// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include "Common/Align.h" #include "Common/CommonTypes.h" #include "Common/FileUtil.h" #include "Common/MathUtil.h" #include "Core/Core.h" #include "Core/Host.h" #include "VideoBackends/D3D12/BoundingBox.h" #include "VideoBackends/D3D12/D3DBase.h" #include "VideoBackends/D3D12/D3DCommandListManager.h" #include "VideoBackends/D3D12/D3DDescriptorHeapManager.h" #include "VideoBackends/D3D12/D3DState.h" #include "VideoBackends/D3D12/D3DUtil.h" #include "VideoBackends/D3D12/FramebufferManager.h" #include "VideoBackends/D3D12/NativeVertexFormat.h" #include "VideoBackends/D3D12/Render.h" #include "VideoBackends/D3D12/ShaderCache.h" #include "VideoBackends/D3D12/ShaderConstantsManager.h" #include "VideoBackends/D3D12/StaticShaderCache.h" #include "VideoBackends/D3D12/TextureCache.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/SamplerCommon.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VideoConfig.h" namespace DX12 { static u32 s_last_multisamples = 1; static bool s_last_stereo_mode = false; static bool s_last_xfb_mode = false; enum CLEAR_BLEND_DESC { CLEAR_BLEND_DESC_ALL_CHANNELS_ENABLED = 0, CLEAR_BLEND_DESC_RGB_CHANNELS_ENABLED = 1, CLEAR_BLEND_DESC_ALPHA_CHANNEL_ENABLED = 2, CLEAR_BLEND_DESC_ALL_CHANNELS_DISABLED = 3 }; static D3D12_BLEND_DESC s_clear_blend_descs[4] = {}; enum CLEAR_DEPTH_DESC { CLEAR_DEPTH_DESC_DEPTH_DISABLED = 0, CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_ENABLED = 1, CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_DISABLED = 2, }; static D3D12_DEPTH_STENCIL_DESC s_clear_depth_descs[3] = {}; // These are accessed in D3DUtil. D3D12_BLEND_DESC g_reset_blend_desc = {}; D3D12_DEPTH_STENCIL_DESC g_reset_depth_desc = {}; D3D12_RASTERIZER_DESC g_reset_rast_desc = {}; static ID3D12Resource* s_screenshot_texture = nullptr; // Nvidia stereo blitting struct defined in "nvstereo.h" from the Nvidia SDK typedef struct _Nv_Stereo_Image_Header { unsigned int dwSignature; unsigned int dwWidth; unsigned int dwHeight; unsigned int dwBPP; unsigned int dwFlags; } NVSTEREOIMAGEHEADER, *LPNVSTEREOIMAGEHEADER; #define NVSTEREO_IMAGE_SIGNATURE 0x4433564e // GX pipeline state static struct { SamplerState sampler[8]; BlendState blend; ZMode zmode; RasterizerState raster; } gx_state; StateCache gx_state_cache; static void SetupDeviceObjects() { g_framebuffer_manager = std::make_unique(); D3D12_DEPTH_STENCIL_DESC depth_desc; depth_desc.DepthEnable = FALSE; depth_desc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO; depth_desc.DepthFunc = D3D12_COMPARISON_FUNC_ALWAYS; depth_desc.StencilEnable = FALSE; depth_desc.StencilReadMask = D3D12_DEFAULT_STENCIL_READ_MASK; depth_desc.StencilWriteMask = D3D12_DEFAULT_STENCIL_WRITE_MASK; s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_DISABLED] = depth_desc; depth_desc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL; depth_desc.DepthEnable = TRUE; s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_ENABLED] = depth_desc; depth_desc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO; s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_DISABLED] = depth_desc; D3D12_BLEND_DESC blend_desc; blend_desc.AlphaToCoverageEnable = FALSE; blend_desc.IndependentBlendEnable = FALSE; blend_desc.RenderTarget[0].LogicOpEnable = FALSE; blend_desc.RenderTarget[0].LogicOp = D3D12_LOGIC_OP_NOOP; blend_desc.RenderTarget[0].BlendEnable = FALSE; blend_desc.RenderTarget[0].RenderTargetWriteMask = D3D12_COLOR_WRITE_ENABLE_ALL; blend_desc.RenderTarget[0].SrcBlend = D3D12_BLEND_ONE; blend_desc.RenderTarget[0].DestBlend = D3D12_BLEND_ZERO; blend_desc.RenderTarget[0].BlendOp = D3D12_BLEND_OP_ADD; blend_desc.RenderTarget[0].SrcBlendAlpha = D3D12_BLEND_ONE; blend_desc.RenderTarget[0].DestBlendAlpha = D3D12_BLEND_ZERO; blend_desc.RenderTarget[0].BlendOpAlpha = D3D12_BLEND_OP_ADD; g_reset_blend_desc = blend_desc; s_clear_blend_descs[CLEAR_BLEND_DESC_ALL_CHANNELS_ENABLED] = g_reset_blend_desc; blend_desc.RenderTarget[0].RenderTargetWriteMask = D3D12_COLOR_WRITE_ENABLE_RED | D3D12_COLOR_WRITE_ENABLE_GREEN | D3D12_COLOR_WRITE_ENABLE_BLUE; s_clear_blend_descs[CLEAR_BLEND_DESC_RGB_CHANNELS_ENABLED] = blend_desc; blend_desc.RenderTarget[0].RenderTargetWriteMask = D3D12_COLOR_WRITE_ENABLE_ALPHA; s_clear_blend_descs[CLEAR_BLEND_DESC_ALPHA_CHANNEL_ENABLED] = blend_desc; blend_desc.RenderTarget[0].RenderTargetWriteMask = 0; s_clear_blend_descs[CLEAR_BLEND_DESC_ALL_CHANNELS_DISABLED] = blend_desc; depth_desc.DepthEnable = FALSE; depth_desc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO; depth_desc.DepthFunc = D3D12_COMPARISON_FUNC_LESS; depth_desc.StencilEnable = FALSE; depth_desc.StencilReadMask = D3D12_DEFAULT_STENCIL_READ_MASK; depth_desc.StencilWriteMask = D3D12_DEFAULT_STENCIL_WRITE_MASK; g_reset_depth_desc = depth_desc; D3D12_RASTERIZER_DESC rast_desc = CD3DX12_RASTERIZER_DESC(D3D12_FILL_MODE_SOLID, D3D12_CULL_MODE_NONE, false, 0, 0.f, 0.f, false, false, false, 0, D3D12_CONSERVATIVE_RASTERIZATION_MODE_OFF); g_reset_rast_desc = rast_desc; s_screenshot_texture = nullptr; } // Kill off all device objects static void TeardownDeviceObjects() { g_framebuffer_manager.reset(); if (s_screenshot_texture) { D3D::command_list_mgr->DestroyResourceAfterCurrentCommandListExecuted(s_screenshot_texture); s_screenshot_texture = nullptr; } gx_state_cache.Clear(); } void CreateScreenshotTexture() { // We can't render anything outside of the backbuffer anyway, so use the backbuffer size as the // screenshot buffer size. // This texture is released to be recreated when the window is resized in Renderer::SwapImpl. const unsigned int screenshot_buffer_size = Common::AlignUp(D3D::GetBackBufferWidth() * 4, D3D12_TEXTURE_DATA_PITCH_ALIGNMENT) * D3D::GetBackBufferHeight(); CheckHR(D3D::device12->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_READBACK), D3D12_HEAP_FLAG_NONE, &CD3DX12_RESOURCE_DESC::Buffer(screenshot_buffer_size), D3D12_RESOURCE_STATE_COPY_DEST, nullptr, IID_PPV_ARGS(&s_screenshot_texture))); } static D3D12_BOX GetScreenshotSourceBox(const TargetRectangle& target_rc) { // Since the screenshot buffer is copied back to the CPU, we can't access pixels that // fall outside the backbuffer bounds. Therefore, when crop is enabled and the target rect is // off-screen to the top/left, we clamp the origin at zero, as well as the bottom/right // coordinates at the backbuffer dimensions. This will result in a rectangle that can be // smaller than the backbuffer, but never larger. return CD3DX12_BOX( std::max(target_rc.left, 0), std::max(target_rc.top, 0), 0, std::min(D3D::GetBackBufferWidth(), static_cast(target_rc.right)), std::min(D3D::GetBackBufferHeight(), static_cast(target_rc.bottom)), 1); } static void Create3DVisionTexture(int width, int height) { // D3D12TODO: 3D Vision not implemented on D3D12 backend. } Renderer::Renderer(void*& window_handle) { if (g_ActiveConfig.iStereoMode == STEREO_3DVISION) { PanicAlert("3DVision not implemented on D3D12 backend."); return; } s_backbuffer_width = D3D::GetBackBufferWidth(); s_backbuffer_height = D3D::GetBackBufferHeight(); FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH); FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT); UpdateDrawRectangle(); s_last_multisamples = g_ActiveConfig.iMultisamples; s_last_efb_scale = g_ActiveConfig.iEFBScale; s_last_stereo_mode = g_ActiveConfig.iStereoMode > 0; s_last_xfb_mode = g_ActiveConfig.bUseRealXFB; CalculateTargetSize(); PixelShaderManager::SetEfbScaleChanged(); SetupDeviceObjects(); // Setup GX pipeline state gx_state.blend.blend_enable = false; gx_state.blend.write_mask = D3D12_COLOR_WRITE_ENABLE_ALL; gx_state.blend.src_blend = D3D12_BLEND_ONE; gx_state.blend.dst_blend = D3D12_BLEND_ZERO; gx_state.blend.blend_op = D3D12_BLEND_OP_ADD; gx_state.blend.use_dst_alpha = false; for (unsigned int k = 0; k < 8; k++) { gx_state.sampler[k].hex = 0; } gx_state.zmode.testenable = false; gx_state.zmode.updateenable = false; gx_state.zmode.func = ZMode::NEVER; gx_state.raster.cull_mode = D3D12_CULL_MODE_NONE; // Clear EFB textures float clear_color[4] = {0.f, 0.f, 0.f, 1.f}; FramebufferManager::GetEFBColorTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); FramebufferManager::GetEFBDepthTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_DEPTH_WRITE); D3D::current_command_list->ClearRenderTargetView( FramebufferManager::GetEFBColorTexture()->GetRTV12(), clear_color, 0, nullptr); D3D::current_command_list->ClearDepthStencilView( FramebufferManager::GetEFBDepthTexture()->GetDSV12(), D3D12_CLEAR_FLAG_DEPTH, 0.f, 0, 0, nullptr); D3D12_VIEWPORT vp = {0.f, 0.f, static_cast(s_target_width), static_cast(s_target_height), D3D12_MIN_DEPTH, D3D12_MAX_DEPTH}; D3D::current_command_list->RSSetViewports(1, &vp); // Already transitioned to appropriate states a few lines up for the clears. FramebufferManager::RestoreEFBRenderTargets(); D3D::BeginFrame(); } Renderer::~Renderer() { D3D::EndFrame(); D3D::WaitForOutstandingRenderingToComplete(); TeardownDeviceObjects(); } void Renderer::RenderText(const std::string& text, int left, int top, u32 color) { D3D::font.DrawTextScaled(static_cast(left + 1), static_cast(top + 1), 20.f, 0.0f, color & 0xFF000000, text); D3D::font.DrawTextScaled(static_cast(left), static_cast(top), 20.f, 0.0f, color, text); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } // With D3D, we have to resize the backbuffer if the window changed // size. __declspec(noinline) bool Renderer::CheckForResize() { RECT rc_window; GetClientRect(D3D::hWnd, &rc_window); int client_width = rc_window.right - rc_window.left; int client_height = rc_window.bottom - rc_window.top; // Sanity check if ((client_width != Renderer::GetBackbufferWidth() || client_height != Renderer::GetBackbufferHeight()) && client_width >= 4 && client_height >= 4) { return true; } return false; } void Renderer::SetScissorRect(const EFBRectangle& rc) { TargetRectangle trc = ConvertEFBRectangle(rc); D3D::current_command_list->RSSetScissorRects(1, trc.AsRECT()); } void Renderer::SetColorMask() { // Only enable alpha channel if it's supported by the current EFB format UINT8 color_mask = 0; if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL) { if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)) color_mask = D3D12_COLOR_WRITE_ENABLE_ALPHA; if (bpmem.blendmode.colorupdate) color_mask |= D3D12_COLOR_WRITE_ENABLE_RED | D3D12_COLOR_WRITE_ENABLE_GREEN | D3D12_COLOR_WRITE_ENABLE_BLUE; } gx_state.blend.write_mask = color_mask; D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, true); } // This function allows the CPU to directly access the EFB. // There are EFB peeks (which will read the color or depth of a pixel) // and EFB pokes (which will change the color or depth of a pixel). // // The behavior of EFB peeks can only be modified by: // - GX_PokeAlphaRead // The behavior of EFB pokes can be modified by: // - GX_PokeAlphaMode (TODO) // - GX_PokeAlphaUpdate (TODO) // - GX_PokeBlendMode (TODO) // - GX_PokeColorUpdate (TODO) // - GX_PokeDither (TODO) // - GX_PokeDstAlpha (TODO) // - GX_PokeZMode (TODO) u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { if (type == PEEK_COLOR) { u32 color = FramebufferManager::ReadEFBColorAccessCopy(x, y); // a little-endian value is expected to be returned color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000)); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { color |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) { return color; // GX_READ_NONE } else if (alpha_read_mode.ReadMode == 1) { return (color | 0xFF000000); // GX_READ_FF } else /*if(alpha_read_mode.ReadMode == 0)*/ { return (color & 0x00FFFFFF); // GX_READ_00 } } else // if (type == PEEK_Z) { // depth buffer is inverted in the d3d backend float depth = 1.0f - FramebufferManager::ReadEFBDepthAccessCopy(x, y); u32 ret = 0; if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = MathUtil::Clamp(static_cast(depth * 65536.0f), 0, 0xFFFF); } else { ret = MathUtil::Clamp(static_cast(depth * 16777216.0f), 0, 0xFFFFFF); } return ret; } } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { D3D::SetViewportAndScissor(0, 0, GetTargetWidth(), GetTargetHeight()); if (type == POKE_COLOR) { // In the D3D12 backend, the rt/db/viewport is passed into DrawEFBPokeQuads, and set there. D3D::DrawEFBPokeQuads(type, points, num_points, &g_reset_blend_desc, &g_reset_depth_desc, &FramebufferManager::GetEFBColorTexture()->GetRTV12(), nullptr, FramebufferManager::GetEFBColorTexture()->GetMultisampled()); } else // if (type == POKE_Z) { D3D::DrawEFBPokeQuads(type, points, num_points, &s_clear_blend_descs[CLEAR_BLEND_DESC_ALL_CHANNELS_DISABLED], &s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_ENABLED], &FramebufferManager::GetEFBColorTexture()->GetRTV12(), &FramebufferManager::GetEFBDepthTexture()->GetDSV12(), FramebufferManager::GetEFBColorTexture()->GetMultisampled()); } RestoreAPIState(); } void Renderer::SetViewport() { // reversed gxsetviewport(xorig, yorig, width, height, nearz, farz) // [0] = width/2 // [1] = height/2 // [2] = 16777215 * (farz - nearz) // [3] = xorig + width/2 + 342 // [4] = yorig + height/2 + 342 // [5] = 16777215 * farz // D3D crashes for zero viewports if (xfmem.viewport.wd == 0 || xfmem.viewport.ht == 0) return; int scissor_x_offset = bpmem.scissorOffset.x * 2; int scissor_y_offset = bpmem.scissorOffset.y * 2; float x = Renderer::EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - scissor_x_offset); float y = Renderer::EFBToScaledYf(xfmem.viewport.yOrig + xfmem.viewport.ht - scissor_y_offset); float width = Renderer::EFBToScaledXf(2.0f * xfmem.viewport.wd); float height = Renderer::EFBToScaledYf(-2.0f * xfmem.viewport.ht); float range = MathUtil::Clamp(xfmem.viewport.zRange, 0.0f, 16777215.0f); float min_depth = MathUtil::Clamp(xfmem.viewport.farZ - range, 0.0f, 16777215.0f) / 16777216.0f; float max_depth = MathUtil::Clamp(xfmem.viewport.farZ, 0.0f, 16777215.0f) / 16777216.0f; if (width < 0.0f) { x += width; width = -width; } if (height < 0.0f) { y += height; height = -height; } // If an inverted depth range is used, which D3D doesn't support, // we need to calculate the depth range in the vertex shader. if (xfmem.viewport.zRange < 0.0f) { min_depth = 0.0f; max_depth = GX_MAX_DEPTH; } // In D3D, the viewport rectangle must fit within the render target. x = (x >= 0.f) ? x : 0.f; y = (y >= 0.f) ? y : 0.f; width = (x + width <= GetTargetWidth()) ? width : (GetTargetWidth() - x); height = (y + height <= GetTargetHeight()) ? height : (GetTargetHeight() - y); // We use an inverted depth range here to apply the Reverse Z trick. // This trick makes sure we match the precision provided by the 1:0 // clipping depth range on the hardware. D3D12_VIEWPORT vp = {x, y, width, height, 1.0f - max_depth, 1.0f - min_depth}; D3D::current_command_list->RSSetViewports(1, &vp); } void Renderer::ClearScreen(const EFBRectangle& rc, bool color_enable, bool alpha_enable, bool z_enable, u32 color, u32 z) { D3D12_BLEND_DESC* blend_desc = nullptr; if (color_enable && alpha_enable) blend_desc = &s_clear_blend_descs[CLEAR_BLEND_DESC_ALL_CHANNELS_ENABLED]; else if (color_enable) blend_desc = &s_clear_blend_descs[CLEAR_BLEND_DESC_RGB_CHANNELS_ENABLED]; else if (alpha_enable) blend_desc = &s_clear_blend_descs[CLEAR_BLEND_DESC_ALPHA_CHANNEL_ENABLED]; else blend_desc = &s_clear_blend_descs[CLEAR_BLEND_DESC_ALL_CHANNELS_DISABLED]; D3D12_DEPTH_STENCIL_DESC* depth_stencil_desc = nullptr; // EXISTINGD3D11TODO: Should we enable Z testing here? /*if (!bpmem.zmode.testenable) depth_stencil_desc = &s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_DISABLED]; else */ if (z_enable) depth_stencil_desc = &s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_ENABLED]; else /*if (!z_enable)*/ depth_stencil_desc = &s_clear_depth_descs[CLEAR_DEPTH_DESC_DEPTH_ENABLED_WRITES_DISABLED]; // Update the view port for clearing the picture TargetRectangle target_rc = Renderer::ConvertEFBRectangle(rc); // Color is passed in bgra mode so we need to convert it to rgba u32 rgba_color = (color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000); D3D::SetViewportAndScissor(target_rc.left, target_rc.top, target_rc.GetWidth(), target_rc.GetHeight()); D3D::DrawClearQuad(rgba_color, 1.0f - (z & 0xFFFFFF) / 16777216.0f, blend_desc, depth_stencil_desc, FramebufferManager::GetEFBColorTexture()->GetMultisampled()); // Restores proper viewport/scissor settings. SetViewport(); BPFunctions::SetScissor(); FramebufferManager::InvalidateEFBAccessCopies(); } void Renderer::ReinterpretPixelData(unsigned int convtype) { // EXISTINGD3D11TODO: MSAA support.. D3D12_RECT source = CD3DX12_RECT(0, 0, GetTargetWidth(), GetTargetHeight()); D3D12_SHADER_BYTECODE pixel_shader = {}; if (convtype == 0) { pixel_shader = StaticShaderCache::GetReinterpRGB8ToRGBA6PixelShader(true); } else if (convtype == 2) { pixel_shader = StaticShaderCache::GetReinterpRGBA6ToRGB8PixelShader(true); } else { ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype); return; } D3D::SetViewportAndScissor(0, 0, GetTargetWidth(), GetTargetHeight()); FramebufferManager::GetEFBColorTempTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); D3D::current_command_list->OMSetRenderTargets( 1, &FramebufferManager::GetEFBColorTempTexture()->GetRTV12(), FALSE, nullptr); D3D::SetPointCopySampler(); D3D::DrawShadedTexQuad( FramebufferManager::GetEFBColorTexture(), &source, GetTargetWidth(), GetTargetHeight(), pixel_shader, StaticShaderCache::GetSimpleVertexShader(), StaticShaderCache::GetSimpleVertexShaderInputLayout(), StaticShaderCache::GetCopyGeometryShader(), 1.0f, 0, DXGI_FORMAT_R8G8B8A8_UNORM, false, FramebufferManager::GetEFBColorTempTexture()->GetMultisampled()); FramebufferManager::SwapReinterpretTexture(); FramebufferManager::GetEFBColorTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); FramebufferManager::GetEFBDepthTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_DEPTH_WRITE); // Restores proper viewport/scissor settings. RestoreAPIState(); } void Renderer::SetBlendMode(bool force_update) { // Our render target always uses an alpha channel, so we need to override the blend functions to // assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel // Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel // is assumed to always be 1. bool target_has_alpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; const D3D12_BLEND d3d_src_factors[8] = { D3D12_BLEND_ZERO, D3D12_BLEND_ONE, D3D12_BLEND_DEST_COLOR, D3D12_BLEND_INV_DEST_COLOR, D3D12_BLEND_SRC1_ALPHA, D3D12_BLEND_INV_SRC1_ALPHA, (target_has_alpha) ? D3D12_BLEND_DEST_ALPHA : D3D12_BLEND_ONE, (target_has_alpha) ? D3D12_BLEND_INV_DEST_ALPHA : D3D12_BLEND_ZERO}; const D3D12_BLEND d3d_dst_factors[8] = { D3D12_BLEND_ZERO, D3D12_BLEND_ONE, D3D12_BLEND_SRC_COLOR, D3D12_BLEND_INV_SRC_COLOR, D3D12_BLEND_SRC1_ALPHA, D3D12_BLEND_INV_SRC1_ALPHA, (target_has_alpha) ? D3D12_BLEND_DEST_ALPHA : D3D12_BLEND_ONE, (target_has_alpha) ? D3D12_BLEND_INV_DEST_ALPHA : D3D12_BLEND_ZERO}; if (bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable && !force_update) return; if (bpmem.blendmode.subtract) { gx_state.blend.blend_enable = true; gx_state.blend.blend_op = D3D12_BLEND_OP_REV_SUBTRACT; gx_state.blend.src_blend = D3D12_BLEND_ONE; gx_state.blend.dst_blend = D3D12_BLEND_ONE; } else { gx_state.blend.blend_enable = static_cast(bpmem.blendmode.blendenable); if (bpmem.blendmode.blendenable) { gx_state.blend.blend_op = D3D12_BLEND_OP_ADD; gx_state.blend.src_blend = d3d_src_factors[bpmem.blendmode.srcfactor]; gx_state.blend.dst_blend = d3d_dst_factors[bpmem.blendmode.dstfactor]; } } D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, true); } // This function has the final picture. We adjust the aspect ratio here. void Renderer::SwapImpl(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, const EFBRectangle& rc, u64 ticks, float gamma) { if ((!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fb_width || !fb_height) { Core::Callback_VideoCopiedToXFB(false); return; } u32 xfb_count = 0; const XFBSourceBase* const* xfb_source_list = FramebufferManager::GetXFBSource(xfb_addr, fb_stride, fb_height, &xfb_count); if ((!xfb_source_list || xfb_count == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB) { Core::Callback_VideoCopiedToXFB(false); return; } // Invalidate EFB access copies. Not strictly necessary, but this avoids having the buffers mapped // when calling Present(). FramebufferManager::InvalidateEFBAccessCopies(); BBox::Invalidate(); // Prepare to copy the XFBs to our backbuffer UpdateDrawRectangle(); TargetRectangle target_rc = GetTargetRectangle(); D3D::GetBackBuffer()->TransitionToResourceState(D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); D3D::current_command_list->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV12(), FALSE, nullptr); float