// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include "Common/CommonTypes.h" #include "Common/MathUtil.h" namespace MathUtil { u32 ClassifyDouble(double dvalue) { // TODO: Optimize the below to be as fast as possible. IntDouble value(dvalue); u64 sign = value.i & DOUBLE_SIGN; u64 exp = value.i & DOUBLE_EXP; if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } else { u64 mantissa = value.i & DOUBLE_FRAC; if (mantissa) { if (exp) { return PPC_FPCLASS_QNAN; } else { // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } } else if (exp) { //Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } else { //Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } } } u32 ClassifyFloat(float fvalue) { // TODO: Optimize the below to be as fast as possible. IntFloat value(fvalue); u32 sign = value.i & FLOAT_SIGN; u32 exp = value.i & FLOAT_EXP; if (exp > FLOAT_ZERO && exp < FLOAT_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } else { u32 mantissa = value.i & FLOAT_FRAC; if (mantissa) { if (exp) { return PPC_FPCLASS_QNAN; // Quiet NAN } else { // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } } else if (exp) { // Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } else { //Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } } } const int frsqrte_expected_base[] = { 0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000, 0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000, 0x2881000, 0x2665000, 0x2468000, 0x2287000, 0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000, 0x1a7e800, 0x17cb800, 0x1552800, 0x130c000, 0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000, 0x09e5000, 0x0867000, 0x06ff000, 0x05ab800, 0x046a000, 0x0339800, 0x0218800, 0x0105800, }; const int frsqrte_expected_dec[] = { 0x7a4, 0x700, 0x670, 0x5f2, 0x584, 0x524, 0x4cc, 0x47e, 0x43a, 0x3fa, 0x3c2, 0x38e, 0x35e, 0x332, 0x30a, 0x2e6, 0x568, 0x4f3, 0x48d, 0x435, 0x3e7, 0x3a2, 0x365, 0x32e, 0x2fc, 0x2d0, 0x2a8, 0x283, 0x261, 0x243, 0x226, 0x20b, }; double ApproximateReciprocalSquareRoot(double val) { union { double valf; s64 vali; }; valf = val; s64 mantissa = vali & ((1LL << 52) - 1); s64 sign = vali & (1ULL << 63); s64 exponent = vali & (0x7FFLL << 52); // Special case 0 if (mantissa == 0 && exponent == 0) return sign ? -std::numeric_limits::infinity() : std::numeric_limits::infinity(); // Special case NaN-ish numbers if (exponent == (0x7FFLL << 52)) { if (mantissa == 0) { if (sign) return std::numeric_limits::quiet_NaN(); return 0.0; } return 0.0 + valf; } // Negative numbers return NaN if (sign) return std::numeric_limits::quiet_NaN(); if (!exponent) { // "Normalize" denormal values do { exponent -= 1LL << 52; mantissa <<= 1; } while (!(mantissa & (1LL << 52))); mantissa &= (1LL << 52) - 1; exponent += 1LL << 52; } bool odd_exponent = !(exponent & (1LL << 52)); exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52); int i = (int)(mantissa >> 37); vali = sign | exponent; int index = i / 2048 + (odd_exponent ? 