// Copyright 2014 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoBackends/D3D/D3DState.h" #include #include #include "Common/BitSet.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "VideoBackends/D3D/D3DBase.h" #include "VideoBackends/D3D/DXTexture.h" #include "VideoBackends/D3DCommon/D3DCommon.h" #include "VideoCommon/VideoConfig.h" namespace DX11 { namespace D3D { std::unique_ptr stateman; StateManager::StateManager() = default; StateManager::~StateManager() = default; void StateManager::Apply() { if (!m_dirtyFlags) return; // Framebuffer changes must occur before texture changes, otherwise the D3D runtime messes with // our bindings and sets them to null to prevent hazards. if (m_dirtyFlags & DirtyFlag_Framebuffer) { if (g_ActiveConfig.backend_info.bSupportsBBox) { D3D::context->OMSetRenderTargetsAndUnorderedAccessViews( m_pending.framebuffer->GetNumRTVs(), m_pending.use_integer_rtv ? m_pending.framebuffer->GetIntegerRTVArray() : m_pending.framebuffer->GetRTVArray(), m_pending.framebuffer->GetDSV(), 2, 1, &m_pending.uav, nullptr); } else { D3D::context->OMSetRenderTargets(m_pending.framebuffer->GetNumRTVs(), m_pending.use_integer_rtv ? m_pending.framebuffer->GetIntegerRTVArray() : m_pending.framebuffer->GetRTVArray(), m_pending.framebuffer->GetDSV()); } m_current.framebuffer = m_pending.framebuffer; m_current.uav = m_pending.uav; m_current.use_integer_rtv = m_pending.use_integer_rtv; } u32 dirtyConstants = m_dirtyFlags & (DirtyFlag_PixelConstants | DirtyFlag_VertexConstants | DirtyFlag_GeometryConstants); u32 dirtyShaders = m_dirtyFlags & (DirtyFlag_PixelShader | DirtyFlag_VertexShader | DirtyFlag_GeometryShader); u32 dirtyBuffers = m_dirtyFlags & (DirtyFlag_VertexBuffer | DirtyFlag_IndexBuffer); if (dirtyConstants) { if (m_current.pixelConstants[0] != m_pending.pixelConstants[0] || m_current.pixelConstants[1] != m_pending.pixelConstants[1]) { D3D::context->PSSetConstantBuffers(0, m_pending.pixelConstants[1] ? 2 : 1, m_pending.pixelConstants.data()); m_current.pixelConstants[0] = m_pending.pixelConstants[0]; m_current.pixelConstants[1] = m_pending.pixelConstants[1]; } if (m_current.vertexConstants != m_pending.vertexConstants) { D3D::context->VSSetConstantBuffers(0, 1, &m_pending.vertexConstants); m_current.vertexConstants = m_pending.vertexConstants; } if (m_current.geometryConstants != m_pending.geometryConstants) { D3D::context->GSSetConstantBuffers(0, 1, &m_pending.geometryConstants); m_current.geometryConstants = m_pending.geometryConstants; } } if (dirtyBuffers || (m_dirtyFlags & DirtyFlag_InputAssembler)) { if (m_current.vertexBuffer != m_pending.vertexBuffer || m_current.vertexBufferStride != m_pending.vertexBufferStride || m_current.vertexBufferOffset != m_pending.vertexBufferOffset) { D3D::context->IASetVertexBuffers(0, 1, &m_pending.vertexBuffer, &m_pending.vertexBufferStride, &m_pending.vertexBufferOffset); m_current.vertexBuffer = m_pending.vertexBuffer; m_current.vertexBufferStride = m_pending.vertexBufferStride; m_current.vertexBufferOffset = m_pending.vertexBufferOffset; } if (m_current.indexBuffer != m_pending.indexBuffer) { D3D::context->IASetIndexBuffer(m_pending.indexBuffer, DXGI_FORMAT_R16_UINT, 0); m_current.indexBuffer = m_pending.indexBuffer; } if (m_current.topology != m_pending.topology) { D3D::context->IASetPrimitiveTopology(m_pending.topology); m_current.topology = m_pending.topology; } if (m_current.inputLayout != m_pending.inputLayout) { D3D::context->IASetInputLayout(m_pending.inputLayout); m_current.inputLayout = m_pending.inputLayout; } } if (dirtyShaders) { if (m_current.pixelShader != m_pending.pixelShader) { D3D::context->PSSetShader(m_pending.pixelShader, nullptr, 0); m_current.pixelShader = m_pending.pixelShader; } if (m_current.vertexShader != m_pending.vertexShader) { D3D::context->VSSetShader(m_pending.vertexShader, nullptr, 0); m_current.vertexShader = m_pending.vertexShader; } if (m_current.geometryShader != m_pending.geometryShader) { D3D::context->GSSetShader(m_pending.geometryShader, nullptr, 0); m_current.geometryShader = m_pending.geometryShader; } } if (m_dirtyFlags & DirtyFlag_BlendState) { D3D::context->OMSetBlendState(m_pending.blendState, nullptr, 0xFFFFFFFF); m_current.blendState = m_pending.blendState; } if (m_dirtyFlags & DirtyFlag_DepthState) { D3D::context->OMSetDepthStencilState(m_pending.depthState, 0); m_current.depthState = m_pending.depthState; } if (m_dirtyFlags & DirtyFlag_RasterizerState) { D3D::context->RSSetState(m_pending.rasterizerState); m_current.rasterizerState = m_pending.rasterizerState; } ApplyTextures(); m_dirtyFlags = 0; } void StateManager::ApplyTextures() { const int textureMaskShift = Common::LeastSignificantSetBit((u32)DirtyFlag_Texture0); const int samplerMaskShift = Common::LeastSignificantSetBit((u32)DirtyFlag_Sampler0); u32 dirtyTextures = (m_dirtyFlags & (DirtyFlag_Texture0 | DirtyFlag_Texture1 | DirtyFlag_Texture2 | DirtyFlag_Texture3 | DirtyFlag_Texture4 | DirtyFlag_Texture5 | DirtyFlag_Texture6 | DirtyFlag_Texture7)) >> textureMaskShift; u32 dirtySamplers = (m_dirtyFlags & (DirtyFlag_Sampler0 | DirtyFlag_Sampler1 | DirtyFlag_Sampler2 | DirtyFlag_Sampler3 | DirtyFlag_Sampler4 | DirtyFlag_Sampler5 | DirtyFlag_Sampler6 | DirtyFlag_Sampler7)) >> samplerMaskShift; while (dirtyTextures) { const int index = Common::LeastSignificantSetBit(dirtyTextures); if (m_current.textures[index] != m_pending.textures[index]) { D3D::context->PSSetShaderResources(index, 1, &m_pending.textures[index]); m_current.textures[index] = m_pending.textures[index]; } dirtyTextures &= ~(1 << index); } while (dirtySamplers) { const int index = Common::LeastSignificantSetBit(dirtySamplers); if (m_current.samplers[index] != m_pending.samplers[index]) { D3D::context->PSSetSamplers(index, 1, &m_pending.samplers[index]); m_current.samplers[index] = m_pending.samplers[index]; } dirtySamplers &= ~(1 << index); } } u32 StateManager::UnsetTexture(ID3D11ShaderResourceView* srv) { u32 mask = 0; for (u32 index = 0; index < 8; ++index) { if (m_current.textures[index] == srv) { SetTexture(index, nullptr); mask |= 1 << index; } } return mask; } void StateManager::SetTextureByMask(u32 