clear_color[4] = {0.f, 0.f, 0.f, 1.f}; D3D::current_command_list->ClearRenderTargetView(D3D::GetBackBuffer()->GetRTV12(), clear_color, 0, nullptr); // activate linear filtering for the buffer copies D3D::SetLinearCopySampler(); if (g_ActiveConfig.bUseXFB) { const XFBSource* xfb_source; // draw each xfb source for (u32 i = 0; i < xfb_count; ++i) { xfb_source = static_cast(xfb_source_list[i]); TargetRectangle drawRc; TargetRectangle source_rc; source_rc.left = xfb_source->sourceRc.left; source_rc.top = xfb_source->sourceRc.top; source_rc.right = xfb_source->sourceRc.right; source_rc.bottom = xfb_source->sourceRc.bottom; // use virtual xfb with offset int xfb_height = xfb_source->srcHeight; int xfb_width = xfb_source->srcWidth; int hOffset = (static_cast(xfb_source->srcAddr) - static_cast(xfb_addr)) / (static_cast(fb_stride) * 2); if (g_ActiveConfig.bUseRealXFB) { drawRc = target_rc; source_rc.right -= fb_stride - fb_width; } else { drawRc.top = target_rc.top + hOffset * target_rc.GetHeight() / static_cast(fb_height); drawRc.bottom = target_rc.top + (hOffset + xfb_height) * target_rc.GetHeight() / static_cast(fb_height); drawRc.left = target_rc.left + (target_rc.GetWidth() - xfb_width * target_rc.GetWidth() / static_cast(fb_stride)) / 2; drawRc.right = target_rc.left + (target_rc.GetWidth() + xfb_width * target_rc.GetWidth() / static_cast(fb_stride)) / 2; // The following code disables auto stretch. Kept for reference. // scale draw area for a 1 to 1 pixel mapping with the draw target // float vScale = static_cast(fbHeight) / static_cast(s_backbuffer_height); // float hScale = static_cast(fbWidth) / static_cast(s_backbuffer_width); // drawRc.top *= vScale; // drawRc.bottom *= vScale; // drawRc.left *= hScale; // drawRc.right *= hScale; source_rc.right -= Renderer::EFBToScaledX(fb_stride - fb_width); } BlitScreen(source_rc, drawRc, xfb_source->m_tex, xfb_source->texWidth, xfb_source->texHeight, gamma); } } else { TargetRectangle source_rc = Renderer::ConvertEFBRectangle(rc); // EXISTINGD3D11TODO: Improve sampling algorithm for the pixel shader so that we can use the // multisampled EFB texture as source D3DTexture2D* read_texture = FramebufferManager::GetResolvedEFBColorTexture(); BlitScreen(source_rc, target_rc, read_texture, GetTargetWidth(), GetTargetHeight(), gamma); } // Dump frames if (IsFrameDumping()) { if (!s_screenshot_texture) CreateScreenshotTexture(); D3D12_BOX source_box = GetScreenshotSourceBox(target_rc); unsigned int source_width = source_box.right - source_box.left; unsigned int source_height = source_box.bottom - source_box.top; D3D12_TEXTURE_COPY_LOCATION dst_location = {}; dst_location.pResource = s_screenshot_texture; dst_location.Type = D3D12_TEXTURE_COPY_TYPE_PLACED_FOOTPRINT; dst_location.PlacedFootprint.Offset = 0; dst_location.PlacedFootprint.Footprint.Format = DXGI_FORMAT_R8G8B8A8_UNORM; dst_location.PlacedFootprint.Footprint.Width = GetTargetRectangle().GetWidth(); dst_location.PlacedFootprint.Footprint.Height = GetTargetRectangle().GetHeight(); dst_location.PlacedFootprint.Footprint.Depth = 1; dst_location.PlacedFootprint.Footprint.RowPitch = Common::AlignUp( dst_location.PlacedFootprint.Footprint.Width * 4, D3D12_TEXTURE_DATA_PITCH_ALIGNMENT); D3D12_TEXTURE_COPY_LOCATION src_location = {}; src_location.Type = D3D12_TEXTURE_COPY_TYPE_SUBRESOURCE_INDEX; src_location.SubresourceIndex = 0; src_location.pResource = D3D::GetBackBuffer()->GetTex12(); D3D::GetBackBuffer()->TransitionToResourceState(D3D::current_command_list, D3D12_RESOURCE_STATE_COPY_SOURCE); D3D::current_command_list->CopyTextureRegion(&dst_location, 0, 0, 0, &src_location, &source_box); D3D::command_list_mgr->ExecuteQueuedWork(true); void* screenshot_texture_map; D3D12_RANGE read_range = {0, dst_location.PlacedFootprint.Footprint.RowPitch * source_height}; CheckHR(s_screenshot_texture->Map(0, &read_range, &screenshot_texture_map)); AVIDump::Frame state = AVIDump::FetchState(ticks); DumpFrameData(reinterpret_cast(screenshot_texture_map), source_width, source_height, dst_location.PlacedFootprint.Footprint.RowPitch, state); FinishFrameData(); D3D12_RANGE write_range = {}; s_screenshot_texture->Unmap(0, &write_range); } // Reset viewport for drawing text D3D::SetViewportAndScissor(0, 0, GetBackbufferWidth(), GetBackbufferHeight()); Renderer::DrawDebugText(); OSD::DrawMessages(); D3D::EndFrame(); g_texture_cache->Cleanup(frameCount); // Enable configuration changes UpdateActiveConfig(); g_texture_cache->OnConfigChanged(g_ActiveConfig); SetWindowSize(fb_stride, fb_height); const bool window_resized = CheckForResize(); bool xfb_changed = s_last_xfb_mode != g_ActiveConfig.bUseRealXFB; if (FramebufferManagerBase::LastXfbWidth() != fb_stride || FramebufferManagerBase::LastXfbHeight() != fb_height) { xfb_changed = true; unsigned int xfb_w = (fb_stride < 1 || fb_stride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fb_stride; unsigned int xfb_h = (fb_height < 1 || fb_height > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fb_height; FramebufferManagerBase::SetLastXfbWidth(xfb_w); FramebufferManagerBase::SetLastXfbHeight(xfb_h); } // Flip/present