16 : 0); vali |= (s64)(frsqrte_expected_base[index] - frsqrte_expected_dec[index] * (i % 2048)) << 26; return valf; } const int fres_expected_base[] = { 0x7ff800, 0x783800, 0x70ea00, 0x6a0800, 0x638800, 0x5d6200, 0x579000, 0x520800, 0x4cc800, 0x47ca00, 0x430800, 0x3e8000, 0x3a2c00, 0x360800, 0x321400, 0x2e4a00, 0x2aa800, 0x272c00, 0x23d600, 0x209e00, 0x1d8800, 0x1a9000, 0x17ae00, 0x14f800, 0x124400, 0x0fbe00, 0x0d3800, 0x0ade00, 0x088400, 0x065000, 0x041c00, 0x020c00, }; const int fres_expected_dec[] = { 0x3e1, 0x3a7, 0x371, 0x340, 0x313, 0x2ea, 0x2c4, 0x2a0, 0x27f, 0x261, 0x245, 0x22a, 0x212, 0x1fb, 0x1e5, 0x1d1, 0x1be, 0x1ac, 0x19b, 0x18b, 0x17c, 0x16e, 0x15b, 0x15b, 0x143, 0x143, 0x12d, 0x12d, 0x11a, 0x11a, 0x108, 0x106, }; // Used by fres and ps_res. double ApproximateReciprocal(double val) { union { double valf; s64 vali; }; valf = val; s64 mantissa = vali & ((1LL << 52) - 1); s64 sign = vali & (1ULL << 63); s64 exponent = vali & (0x7FFLL << 52); // Special case 0 if (mantissa == 0 && exponent == 0) return sign ? -std::numeric_limits::infinity() : std::numeric_limits::infinity(); // Special case NaN-ish numbers if (exponent == (0x7FFLL << 52)) { if (mantissa == 0) return sign ? -0.0 : 0.0; return 0.0 + valf; } // Special case small inputs if (exponent < (895LL << 52)) return sign ? -std::numeric_limits::max() : std::numeric_limits::max(); // Special case large inputs if (exponent >= (1149LL << 52)) return sign ? -0.0f : 0.0f; exponent = (0x7FDLL << 52) - exponent; int i = (int)(mantissa >> 37); vali = sign | exponent; vali |= (s64)(fres_expected_base[i / 1024] - (fres_expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29; return valf; } } // namespace inline void MatrixMul(int n, const float *a, const float *b, float *result) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { float temp = 0; for (int k = 0; k < n; ++k) { temp += a[i * n + k] * b[k * n + j]; } result[i * n + j] = temp; } } } // Calculate sum of a float list float MathFloatVectorSum(const std::vector& Vec) { return std::accumulate(Vec.begin(), Vec.end(), 0.0f); } void Matrix33::LoadIdentity(Matrix33 &mtx) { memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1.0f; mtx.data[4] = 1.0f; mtx.data[8] = 1.0f; } void Matrix33::RotateX(Matrix33 &mtx, float rad) { float s = sin(rad); float c = cos(rad); memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1; mtx.data[4] = c; mtx.data[5] = -s; mtx.data[7] = s; mtx.data[8] = c; } void Matrix33::RotateY(Matrix33 &mtx, float rad) { float s = sin(rad); float c = cos(rad); memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = c; mtx.data[2] = s; mtx.data[4] = 1; mtx.data[6] = -s; mtx.data[8] = c; } void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result) { MatrixMul(3, a.data, b.data, result.data); } void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3]) { for (int i = 0; i < 3; ++i) { result[i] = 0; for (int k = 0; k < 3; ++k) { result[i] += a.data[i * 3 + k] * vec[k]; } } } void Matrix44::LoadIdentity(Matrix44 &mtx) { memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1.0f; mtx.data[5] = 1.0f; mtx.data[10] = 1.0f; mtx.data[15] = 1.0f; } void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { mtx.data[i * 4 + j] = m33.data[i * 3 + j]; } } for (int i = 0; i < 3; ++i) { mtx.data[i * 4 + 3] = 0; mtx.data[i + 12] = 0; } mtx.data[15] = 1.0f; } void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16]) { for (int i = 0; i < 16; ++i) { mtx.data[i] = mtxArray[i]; } } void Matrix44::Translate(Matrix44 &mtx, const float vec[3]) { LoadIdentity(mtx); mtx.data[3] = vec[0]; mtx.data[7] = vec[1]; mtx.data[11] = vec[2]; } void Matrix44::Shear(Matrix44 &mtx, const float a, const float b) { LoadIdentity(mtx); mtx.data[2] = a; mtx.data[6] = b; } void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result) { MatrixMul(4, a.data, b.data, result.data); }