// Copyright 2014 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #pragma once #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/MemoryUtil.h" namespace Common { // Everything that needs to generate code should inherit from this. // You get memory management for free, plus, you can use all emitter functions without // having to prefix them with gen-> or something similar. // Example implementation: // class JIT : public CodeBlock {} template class CodeBlock : public T { private: // A privately used function to set the executable RAM space to something invalid. // For debugging usefulness it should be used to set the RAM to a host specific breakpoint // instruction virtual void PoisonMemory() = 0; protected: u8* region = nullptr; // Size of region we can use. size_t region_size = 0; // Original size of the region we allocated. size_t total_region_size = 0; bool m_is_child = false; std::vector m_children; public: CodeBlock() = default; virtual ~CodeBlock() { if (region) FreeCodeSpace(); } CodeBlock(const CodeBlock&) = delete; CodeBlock& operator=(const CodeBlock&) = delete; CodeBlock(CodeBlock&&) = delete; CodeBlock& operator=(CodeBlock&&) = delete; // Call this before you generate any code. void AllocCodeSpace(size_t size) { region_size = size; total_region_size = size; if constexpr (executable) region = static_cast(Common::AllocateExecutableMemory(total_region_size)); else region = static_cast(Common::AllocateMemoryPages(total_region_size)); T::SetCodePtr(region, region + size); } // Always clear code space with breakpoints, so that if someone accidentally executes // uninitialized, it just breaks into the debugger. void ClearCodeSpace() { PoisonMemory(); ResetCodePtr(); } // Call this when shutting down. Don't rely on the destructor, even though it'll do the job. void FreeCodeSpace() { ASSERT(!m_is_child); Common::FreeMemoryPages(region, total_region_size); region = nullptr; region_size = 0; total_region_size = 0; for (CodeBlock* child : m_children) { child->region = nullptr; child->region_size = 0; child->total_region_size = 0; } } bool IsInSpace(const u8* ptr) const { return ptr >= region && ptr < (region + region_size); } bool IsInSpaceOrChildSpace(const u8* ptr) const { return ptr >= region && ptr < (region + total_region_size); } void WriteProtect(bool allow_execute) { Common::WriteProtectMemory(region, region_size, allow_execute); } void UnWriteProtect(bool allow_execute) { Common::UnWriteProtectMemory(region, region_size, allow_execute); } void ResetCodePtr() { T::SetCodePtr(region, region + region_size); } size_t GetSpaceLeft() const { ASSERT(static_cast(T::GetCodePtr() - region) < region_size); return region_size - (T::GetCodePtr() - region); } bool IsAlmostFull() const { // This should be bigger than the biggest block ever. return GetSpaceLeft() < 0x10000; } bool HasChildren() const { return region_size != total_region_size; } u8* AllocChildCodeSpace(size_t child_size) { ASSERT_MSG(DYNA_REC, child_size <= GetSpaceLeft(), "Insufficient space for child allocation."); u8* child_region = region + region_size - child_size; region_size -= child_size; ResetCodePtr(); return child_region; } void AddChildCodeSpace(CodeBlock* child, size_t child_size) { u8* child_region = AllocChildCodeSpace(child_size); child->m_is_child = true; child->region = child_region; child->region_size = child_size; child->total_region_size = child_size; child->ResetCodePtr(); m_children.emplace_back(child); } }; } // namespace Common