backbuffer to frontbuffer here D3D::Present(); // Resize the back buffers NOW to avoid flickering if (CalculateTargetSize() || xfb_changed || window_resized || s_last_efb_scale != g_ActiveConfig.iEFBScale || s_last_multisamples != g_ActiveConfig.iMultisamples || s_last_stereo_mode != (g_ActiveConfig.iStereoMode > 0)) { s_last_xfb_mode = g_ActiveConfig.bUseRealXFB; // Block on any changes until the GPU catches up, so we can free resources safely. D3D::command_list_mgr->ExecuteQueuedWork(true); if (s_last_multisamples != g_ActiveConfig.iMultisamples) { s_last_multisamples = g_ActiveConfig.iMultisamples; StaticShaderCache::InvalidateMSAAShaders(); gx_state_cache.OnMSAASettingsChanged(); } if (window_resized) { // TODO: Aren't we still holding a reference to the back buffer right now? D3D::Reset(); if (s_screenshot_texture) { D3D::command_list_mgr->DestroyResourceAfterCurrentCommandListExecuted(s_screenshot_texture); s_screenshot_texture = nullptr; } s_backbuffer_width = D3D::GetBackBufferWidth(); s_backbuffer_height = D3D::GetBackBufferHeight(); } UpdateDrawRectangle(); s_last_efb_scale = g_ActiveConfig.iEFBScale; s_last_stereo_mode = g_ActiveConfig.iStereoMode > 0; PixelShaderManager::SetEfbScaleChanged(); D3D::GetBackBuffer()->TransitionToResourceState(D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); D3D::current_command_list->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV12(), FALSE, nullptr); g_framebuffer_manager.reset(); g_framebuffer_manager = std::make_unique(); const float clear_color[4] = {0.f, 0.f, 0.f, 1.f}; FramebufferManager::GetEFBColorTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); D3D::current_command_list->ClearRenderTargetView( FramebufferManager::GetEFBColorTexture()->GetRTV12(), clear_color, 0, nullptr); FramebufferManager::GetEFBDepthTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_DEPTH_WRITE); D3D::current_command_list->ClearDepthStencilView( FramebufferManager::GetEFBDepthTexture()->GetDSV12(), D3D12_CLEAR_FLAG_DEPTH, 0.f, 0, 0, nullptr); } // begin next frame D3D::BeginFrame(); FramebufferManager::GetEFBColorTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_RENDER_TARGET); FramebufferManager::GetEFBDepthTexture()->TransitionToResourceState( D3D::current_command_list, D3D12_RESOURCE_STATE_DEPTH_WRITE); RestoreAPIState(); } void Renderer::ResetAPIState() { CHECK(0, "This should never be called.. just required for inheritance."); } void Renderer::RestoreAPIState() { // Restores viewport/scissor rects, which might have been // overwritten elsewhere (particularly the viewport). SetViewport(); BPFunctions::SetScissor(); FramebufferManager::RestoreEFBRenderTargets(); BBox::Bind(); } static bool s_previous_use_dst_alpha = false; static D3DVertexFormat* s_previous_vertex_format = nullptr; void Renderer::ApplyState(bool use_dst_alpha) { if (use_dst_alpha != s_previous_use_dst_alpha) { s_previous_use_dst_alpha = use_dst_alpha; D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, true); } gx_state.blend.use_dst_alpha = use_dst_alpha; if (D3D::command_list_mgr->GetCommandListDirtyState(COMMAND_LIST_STATE_SAMPLERS)) { D3D12_GPU_DESCRIPTOR_HANDLE sample_group_gpu_handle; sample_group_gpu_handle = D3D::sampler_descriptor_heap_mgr->GetHandleForSamplerGroup(gx_state.sampler, 8); D3D::current_command_list->SetGraphicsRootDescriptorTable(DESCRIPTOR_TABLE_PS_SAMPLER, sample_group_gpu_handle); D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_SAMPLERS, false); } // Uploads and binds required constant buffer data for all stages. ShaderConstantsManager::LoadAndSetGeometryShaderConstants(); ShaderConstantsManager::LoadAndSetPixelShaderConstants(); ShaderConstantsManager::LoadAndSetVertexShaderConstants(); if (D3D::command_list_mgr->GetCommandListDirtyState(COMMAND_LIST_STATE_PSO) || s_previous_vertex_format != reinterpret_cast(VertexLoaderManager::GetCurrentVertexFormat())) { s_previous_vertex_format = reinterpret_cast(VertexLoaderManager::GetCurrentVertexFormat()); D3D12_PRIMITIVE_TOPOLOGY_TYPE topologyType = ShaderCache::GetCurrentPrimitiveTopology(); RasterizerState modifiableRastState = gx_state.raster; if (topologyType != D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE) { modifiableRastState.cull_mode = D3D12_CULL_MODE_NONE; } SmallPsoDesc pso_desc = { ShaderCache::GetActiveGeometryShaderBytecode(), // D3D12_SHADER_BYTECODE GS; ShaderCache::GetActivePixelShaderBytecode(), // D3D12_SHADER_BYTECODE PS; ShaderCache::GetActiveVertexShaderBytecode(), // D3D12_SHADER_BYTECODE VS; s_previous_vertex_format, // D3DVertexFormat* InputLayout; gx_state.blend, // BlendState BlendState; modifiableRastState, // RasterizerState RasterizerState; gx_state.zmode, // ZMode DepthStencilState; }; if (use_dst_alpha) { // restore actual state SetBlendMode(false); SetLogicOpMode(); } ID3D12PipelineState* pso = nullptr; CheckHR(gx_state_cache.GetPipelineStateObjectFromCache( &pso_desc, &pso, topologyType, ShaderCache::GetActiveGeometryShaderUid(), ShaderCache::GetActivePixelShaderUid(), ShaderCache::GetActiveVertexShaderUid())); D3D::current_command_list->SetPipelineState(pso); D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, false); } // Always