// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include #include "Core/HW/Memmap.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoader.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoCommon.h" static int s_attr_dirty; // bitfield static NativeVertexFormat* s_current_vtx_fmt; static VertexLoader *g_VertexLoaders[8]; namespace std { template <> struct hash { size_t operator()(const VertexLoaderUID& uid) const { return uid.GetHash(); } }; } typedef std::unordered_map VertexLoaderMap; typedef std::map> NativeVertexLoaderMap; namespace VertexLoaderManager { static VertexLoaderMap g_VertexLoaderMap; static NativeVertexLoaderMap s_native_vertex_map; // TODO - change into array of pointers. Keep a map of all seen so far. void Init() { MarkAllDirty(); for (VertexLoader*& vertexLoader : g_VertexLoaders) vertexLoader = nullptr; RecomputeCachedArraybases(); } void Shutdown() { for (auto& p : g_VertexLoaderMap) { delete p.second; } g_VertexLoaderMap.clear(); s_native_vertex_map.clear(); } namespace { struct entry { std::string text; u64 num_verts; bool operator < (const entry &other) const { return num_verts > other.num_verts; } }; } void AppendListToString(std::string *dest) { std::vector entries; size_t total_size = 0; for (const auto& map_entry : g_VertexLoaderMap) { entry e; map_entry.second->AppendToString(&e.text); e.num_verts = map_entry.second->GetNumLoadedVerts(); entries.push_back(e); total_size += e.text.size() + 1; } sort(entries.begin(), entries.end()); dest->reserve(dest->size() + total_size); for (const entry& entry : entries) { dest->append(entry.text); } } void MarkAllDirty() { s_attr_dirty = 0xff; } static VertexLoader* RefreshLoader(int vtx_attr_group) { if ((s_attr_dirty >> vtx_attr_group) & 1) { VertexLoaderUID uid(g_VtxDesc, g_VtxAttr[vtx_attr_group]); VertexLoaderMap::iterator iter = g_VertexLoaderMap.find(uid); if (iter != g_VertexLoaderMap.end()) { g_VertexLoaders[vtx_attr_group] = iter->second; } else { VertexLoader *loader = new VertexLoader(g_VtxDesc, g_VtxAttr[vtx_attr_group]); g_VertexLoaderMap[uid] = loader; g_VertexLoaders[vtx_attr_group] = loader; INCSTAT(stats.numVertexLoaders); } } s_attr_dirty &= ~(1 << vtx_attr_group); return g_VertexLoaders[vtx_attr_group]; } static NativeVertexFormat* GetNativeVertexFormat(const PortableVertexDeclaration& format, u32 components) { auto& native = s_native_vertex_map[format]; if (!native) { auto raw_pointer = g_vertex_manager->CreateNativeVertexFormat(); native = std::unique_ptr(raw_pointer); native->Initialize(format); native->m_components = components; } return native.get(); } void RunVertices(int vtx_attr_group, int primitive, int count) { if (!count) return; VertexLoader* loader = RefreshLoader(vtx_attr_group); if (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5) { // if cull mode is CULL_ALL, ignore triangles and quads DataSkip(count * loader->GetVertexSize()); return; } // If the native vertex format changed, force a flush. NativeVertexFormat* required_vtx_fmt = GetNativeVertexFormat( loader->GetNativeVertexDeclaration(), loader->GetNativeComponents()); if (required_vtx_fmt != s_current_vtx_fmt) VertexManager::Flush(); s_current_vtx_fmt = required_vtx_fmt; VertexManager::PrepareForAdditionalData(primitive, count, loader->GetNativeVertexDeclaration().stride); loader->RunVertices(g_VtxAttr[vtx_attr_group], primitive, count); IndexGenerator::AddIndices(primitive, count); ADDSTAT(stats.thisFrame.numPrims, count); INCSTAT(stats.thisFrame.numPrimitiveJoins); } int GetVertexSize(int vtx_attr_group) { return RefreshLoader(vtx_attr_group)->GetVertexSize(); } NativeVertexFormat* GetCurrentVertexFormat() { return s_current_vtx_fmt; } } // namespace void LoadCPReg(u32 sub_cmd, u32 value) { switch (sub_cmd & 0xF0) { case 0x30: VertexShaderManager::SetTexMatrixChangedA(value); break; case 0x40: VertexShaderManager::SetTexMatrixChangedB(value); break; case 0x50: g_VtxDesc.Hex &= ~0x1FFFF; // keep the Upper bits g_VtxDesc.Hex |= value; s_attr_dirty = 0xFF; break; case 0x60: g_VtxDesc.Hex &= 0x1FFFF; // keep the lower 17Bits g_VtxDesc.Hex |= (u64)value << 17; s_attr_dirty = 0xFF; break; case 0x70: _assert_((sub_cmd & 0x0F) < 8); g_VtxAttr[sub_cmd & 7].g0.Hex = value; s_attr_dirty |= 1 << (sub_cmd & 7); break; case 0x80: _assert_((sub_cmd & 0x0F) < 8); g_VtxAttr[sub_cmd & 7].g1.Hex = value; s_attr_dirty |= 1 << (sub_cmd & 7); break; case 0x90: _assert_((sub_cmd & 0x0F) < 8); g_VtxAttr[sub_cmd & 7].g2.Hex = value; s_attr_dirty |= 1 << (sub_cmd & 7); break; // Pointers to vertex arrays in GC RAM case 0xA0: arraybases[sub_cmd & 0xF] = value; cached_arraybases[sub_cmd & 0xF] = Memory::GetPointer(value); break; case 0xB0: arraystrides[sub_cmd & 0xF] = value & 0xFF; break; } } void FillCPMemoryArray(u32 *memory) { memory[0x30] = MatrixIndexA.Hex; memory[0x40] = MatrixIndexB.Hex; memory[0x50] = (u32)g_VtxDesc.Hex; memory[0x60] = (u32)(g_VtxDesc.Hex >> 17); for (int i = 0; i < 8; ++i) { memory[0x70 + i] = g_VtxAttr[i].g0.Hex; memory[0x80 + i] = g_VtxAttr[i].g1.Hex; memory[0x90 + i] = g_VtxAttr[i].g2.Hex; } for (int i = 0; i < 16; ++i) { memory[0xA0 + i] = arraybases[i]; memory[0xB0 + i] = arraystrides[i]; } } void RecomputeCachedArraybases() { for (int i = 0; i < 16; i++) { cached_arraybases[i] = Memory::GetPointer(arraybases[i]); } }