// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/VertexShaderManager.h" #include #include #include #include #include "Common/BitSet.h" #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/Config/Config.h" #include "Common/Logging/Log.h" #include "Common/Matrix.h" #include "Core/Config/GraphicsSettings.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/FreeLookCamera.h" #include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModActionData.h" #include "VideoCommon/GraphicsModSystem/Runtime/GraphicsModManager.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" #include "VideoCommon/XFStateManager.h" void VertexShaderManager::Init() { // Initialize state tracking variables m_projection_graphics_mod_change = false; constants = {}; // TODO: should these go inside ResetView()? m_viewport_correction = Common::Matrix44::Identity(); m_projection_matrix = Common::Matrix44::Identity().data; dirty = true; } Common::Matrix44 VertexShaderManager::LoadProjectionMatrix() { const auto& rawProjection = xfmem.projection.rawProjection; switch (xfmem.projection.type) { case ProjectionType::Perspective: { const Common::Vec2 fov_multiplier = g_freelook_camera.IsActive() ? g_freelook_camera.GetFieldOfViewMultiplier() : Common::Vec2{1, 1}; m_projection_matrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW * fov_multiplier.x; m_projection_matrix[1] = 0.0f; m_projection_matrix[2] = rawProjection[1] * g_ActiveConfig.fAspectRatioHackW * fov_multiplier.x; m_projection_matrix[3] = 0.0f; m_projection_matrix[4] = 0.0f; m_projection_matrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH * fov_multiplier.y; m_projection_matrix[6] = rawProjection[3] * g_ActiveConfig.fAspectRatioHackH * fov_multiplier.y; m_projection_matrix[7] = 0.0f; m_projection_matrix[8] = 0.0f; m_projection_matrix[9] = 0.0f; m_projection_matrix[10] = rawProjection[4]; m_projection_matrix[11] = rawProjection[5]; m_projection_matrix[12] = 0.0f; m_projection_matrix[13] = 0.0f; m_projection_matrix[14] = -1.0f; m_projection_matrix[15] = 0.0f; g_stats.gproj = m_projection_matrix; } break; case ProjectionType::Orthographic: { m_projection_matrix[0] = rawProjection[0]; m_projection_matrix[1] = 0.0f; m_projection_matrix[2] = 0.0f; m_projection_matrix[3] = rawProjection[1]; m_projection_matrix[4] = 0.0f; m_projection_matrix[5] = rawProjection[2]; m_projection_matrix[6] = 0.0f; m_projection_matrix[7] = rawProjection[3]; m_projection_matrix[8] = 0.0f; m_projection_matrix[9] = 0.0f; m_projection_matrix[10] = rawProjection[4]; m_projection_matrix[11] = rawProjection[5]; m_projection_matrix[12] = 0.0f; m_projection_matrix[13] = 0.0f; m_projection_matrix[14] = 0.0f; m_projection_matrix[15] = 1.0f; g_stats.g2proj = m_projection_matrix; g_stats.proj = rawProjection; } break; default: ERROR_LOG_FMT(VIDEO, "Unknown projection type: {}", xfmem.projection.type); } PRIM_LOG("Projection: {} {} {} {} {} {}", rawProjection[0], rawProjection[1], rawProjection[2], rawProjection[3], rawProjection[4], rawProjection[5]); auto corrected_matrix = m_viewport_correction * Common::Matrix44::FromArray(m_projection_matrix); if (g_freelook_camera.IsActive() && xfmem.projection.type == ProjectionType::Perspective) corrected_matrix *= g_freelook_camera.GetView(); g_freelook_camera.GetController()->SetClean(); return corrected_matrix; } void VertexShaderManager::SetProjectionMatrix(XFStateManager& xf_state_manager) { if (xf_state_manager.DidProjectionChange() || g_freelook_camera.GetController()->IsDirty()) { xf_state_manager.ResetProjection(); auto corrected_matrix = LoadProjectionMatrix(); memcpy(constants.projection.data(), corrected_matrix.data.data(), 4 * sizeof(float4)); } } bool VertexShaderManager::UseVertexDepthRange() { // We can't compute the depth range in the vertex shader if we don't support depth