called prior to drawing, so we can invalidate the CPU EFB copies here. FramebufferManager::InvalidateEFBAccessCopies(); } void Renderer::RestoreState() { } void Renderer::ApplyCullDisable() { // This functionality is handled directly in ApplyState. } void Renderer::RestoreCull() { // This functionality is handled directly in ApplyState. } void Renderer::SetGenerationMode() { const D3D12_CULL_MODE d3d_cull_modes[4] = {D3D12_CULL_MODE_NONE, D3D12_CULL_MODE_BACK, D3D12_CULL_MODE_FRONT, D3D12_CULL_MODE_BACK}; // rastdc.FrontCounterClockwise must be false for this to work // EXISTINGD3D11TODO: GX_CULL_ALL not supported, yet! gx_state.raster.cull_mode = d3d_cull_modes[bpmem.genMode.cullmode]; D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, true); } void Renderer::SetDepthMode() { gx_state.zmode.hex = bpmem.zmode.hex; D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, true); } void Renderer::SetLogicOpMode() { // D3D11 doesn't support logic blending, so this is a huge hack // EXISTINGD3D11TODO: Make use of D3D11.1's logic blending support // D3D12TODO: Obviously these are always available in D3D12.. // 0 0x00 // 1 Source & destination // 2 Source & ~destination // 3 Source // 4 ~Source & destination // 5 Destination // 6 Source ^ destination = Source & ~destination | ~Source & destination // 7 Source | destination // 8 ~(Source | destination) // 9 ~(Source ^ destination) = ~Source & ~destination | Source & destination // 10 ~Destination // 11 Source | ~destination // 12 ~Source // 13 ~Source | destination // 14 ~(Source & destination) // 15 0xff const D3D12_BLEND_OP d3d_logic_ops[16] = { D3D12_BLEND_OP_ADD, // 0 D3D12_BLEND_OP_ADD, // 1 D3D12_BLEND_OP_SUBTRACT, // 2 D3D12_BLEND_OP_ADD, // 3 D3D12_BLEND_OP_REV_SUBTRACT, // 4 D3D12_BLEND_OP_ADD, // 5 D3D12_BLEND_OP_MAX, // 6 D3D12_BLEND_OP_ADD, // 7 D3D12_BLEND_OP_MAX, // 8 D3D12_BLEND_OP_MAX, // 9 D3D12_BLEND_OP_ADD, // 10 D3D12_BLEND_OP_ADD, // 11 D3D12_BLEND_OP_ADD, // 12 D3D12_BLEND_OP_ADD, // 13 D3D12_BLEND_OP_ADD, // 14 D3D12_BLEND_OP_ADD // 15 }; const D3D12_BLEND d3d_logic_op_src_factors[16] = { D3D12_BLEND_ZERO, // 0 D3D12_BLEND_DEST_COLOR, // 1 D3D12_BLEND_ONE, // 2 D3D12_BLEND_ONE, // 3 D3D12_BLEND_DEST_COLOR, // 4 D3D12_BLEND_ZERO, // 5 D3D12_BLEND_INV_DEST_COLOR, // 6 D3D12_BLEND_INV_DEST_COLOR, // 7 D3D12_BLEND_INV_SRC_COLOR, // 8 D3D12_BLEND_INV_SRC_COLOR, // 9 D3D12_BLEND_INV_DEST_COLOR, // 10 D3D12_BLEND_ONE, // 11 D3D12_BLEND_INV_SRC_COLOR, // 12 D3D12_BLEND_INV_SRC_COLOR, // 13 D3D12_BLEND_INV_DEST_COLOR, // 14 D3D12_BLEND_ONE // 15 }; const D3D12_BLEND d3d_logic_op_dest_factors[16] = { D3D12_BLEND_ZERO, // 0 D3D12_BLEND_ZERO, // 1 D3D12_BLEND_INV_SRC_COLOR, // 2 D3D12_BLEND_ZERO, // 3 D3D12_BLEND_ONE, // 4 D3D12_BLEND_ONE, // 5 D3D12_BLEND_INV_SRC_COLOR, // 6 D3D12_BLEND_ONE, // 7 D3D12_BLEND_INV_DEST_COLOR, // 8 D3D12_BLEND_SRC_COLOR, // 9 D3D12_BLEND_INV_DEST_COLOR, // 10 D3D12_BLEND_INV_DEST_COLOR, // 11 D3D12_BLEND_INV_SRC_COLOR, // 12 D3D12_BLEND_ONE, // 13 D3D12_BLEND_INV_SRC_COLOR, // 14 D3D12_BLEND_ONE // 15 }; if (bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable) { gx_state.blend.blend_enable = true; gx_state.blend.blend_op = d3d_logic_ops[bpmem.blendmode.logicmode]; gx_state.blend.src_blend = d3d_logic_op_src_factors[bpmem.blendmode.logicmode]; gx_state.blend.dst_blend = d3d_logic_op_dest_factors[bpmem.blendmode.logicmode]; } else { SetBlendMode(true); } D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_PSO, true); } void Renderer::SetDitherMode() { // EXISTINGD3D11TODO: Set dither mode to bpmem.blendmode.dither } void Renderer::SetSamplerState(int stage, int tex_index, bool custom_tex) { const FourTexUnits& tex = bpmem.tex[tex_index]; const TexMode0& tm0 = tex.texMode0[stage]; const TexMode1& tm1 = tex.texMode1[stage]; SamplerState new_state = {}; if (tex_index) stage += 4; if (g_ActiveConfig.bForceFiltering) { // Only use mipmaps if the game says they are available. new_state.min_filter = SamplerCommon::AreBpTexMode0MipmapsEnabled(tm0) ? 6 : 4; new_state.mag_filter = 1; // linear mag } else { new_state.min_filter = tm0.min_filter; new_state.mag_filter = tm0.mag_filter; } new_state.wrap_s = tm0.wrap_s; new_state.wrap_t = tm0.wrap_t; new_state.max_lod = tm1.max_lod; new_state.min_lod = tm1.min_lod; new_state.lod_bias = tm0.lod_bias; // custom textures may have higher resolution, so disable the max_lod if (custom_tex) { new_state.max_lod = 255; } if (new_state.hex != gx_state.sampler[stage].hex) { gx_state.sampler[stage].hex = new_state.hex; D3D::command_list_mgr->SetCommandListDirtyState(COMMAND_LIST_STATE_SAMPLERS, true); } } void Renderer::SetInterlacingMode() { // EXISTINGD3D11TODO } u32 Renderer::GetMaxTextureSize() { return DX12::D3D::GetMaxTextureSize(); } u16 Renderer::BBoxRead(int index) { // Here we get the min/max value of the truncated position of the upscaled framebuffer. // So we have to correct them to the unscaled EFB sizes. int value = BBox::Get(index); if (index < 2) { // left/right value = value * EFB_WIDTH / s_target_width; } else { // up/down value = value * EFB_HEIGHT / s_target_height; } if (index & 1) value++; // fix