// Copyright 2016 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/CoreTiming.h" #include "Core/PowerPC/PowerPC.h" // Numbers are chosen randomly to make sure the correct one is given. static constexpr std::array CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals static std::bitset s_callbacks_ran_flags; static u64 s_expected_callback = 0; static s64 s_lateness = 0; template void CallbackTemplate(u64 userdata, s64 lateness) { static_assert(IDX < CB_IDS.size(), "IDX out of range"); s_callbacks_ran_flags.set(IDX); EXPECT_EQ(CB_IDS[IDX], userdata); EXPECT_EQ(CB_IDS[IDX], s_expected_callback); EXPECT_EQ(s_lateness, lateness); } class ScopeInit final { public: ScopeInit() { Core::DeclareAsCPUThread(); SConfig::Init(); PowerPC::Init(PowerPC::CORE_INTERPRETER); CoreTiming::Init(); } ~ScopeInit() { CoreTiming::Shutdown(); PowerPC::Shutdown(); SConfig::Shutdown(); Core::UndeclareAsCPUThread(); } }; void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0, int cpu_downcount = 0) { s_callbacks_ran_flags = 0; s_expected_callback = CB_IDS[idx]; s_lateness = expected_lateness; PowerPC::ppcState.downcount = cpu_downcount; // Pretend we executed X cycles of instructions. CoreTiming::Advance(); EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags); EXPECT_EQ(downcount, PowerPC::ppcState.downcount); } TEST(CoreTiming, BasicOrder) { ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); // Enter slice 0 CoreTiming::Advance(); // D -> B -> C -> A -> E CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); EXPECT_EQ(1000, PowerPC::ppcState.downcount); CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]); EXPECT_EQ(500, PowerPC::ppcState.downcount); CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]); EXPECT_EQ(500, PowerPC::ppcState.downcount); CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]); EXPECT_EQ(100, PowerPC::ppcState.downcount); CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]); EXPECT_EQ(100, PowerPC::ppcState.downcount); AdvanceAndCheck(3, 400); AdvanceAndCheck(1, 300); AdvanceAndCheck(2, 200); AdvanceAndCheck(0, 200); AdvanceAndCheck(4, MAX_SLICE_LENGTH); } namespace SharedSlotTest { static unsigned int s_counter = 0; template void FifoCallback(u64 userdata, s64 lateness) { static_assert(ID < CB_IDS.size(), "ID out of range"); s_callbacks_ran_flags.set(ID); EXPECT_EQ(CB_IDS[ID], userdata); EXPECT_EQ(ID, s_counter); EXPECT_EQ(s_lateness, lateness); ++s_counter; } } TEST(CoreTiming, SharedSlot) { using namespace SharedSlotTest; ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", FifoCallback<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", FifoCallback<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", FifoCallback<2>); CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", FifoCallback<3>); CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", FifoCallback<4>); CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]); CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]); // Enter slice 0 CoreTiming::Advance(); EXPECT_EQ(1000, PowerPC::ppcState.downcount); s_callbacks_ran_flags = 0; s_counter = 0; s_lateness = 0; PowerPC::ppcState.downcount = 0; CoreTiming::Advance(); EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount); EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong()); } TEST(CoreTiming, PredictableLateness) { ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); // Enter slice 0 CoreTiming::Advance(); CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); AdvanceAndCheck(0, 90, 10, -10); // (100 - 10) AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50); } namespace ChainSchedulingTest { static int s_reschedules = 0; static void RescheduleCallback(u64 userdata, s64 lateness) { --s_reschedules; EXPECT_TRUE(s_reschedules >= 0); EXPECT_EQ(s_lateness, lateness); if (s_reschedules > 0) CoreTiming::ScheduleEvent(1000, reinterpret_cast(userdata), userdata); } } TEST(CoreTiming, ChainScheduling) { using namespace ChainSchedulingTest; ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); CoreTiming::EventType* cb_rs = CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback); // Enter slice 0 CoreTiming::Advance(); CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast(cb_rs)); EXPECT_EQ(800, PowerPC::ppcState.downcount); s_reschedules = 3; AdvanceAndCheck(0, 200); // cb_a AdvanceAndCheck(1, 1000); // cb_b, cb_rs EXPECT_EQ(2, s_reschedules); PowerPC::ppcState.downcount = 0; CoreTiming::Advance(); // cb_rs EXPECT_EQ(1, s_reschedules); EXPECT_EQ(200, PowerPC::ppcState.downcount); AdvanceAndCheck(2, 800); // cb_c PowerPC::ppcState.downcount = 0; CoreTiming::Advance(); // cb_rs EXPECT_EQ(0, s_reschedules); EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount); } namespace ScheduleIntoPastTest { static CoreTiming::EventType* s_cb_next = nullptr; static void ChainCallback(u64 userdata, s64 lateness) { EXPECT_EQ(CB_IDS[0] + 1, userdata); EXPECT_EQ(0, lateness); CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1); } } // This can happen when scheduling from outside the CPU Thread. // Also, if the callback is very late, it may reschedule itself for the next period which // is also in the past. TEST(CoreTiming, ScheduleIntoPast) { using namespace ScheduleIntoPastTest; ScopeInit guard; s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback); // Enter slice 0 CoreTiming::Advance(); CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1); EXPECT_EQ(1000, PowerPC::ppcState.downcount); AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); // Run cb_chain into late cb_a // Schedule late from wrong thread // The problem with scheduling CPU events from outside the CPU Thread is that g_global_timer // is not reliable outside the CPU Thread. It's possible for the other thread to sample the // global timer right before the timer is updated by Advance() then submit a new event using // the stale value, i.e. effectively half-way through the previous slice. // NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense. Core::UndeclareAsCPUThread(); CoreTiming::g_global_timer -= 1000; CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU); CoreTiming::g_global_timer += 1000; Core::DeclareAsCPUThread(); AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000); // Schedule directly into the past from the CPU. // This shouldn't happen in practice, but it's best if we don't mess up the slice length and // downcount if we do. CoreTiming::ScheduleEvent(-1000, s_cb_next, CB_IDS[0]); EXPECT_EQ(0, PowerPC::ppcState.downcount); AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); } TEST(CoreTiming, Overclocking) { ScopeInit guard; CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); // Overclock SConfig::GetInstance().m_OCEnable = true; SConfig::GetInstance().m_OCFactor = 2.0; // Enter slice 0 // Updates s_last_OC_factor. CoreTiming::Advance(); CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); EXPECT_EQ(200, PowerPC::ppcState.downcount); AdvanceAndCheck(0, 200); // (200 - 100) * 2 AdvanceAndCheck(1, 400); // (400 - 200) * 2 AdvanceAndCheck(2, 800); // (800 - 400) * 2 AdvanceAndCheck(3, 1600); // (1600 - 800) * 2 AdvanceAndCheck(4, MAX_SLICE_LENGTH * 2); // Underclock SConfig::GetInstance().m_OCFactor = 0.5; CoreTiming::Advance(); CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); EXPECT_EQ(50, PowerPC::ppcState.downcount); AdvanceAndCheck(0, 50); // (200 - 100) / 2 AdvanceAndCheck(1, 100); // (400 - 200) / 2 AdvanceAndCheck(2, 200); // (800 - 400) / 2 AdvanceAndCheck(3, 400); // (1600 - 800) / 2 AdvanceAndCheck(4, MAX_SLICE_LENGTH / 2); // Try switching the clock mid-emulation SConfig::GetInstance().m_OCFactor = 1.0; CoreTiming::Advance(); CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); EXPECT_EQ(100, PowerPC::ppcState.downcount); AdvanceAndCheck(0, 100); // (200 - 100) SConfig::GetInstance().m_OCFactor = 2.0; AdvanceAndCheck(1, 400); // (400 - 200) * 2 AdvanceAndCheck(2, 800); // (800 - 400) * 2 SConfig::GetInstance().m_OCFactor = 0.1f; AdvanceAndCheck(3, 80); // (1600 - 800) / 10 SConfig::GetInstance().m_OCFactor = 1.0; AdvanceAndCheck(4, MAX_SLICE_LENGTH); }