clamp. if (!g_ActiveConfig.backend_info.bSupportsDepthClamp) return false; // We need a full depth range if a ztexture is used. if (bpmem.ztex2.op != ZTexOp::Disabled && !bpmem.zcontrol.early_ztest) return true; // If an inverted depth range is unsupported, we also need to check if the range is inverted. if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f) return true; // If an oversized depth range or a ztexture is used, we need to calculate the depth range // in the vertex shader. return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f; } // Syncs the shader constant buffers with xfmem // TODO: A cleaner way to control the matrices without making a mess in the parameters field void VertexShaderManager::SetConstants(const std::vector& textures, XFStateManager& xf_state_manager) { if (constants.missing_color_hex != g_ActiveConfig.iMissingColorValue) { const float a = (g_ActiveConfig.iMissingColorValue) & 0xFF; const float b = (g_ActiveConfig.iMissingColorValue >> 8) & 0xFF; const float g = (g_ActiveConfig.iMissingColorValue >> 16) & 0xFF; const float r = (g_ActiveConfig.iMissingColorValue >> 24) & 0xFF; constants.missing_color_hex = g_ActiveConfig.iMissingColorValue; constants.missing_color_value = {r / 255, g / 255, b / 255, a / 255}; dirty = true; } const auto per_vertex_transform_matrix_changes = xf_state_manager.GetPerVertexTransformMatrixChanges(); if (per_vertex_transform_matrix_changes[0] >= 0) { int startn = per_vertex_transform_matrix_changes[0] / 4; int endn = (per_vertex_transform_matrix_changes[1] + 3) / 4; memcpy(constants.transformmatrices[startn].data(), &xfmem.posMatrices[startn * 4], (endn - startn) * sizeof(float4)); dirty = true; xf_state_manager.ResetPerVertexTransformMatrixChanges(); } const auto per_vertex_normal_matrices_changed = xf_state_manager.GetPerVertexNormalMatrixChanges(); if (per_vertex_normal_matrices_changed[0] >= 0) { int startn = per_vertex_normal_matrices_changed[0] / 3; int endn = (per_vertex_normal_matrices_changed[1] + 2) / 3; for (int i = startn; i < endn; i++) { memcpy(constants.normalmatrices[i].data(), &xfmem.normalMatrices[3 * i], 12); } dirty = true; xf_state_manager.ResetPerVertexNormalMatrixChanges(); } const auto post_transform_matrices_changed = xf_state_manager.GetPostTransformMatrixChanges(); if (post_transform_matrices_changed[0] >= 0) { int startn = post_transform_matrices_changed[0] / 4; int endn = (post_transform_matrices_changed[1] + 3) / 4; memcpy(constants.posttransformmatrices[startn].data(), &xfmem.postMatrices[startn * 4], (endn - startn) * sizeof(float4)); dirty = true; xf_state_manager.ResetPostTransformMatrixChanges(); } const auto light_changes = xf_state_manager.GetLightsChanged(); if (light_changes[0] >= 0) { // TODO: Outdated comment // lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats const int istart = light_changes[0] / 0x10; const int iend = (light_changes[1] + 15) / 0x10; for (int i = istart; i < iend; ++i) { const Light& light = xfmem.lights[i]; VertexShaderConstants::Light& dstlight = constants.lights[i]; // xfmem.light.color is packed as abgr in u8[4], so we have to swap the order dstlight.color[0] = light.color[3]; dstlight.color[1] = light.color[2]; dstlight.color[2] = light.color[1]; dstlight.color[3] = light.color[0]; dstlight.cosatt[0] = light.cosatt[0]; dstlight.cosatt[1] = light.cosatt[1]; dstlight.cosatt[2] = light.cosatt[2]; if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f && fabs(light.distatt[2]) < 0.00001f) { // dist attenuation, make sure not equal to 0!!! dstlight.distatt[0] = .00001f; } else { dstlight.distatt[0] = light.distatt[0]; } dstlight.distatt[1] = light.distatt[1]; dstlight.distatt[2] = light.distatt[2]; dstlight.pos[0] = light.dpos[0]; dstlight.pos[1] = light.dpos[1]; dstlight.pos[2] = light.dpos[2]; // TODO: Hardware testing is needed to confirm that this normalization is correct auto sanitize = [](float f) { if (std::isnan(f)) return 0.0f; else if (std::isinf(f)) return f > 0.0f ? 