max values to describe the outer border return value; } void Renderer::BBoxWrite(int index, u16 value) { int local_value = value; // u16 isn't enough to multiply by the efb width if (index & 1) local_value--; if (index < 2) { local_value = local_value * s_target_width / EFB_WIDTH; } else { local_value = local_value * s_target_height / EFB_HEIGHT; } BBox::Set(index, local_value); } void Renderer::BlitScreen(TargetRectangle src, TargetRectangle dst, D3DTexture2D* src_texture, u32 src_width, u32 src_height, float gamma) { if (g_ActiveConfig.iStereoMode == STEREO_SBS || g_ActiveConfig.iStereoMode == STEREO_TAB) { TargetRectangle left_rc, right_rc; ConvertStereoRectangle(dst, left_rc, right_rc); // Swap chain backbuffer is never multisampled.. D3D::SetViewportAndScissor(left_rc.left, left_rc.top, left_rc.GetWidth(), left_rc.GetHeight()); D3D::DrawShadedTexQuad(src_texture, src.AsRECT(), src_width, src_height, StaticShaderCache::GetColorCopyPixelShader(false), StaticShaderCache::GetSimpleVertexShader(), StaticShaderCache::GetSimpleVertexShaderInputLayout(), D3D12_SHADER_BYTECODE(), gamma, 0, DXGI_FORMAT_R8G8B8A8_UNORM, false, false); D3D::SetViewportAndScissor(right_rc.left, right_rc.top, right_rc.GetWidth(), right_rc.GetHeight()); D3D::DrawShadedTexQuad(src_texture, src.AsRECT(), src_width, src_height, StaticShaderCache::GetColorCopyPixelShader(false), StaticShaderCache::GetSimpleVertexShader(), StaticShaderCache::GetSimpleVertexShaderInputLayout(), D3D12_SHADER_BYTECODE(), gamma, 1, DXGI_FORMAT_R8G8B8A8_UNORM, false, false); } else if (g_ActiveConfig.iStereoMode == STEREO_3DVISION) { // D3D12TODO // Not currently supported on D3D12 backend. Implemented (but untested) code kept for reference. // if (!s_3d_vision_texture) // Create3DVisionTexture(s_backbuffer_width, s_backbuffer_height); // D3D12_VIEWPORT leftVp12 = { static_cast(dst.left), static_cast(dst.top), // static_cast(dst.GetWidth()), static_cast(dst.GetHeight()), D3D12_MIN_DEPTH, // D3D12_MAX_DEPTH }; // D3D12_VIEWPORT rightVp12 = { static_cast(dst.left + s_backbuffer_width), // static_cast(dst.top), static_cast(dst.GetWidth()), // static_cast(dst.GetHeight()), D3D12_MIN_DEPTH, D3D12_MAX_DEPTH }; //// Render to staging texture which is double the width of the backbuffer // s_3d_vision_texture->TransitionToResourceState(D3D::current_command_list, // D3D12_RESOURCE_STATE_RENDER_TARGET); // D3D::current_command_list->OMSetRenderTargets(1, &s_3d_vision_texture->GetRTV12(), FALSE, // nullptr); // D3D::current_command_list->RSSetViewports(1, &leftVp12); // D3D::DrawShadedTexQuad(src_texture, src.AsRECT(), src_width, src_height, // StaticShaderCache::GetColorCopyPixelShader(false), // StaticShaderCache::GetSimpleVertexShader(), // StaticShaderCache::GetSimpleVertexShaderInputLayout(), D3D12_SHADER_BYTECODE(), gamma, 0, // DXGI_FORMAT_R8G8B8A8_UNORM, false, s_3d_vision_texture->GetMultisampled()); // D3D::current_command_list->RSSetViewports(1, &rightVp12); // D3D::DrawShadedTexQuad(src_texture, src.AsRECT(), src_width, src_height, // StaticShaderCache::GetColorCopyPixelShader(false), // StaticShaderCache::GetSimpleVertexShader(), // StaticShaderCache::GetSimpleVertexShaderInputLayout(), D3D12_SHADER_BYTECODE(), gamma, 1, // DXGI_FORMAT_R8G8B8A8_UNORM, false, s_3d_vision_texture->GetMultisampled()); //// Copy the left eye to the backbuffer, if Nvidia 3D Vision is enabled it should //// recognize the signature and automatically include the right eye frame. //// D3D12TODO: Does this work on D3D12? // D3D12_BOX box = CD3DX12_BOX(0, 0, 0, s_backbuffer_width, s_backbuffer_height, 1); // D3D12_TEXTURE_COPY_LOCATION dst = // CD3DX12_TEXTURE_COPY_LOCATION(D3D::GetBackBuffer()->GetTex12(), 0); // D3D12_TEXTURE_COPY_LOCATION src = // CD3DX12_TEXTURE_COPY_LOCATION(s_3d_vision_texture->GetTex12(), 0); // D3D::GetBackBuffer()->TransitionToResourceState(D3D::current_command_list, // D3D12_RESOURCE_STATE_COPY_DEST); // s_3d_vision_texture->TransitionToResourceState(D3D::current_command_list, // D3D12_RESOURCE_STATE_COPY_SOURCE); // D3D::current_command_list->CopyTextureRegion(&dst, 0, 0, 0, &src, &box); //// Restore render target to backbuffer // D3D::GetBackBuffer()->TransitionToResourceState(D3D::current_command_list, // D3D12_RESOURCE_STATE_RENDER_TARGET); // D3D::current_command_list->OMSetRenderTargets(1, &D3D::GetBackBuffer()->GetRTV12(), FALSE, // nullptr); } else { D3D::SetViewportAndScissor(dst.left, dst.top, dst.GetWidth(), dst.GetHeight()); D3D::DrawShadedTexQuad(src_texture, src.AsRECT(), src_width, src_height, (g_Config.iStereoMode == STEREO_ANAGLYPH) ? StaticShaderCache::GetAnaglyphPixelShader() : StaticShaderCache::GetColorCopyPixelShader(false), StaticShaderCache::GetSimpleVertexShader(), StaticShaderCache::GetSimpleVertexShaderInputLayout(), D3D12_SHADER_BYTECODE(), gamma, 0, DXGI_FORMAT_R8G8B8A8_UNORM, false, false // Backbuffer never multisampled. ); } } D3D12_BLEND_DESC Renderer::GetResetBlendDesc() { return g_reset_blend_desc; } D3D12_DEPTH_STENCIL_DESC Renderer::GetResetDepthStencilDesc() { return g_reset_depth_desc; } D3D12_RASTERIZER_DESC Renderer::GetResetRasterizerDesc() { return g_reset_rast_desc; } } // namespace DX12