textureSlotMask, ID3D11ShaderResourceView* srv) { while (textureSlotMask) { const int index = Common::LeastSignificantSetBit(textureSlotMask); SetTexture(index, srv); textureSlotMask &= ~(1 << index); } } void StateManager::SetComputeUAV(ID3D11UnorderedAccessView* uav) { if (m_compute_image == uav) return; m_compute_image = uav; D3D::context->CSSetUnorderedAccessViews(0, 1, &uav, nullptr); } void StateManager::SetComputeShader(ID3D11ComputeShader* shader) { if (m_compute_shader == shader) return; m_compute_shader = shader; D3D::context->CSSetShader(shader, nullptr, 0); } void StateManager::SyncComputeBindings() { if (m_compute_constants != m_pending.pixelConstants[0]) { m_compute_constants = m_pending.pixelConstants[0]; D3D::context->CSSetConstantBuffers(0, 1, &m_compute_constants); } for (u32 start = 0; start < static_cast(m_compute_textures.size());) { if (m_compute_textures[start] == m_pending.textures[start]) { start++; continue; } m_compute_textures[start] = m_pending.textures[start]; u32 end = start + 1; for (; end < static_cast(m_compute_textures.size()); end++) { if (m_compute_textures[end] == m_pending.textures[end]) break; m_compute_textures[end] = m_pending.textures[end]; } D3D::context->CSSetShaderResources(start, end - start, &m_compute_textures[start]); start = end; } for (u32 start = 0; start < static_cast(m_compute_samplers.size());) { if (m_compute_samplers[start] == m_pending.samplers[start]) { start++; continue; } m_compute_samplers[start] = m_pending.samplers[start]; u32 end = start + 1; for (; end < static_cast(m_compute_samplers.size()); end++) { if (m_compute_samplers[end] == m_pending.samplers[end]) break; m_compute_samplers[end] = m_pending.samplers[end]; } D3D::context->CSSetSamplers(start, end - start, &m_compute_samplers[start]); start = end; } } } // namespace D3D StateCache::~StateCache() = default; ID3D11SamplerState* StateCache::Get(SamplerState state) { std::lock_guard guard(m_lock); auto it = m_sampler.find(state); if (it != m_sampler.end()) return it->second.Get(); D3D11_SAMPLER_DESC sampdc = CD3D11_SAMPLER_DESC(CD3D11_DEFAULT()); if (state.tm0.mipmap_filter == FilterMode::Linear) { if (state.tm0.min_filter == FilterMode::Linear) sampdc.Filter = (state.tm0.mag_filter == FilterMode::Linear) ? D3D11_FILTER_MIN_MAG_MIP_LINEAR : D3D11_FILTER_MIN_LINEAR_MAG_POINT_MIP_LINEAR; else sampdc.Filter = (state.tm0.mag_filter == FilterMode::Linear) ? D3D11_FILTER_MIN_POINT_MAG_MIP_LINEAR : D3D11_FILTER_MIN_MAG_POINT_MIP_LINEAR; } else { if (state.tm0.min_filter == FilterMode::Linear) sampdc.Filter = (state.tm0.mag_filter == FilterMode::Linear) ? D3D11_FILTER_MIN_MAG_LINEAR_MIP_POINT : D3D11_FILTER_MIN_LINEAR_MAG_MIP_POINT; else sampdc.Filter = (state.tm0.mag_filter == FilterMode::Linear) ? D3D11_FILTER_MIN_POINT_MAG_LINEAR_MIP_POINT : D3D11_FILTER_MIN_MAG_MIP_POINT; } static constexpr std::array address_modes = { {D3D11_TEXTURE_ADDRESS_CLAMP, D3D11_TEXTURE_ADDRESS_WRAP, D3D11_TEXTURE_ADDRESS_MIRROR}}; sampdc.AddressU = address_modes[static_cast(state.tm0.wrap_u.Value())]; sampdc.AddressV = address_modes[static_cast(state.tm0.wrap_v.Value())]; sampdc.MaxLOD = state.tm1.max_lod / 16.f; sampdc.MinLOD = state.tm1.min_lod / 16.f; sampdc.MipLODBias = state.tm0.lod_bias / 256.f; if (state.tm0.anisotropic_filtering) { sampdc.Filter = D3D11_FILTER_ANISOTROPIC; sampdc.MaxAnisotropy = 1u << g_ActiveConfig.iMaxAnisotropy; } ComPtr res; HRESULT hr = D3D::device->CreateSamplerState(&sampdc, res.GetAddressOf()); CHECK(SUCCEEDED(hr), "Creating D3D sampler state failed"); return m_sampler.emplace(state, std::move(res)).first->second.Get(); } ID3D11BlendState* StateCache::Get(BlendingState state) { std::lock_guard guard(m_lock); auto it = m_blend.find(state.hex); if (it != m_blend.end()) return it->second.Get(); if (state.logicopenable && g_ActiveConfig.backend_info.bSupportsLogicOp) { D3D11_BLEND_DESC1 desc = {}; D3D11_RENDER_TARGET_BLEND_DESC1& tdesc = desc.RenderTarget[0]; if (state.colorupdate) tdesc.RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE; else tdesc.RenderTargetWriteMask = 0; if (state.alphaupdate) tdesc.RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_ALPHA; static constexpr std::array logic_ops = { {D3D11_LOGIC_OP_CLEAR, D3D11_LOGIC_OP_AND, D3D11_LOGIC_OP_AND_REVERSE, D3D11_LOGIC_OP_COPY, D3D11_LOGIC_OP_AND_INVERTED, D3D11_LOGIC_OP_NOOP, D3D11_LOGIC_OP_XOR, D3D11_LOGIC_OP_OR, D3D11_LOGIC_OP_NOR, D3D11_LOGIC_OP_EQUIV, D3D11_LOGIC_OP_INVERT, D3D11_LOGIC_OP_OR_REVERSE, D3D11_LOGIC_OP_COPY_INVERTED, D3D11_LOGIC_OP_OR_INVERTED, D3D11_LOGIC_OP_NAND, D3D11_LOGIC_OP_SET}}; tdesc.LogicOpEnable = TRUE; tdesc.LogicOp = logic_ops[u32(state.logicmode.Value())]; ComPtr res; HRESULT hr = D3D::device1->CreateBlendState1(&desc, res.GetAddressOf()); if (SUCCEEDED(hr)) { return m_blend.emplace(state.hex, std::move(res)).first->second.Get(); } WARN_LOG_FMT(VIDEO, "Creating D3D blend state failed with an error: {:08X}", hr); } D3D11_BLEND_DESC desc = {}; desc.AlphaToCoverageEnable = FALSE; desc.IndependentBlendEnable = FALSE; D3D11_RENDER_TARGET_BLEND_DESC& tdesc = desc.RenderTarget[0]; tdesc.BlendEnable = state.blendenable; if (state.colorupdate) tdesc.RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_RED | D3D11_COLOR_WRITE_ENABLE_GREEN | D3D11_COLOR_WRITE_ENABLE_BLUE; else tdesc.RenderTargetWriteMask = 0; if (state.alphaupdate) tdesc.RenderTargetWriteMask |= D3D11_COLOR_WRITE_ENABLE_ALPHA; const bool use_dual_source = state.usedualsrc; const std::array src_factors = { {D3D11_BLEND_ZERO, D3D11_BLEND_ONE, D3D11_BLEND_DEST_COLOR, D3D11_BLEND_INV_DEST_COLOR, use_dual_source ? D3D11_BLEND_SRC1_ALPHA : D3D11_BLEND_SRC_ALPHA, use_dual_source ? D3D11_BLEND_INV_SRC1_ALPHA : D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA}}; const std::array dst_factors = { {D3D11_BLEND_ZERO, D3D11_BLEND_ONE, D3D11_BLEND_SRC_COLOR, D3D11_BLEND_INV_SRC_COLOR, use_dual_source ? D3D11_BLEND_SRC1_ALPHA : D3D11_BLEND_SRC_ALPHA, use_dual_source ? D3D11_BLEND_INV_SRC1_ALPHA : D3D11_BLEND_INV_SRC_ALPHA, D3D11_BLEND_DEST_ALPHA, D3D11_BLEND_INV_DEST_ALPHA}}; tdesc.SrcBlend = src_factors[u32(state.srcfactor.Value())]; tdesc.SrcBlendAlpha = src_factors[u32(state.srcfactoralpha.Value())]; tdesc.DestBlend = dst_factors[u32(state.dstfactor.Value())]; tdesc.DestBlendAlpha = dst_factors[u32(state.dstfactoralpha.Value())]; tdesc.BlendOp = state.subtract ? D3D11_BLEND_OP_REV_SUBTRACT : D3D11_BLEND_OP_ADD; tdesc.BlendOpAlpha = state.subtractAlpha ? D3D11_BLEND_OP_REV_SUBTRACT : D3D11_BLEND_OP_ADD; ComPtr res; HRESULT hr = D3D::device->CreateBlendState(&desc, res.GetAddressOf()); CHECK(SUCCEEDED(hr), "Creating D3D blend state failed"); return m_blend.emplace(state.hex, std::move(res)).first->second.Get(); } ID3D11RasterizerState* StateCache::Get(RasterizationState state) { std::lock_guard guard(m_lock); auto it = m_raster.find(state.hex); if (it != m_raster.end()) return it->second.Get(); static constexpr std::array cull_modes = { {D3D11_CULL_NONE, D3D11_CULL_BACK, D3D11_CULL_FRONT, D3D11_CULL_BACK}}; D3D11_RASTERIZER_DESC desc = {}; desc.FillMode = D3D11_FILL_SOLID; desc.CullMode = cull_modes[u32(state.cullmode.Value())]; desc.ScissorEnable = TRUE; ComPtr res; HRESULT hr = D3D::device->CreateRasterizerState(&desc, res.GetAddressOf()); CHECK(SUCCEEDED(hr), "Creating D3D rasterizer state failed"); return m_raster.emplace(state.hex, std::move(res)).first->second.Get(); } ID3D11DepthStencilState* StateCache::Get(DepthState state) { std::lock_guard guard(m_lock); auto it = m_depth.find(state.hex); if (it != m_depth.end()) return it->second.Get(); D3D11_DEPTH_STENCIL_DESC depthdc = CD3D11_DEPTH_STENCIL_DESC(CD3D11_DEFAULT()); depthdc.DepthEnable = TRUE; depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; depthdc.DepthFunc = D3D11_COMPARISON_GREATER; depthdc.StencilEnable = FALSE; depthdc.StencilReadMask = D3D11_DEFAULT_STENCIL_READ_MASK; depthdc.StencilWriteMask = D3D11_DEFAULT_STENCIL_WRITE_MASK; // Less/greater are swapped due to inverted depth. const D3D11_COMPARISON_FUNC d3dCmpFuncs[8] = { D3D11_COMPARISON_NEVER, D3D11_COMPARISON_GREATER, D3D11_COMPARISON_EQUAL, D3D11_COMPARISON_GREATER_EQUAL, D3D11_COMPARISON_LESS, D3D11_COMPARISON_NOT_EQUAL, D3D11_COMPARISON_LESS_EQUAL, D3D11_COMPARISON_ALWAYS}; if (state.testenable) { depthdc.DepthEnable = TRUE; depthdc.DepthWriteMask = state.updateenable ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO; depthdc.DepthFunc = d3dCmpFuncs[u32(state.func.Value())]; } else { // if the test is disabled write is disabled too depthdc.DepthEnable = FALSE; depthdc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ZERO; } ComPtr res; HRESULT hr = D3D::device->CreateDepthStencilState(&depthdc, res.GetAddressOf()); CHECK(SUCCEEDED(hr), "Creating D3D depth stencil state failed"); return m_depth.emplace(state.hex, std::move(res)).first->second.Get(); } D3D11_PRIMITIVE_TOPOLOGY StateCache::GetPrimitiveTopology(PrimitiveType primitive) { static constexpr std::array primitives = { {D3D11_PRIMITIVE_TOPOLOGY_POINTLIST, D3D11_PRIMITIVE_TOPOLOGY_LINELIST, D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST, D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP}}; return primitives[static_cast(primitive)]; } } // namespace DX11