1.0f : -1.0f; else return f; }; double norm = double(light.ddir[0]) * double(light.ddir[0]) + double(light.ddir[1]) * double(light.ddir[1]) + double(light.ddir[2]) * double(light.ddir[2]); norm = 1.0 / sqrt(norm); dstlight.dir[0] = sanitize(static_cast(light.ddir[0] * norm)); dstlight.dir[1] = sanitize(static_cast(light.ddir[1] * norm)); dstlight.dir[2] = sanitize(static_cast(light.ddir[2] * norm)); } dirty = true; xf_state_manager.ResetLightsChanged(); } for (int i : xf_state_manager.GetMaterialChanges()) { u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i]; constants.materials[i][0] = (data >> 24) & 0xFF; constants.materials[i][1] = (data >> 16) & 0xFF; constants.materials[i][2] = (data >> 8) & 0xFF; constants.materials[i][3] = data & 0xFF; dirty = true; } xf_state_manager.ResetMaterialChanges(); if (xf_state_manager.DidPosNormalChange()) { xf_state_manager.ResetPosNormalChange(); const float* pos = &xfmem.posMatrices[g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4]; const float* norm = &xfmem.normalMatrices[3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31)]; memcpy(constants.posnormalmatrix.data(), pos, 3 * sizeof(float4)); memcpy(constants.posnormalmatrix[3].data(), norm, 3 * sizeof(float)); memcpy(constants.posnormalmatrix[4].data(), norm + 3, 3 * sizeof(float)); memcpy(constants.posnormalmatrix[5].data(), norm + 6, 3 * sizeof(float)); dirty = true; } if (xf_state_manager.DidTexMatrixAChange()) { xf_state_manager.ResetTexMatrixAChange(); const std::array pos_matrix_ptrs{ &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4], }; for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i) { memcpy(constants.texmatrices[3 * i].data(), pos_matrix_ptrs[i], 3 * sizeof(float4)); } dirty = true; } if (xf_state_manager.DidTexMatrixBChange()) { xf_state_manager.ResetTexMatrixBChange(); const std::array pos_matrix_ptrs{ &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4], &xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4], }; for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i) { memcpy(constants.texmatrices[3 * i + 12].data(), pos_matrix_ptrs[i], 3 * sizeof(float4)); } dirty = true; } if (xf_state_manager.DidViewportChange()) { xf_state_manager.ResetViewportChange(); // The console GPU places the pixel center at 7/12 unless antialiasing // is enabled, while D3D and OpenGL place it at 0.5. See the comment // in VertexShaderGen.cpp for details. // NOTE: If we ever emulate antialiasing, the sample locations set by // BP registers 0x01-0x04 need to be considered here. const float pixel_center_correction = 7.0f / 12.0f - 0.5f; const bool bUseVertexRounding = g_ActiveConfig.UseVertexRounding(); const float viewport_width = bUseVertexRounding ? (2.f * xfmem.viewport.wd) : g_framebuffer_manager->EFBToScaledXf(2.f * xfmem.viewport.wd); const float viewport_height = bUseVertexRounding ? (2.f * xfmem.viewport.ht) : g_framebuffer_manager->EFBToScaledXf(2.f * xfmem.viewport.ht); const float pixel_size_x = 2.f / viewport_width; const float pixel_size_y = 2.f / viewport_height; constants.pixelcentercorrection[0] = pixel_center_correction * pixel_size_x; constants.pixelcentercorrection[1] = pixel_center_correction * pixel_size_y; // By default we don't change the depth value at all in the vertex shader. constants.pixelcentercorrection[2] = 1.0f; constants.pixelcentercorrection[3] = 0.0f; constants.viewport[0] = (2.f * xfmem.viewport.wd); constants.viewport[1] = (2.f * xfmem.viewport.ht); if (UseVertexDepthRange()) { // Oversized depth ranges are handled in the vertex shader. We need to reverse // the far value to use the reversed-Z