA6ToRGB565: ss << " ocol0 = val;\n"; break; case EFBReinterpretType::RGB565ToRGB8: ss << " ocol0 = val;\n"; break; case EFBReinterpretType::RGB565ToRGBA6: // ss << " ocol0 = val;\n"; break; } ss << "}\n"; return ss.str(); } std::string GenerateTextureReinterpretShader(TextureFormat from_format, TextureFormat to_format) { std::stringstream ss; EmitSamplerDeclarations(ss, 0, 1, false); EmitPixelMainDeclaration(ss, 1, 0, "float4", "", true); ss << "{\n"; ss << " int layer = int(v_tex0.z);\n"; ss << " int4 coords = int4(int2(frag_coord.xy), layer, 0);\n"; // Convert to a 32-bit value encompassing all channels, filling the most significant bits with // zeroes. ss << " uint raw_value;\n"; switch (from_format) { case TextureFormat::I8: case TextureFormat::C8: { ss << " float4 temp_value = "; EmitTextureLoad(ss, 0, "coords"); ss << ";\n"; ss << " raw_value = uint(temp_value.r * 255.0);\n"; } break; case TextureFormat::IA8: { ss << " float4 temp_value = "; EmitTextureLoad(ss, 0, "coords"); ss << ";\n"; ss << " raw_value = uint(temp_value.r * 255.0) | (uint(temp_value.a * 255.0) << 8);\n"; } break; case TextureFormat::IA4: { ss << " float4 temp_value = "; EmitTextureLoad(ss, 0, "coords"); ss << ";\n"; ss << " raw_value = uint(temp_value.r * 15.0) | (uint(temp_value.a * 15.0) << 4);\n"; } break; case TextureFormat::RGB565: { ss << " float4 temp_value = "; EmitTextureLoad(ss, 0, "coords"); ss << ";\n"; ss << " raw_value = uint(temp_value.b * 31.0) | (uint(temp_value.g * 63.0) << 5) |\n"; ss << " (uint(temp_value.r * 31.0) << 11);\n"; } break; case TextureFormat::RGB5A3: { ss << " float4 temp_value = "; EmitTextureLoad(ss, 0, "coords"); ss << ";\n"; // 0.8784 = 224 / 255 which is the maximum alpha value that can be represented in 3 bits ss << " if (temp_value.a > 0.878f) {\n"; ss << " raw_value = (uint(temp_value.b * 31.0)) | (uint(temp_value.g * 31.0) << 5) |\n"; ss << " (uint(temp_value.r * 31.0) << 10) | 0x8000u;\n"; ss << " } else {\n"; ss << " raw_value = (uint(temp_value.b * 15.0)) | (uint(temp_value.g * 15.0) << 4) |\n"; ss << " (uint(temp_value.r * 15.0) << 8) | (uint(temp_value.a * 7.0) << 12);\n"; ss << " }\n"; } break; } // Now convert it to its new representation. switch (to_format) { case TextureFormat::I8: case TextureFormat::C8: { ss << " ocol0.rgba = (float(raw_value & 0xFFu) / 255.0).rrrr;\n"; } break; case TextureFormat::IA8: { ss << " ocol0.rgb = (float(raw_value & 0xFFu) / 255.0).rrr;\n"; ss << " ocol0.a = float((raw_value >> 8) & 0xFFu) / 255.0;\n"; } break; case TextureFormat::IA4: { ss << " ocol0.rgb = (float(raw_value & 0xFu) / 15.0).rrr;\n"; ss << " ocol0.a = float((raw_value >> 4) & 0xFu) / 15.0;\n"; } break; case TextureFormat::RGB565: { ss << " ocol0 = float4(float((raw_value >> 10) & 0x1Fu) / 31.0\n"; ss << " float((raw_value >> 5) & 0x1Fu) / 31.0,\n"; ss << " float(raw_value & 0x1Fu) / 31.0,, 1.0);\n"; } break; case TextureFormat::RGB5A3: { ss << " if ((raw_value & 0x8000u) != 0u) {\n"; ss << " ocol0 = float4(float((raw_value >> 10) & 0x1Fu) / 31.0,\n"; ss << " float((raw_value >> 5) & 0x1Fu) / 31.0,\n"; ss << " float(raw_value & 0x1Fu) / 31.0, 1.0);\n"; ss << " } else {\n"; ss << " ocol0 = float4(float((raw_value >> 8) & 0x0Fu) / 15.0,\n"; ss << " float((raw_value >> 4) & 0x0Fu) / 15.0,\n"; ss << " float(raw_value & 0x0Fu) / 15.0,\n"; ss << " float((raw_value >> 12) & 0x07u) / 7.0);\n"; ss << " }\n"; } break; } ss << "}\n"; return ss.str(); } } // namespace FramebufferShaderGen