trick. if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange) { // Sometimes the console also tries to use the reversed-Z trick. We can only do // that with the expected accuracy if the backend can reverse the depth range. constants.pixelcentercorrection[2] = fabs(xfmem.viewport.zRange) / 16777215.0f; if (xfmem.viewport.zRange < 0.0f) constants.pixelcentercorrection[3] = xfmem.viewport.farZ / 16777215.0f; else constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f; } else { // For backends that don't support reversing the depth range we can still render // cases where the console uses the reversed-Z trick. But we simply can't provide // the expected accuracy, which might result in z-fighting. constants.pixelcentercorrection[2] = xfmem.viewport.zRange / 16777215.0f; constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f; } } dirty = true; BPFunctions::SetScissorAndViewport(); g_stats.AddScissorRect(); } std::vector projection_actions; if (g_ActiveConfig.bGraphicMods) { for (const auto& action : g_graphics_mod_manager->GetProjectionActions(xfmem.projection.type)) { projection_actions.push_back(action); } for (const auto& texture : textures) { for (const auto& action : g_graphics_mod_manager->GetProjectionTextureActions(xfmem.projection.type, texture)) { projection_actions.push_back(action); } } } if (xf_state_manager.DidProjectionChange() || g_freelook_camera.GetController()->IsDirty() || !projection_actions.empty() || m_projection_graphics_mod_change) { xf_state_manager.ResetProjection(); m_projection_graphics_mod_change = !projection_actions.empty(); auto corrected_matrix = LoadProjectionMatrix(); GraphicsModActionData::Projection projection{&corrected_matrix}; for (const auto& action : projection_actions) { action->OnProjection(&projection); } memcpy(constants.projection.data(), corrected_matrix.data.data(), 4 * sizeof(float4)); dirty = true; } if (xf_state_manager.DidTexMatrixInfoChange()) { xf_state_manager.ResetTexMatrixInfoChange(); constants.xfmem_dualTexInfo = xfmem.dualTexTrans.enabled; for (size_t i = 0; i < std::size(xfmem.texMtxInfo); i++) constants.xfmem_pack1[i][0] = xfmem.texMtxInfo[i].hex; for (size_t i = 0; i < std::size(xfmem.postMtxInfo); i++) constants.xfmem_pack1[i][1] = xfmem.postMtxInfo[i].hex; dirty = true; } if (xf_state_manager.DidLightingConfigChange()) { xf_state_manager.ResetLightingConfigChange(); for (size_t i = 0; i < 2; i++) { constants.xfmem_pack1[i][2] = xfmem.color[i].hex; constants.xfmem_pack1[i][3] = xfmem.alpha[i].hex; } constants.xfmem_numColorChans = xfmem.numChan.numColorChans; dirty = true; } } void VertexShaderManager::TransformToClipSpace(const float* data, float* out, u32 MtxIdx) { const float* world_matrix = &xfmem.posMatrices[(MtxIdx & 0x3f) * 4]; // We use the projection matrix calculated by VertexShaderManager, because it // includes any free look transformations. // Make sure VertexShaderManager::SetConstants() has been called first. const float* proj_matrix = &m_projection_matrix[0]; const float t[3] = {data[0] * world_matrix[0] + data[1] * world_matrix[1] + data[2] * world_matrix[2] + world_matrix[3], data[0] * world_matrix[4] + data[1] * world_matrix[5] + data[2] * world_matrix[6] + world_matrix[7], data[0] * world_matrix[8] + data[1] * world_matrix[9] + data[2] * world_matrix[10] + world_matrix[11]}; out[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3]; out[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7]; out[2] = t[0] * proj_matrix[8] + t[1] * proj_matrix[9] + t[2] * proj_matrix[10] + proj_matrix[11]; out[3] = t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15]; } void VertexShaderManager::DoState(PointerWrap& p) { p.DoArray(m_projection_matrix); p.Do(m_viewport_correction); g_freelook_camera.DoState(p); p.Do(constants); if (p.IsReadMode()) { dirty = true; } }