/* * Windows CE backend for libusbx 1.0 * Copyright © 2011-2013 RealVNC Ltd. * Large portions taken from Windows backend, which is * Copyright © 2009-2010 Pete Batard * With contributions from Michael Plante, Orin Eman et al. * Parts of this code adapted from libusb-win32-v1 by Stephan Meyer * Major code testing contribution by Xiaofan Chen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "wince_usb.h" // Forward declares static int wince_clock_gettime(int clk_id, struct timespec *tp); unsigned __stdcall wince_clock_gettime_threaded(void* param); // Global variables uint64_t hires_frequency, hires_ticks_to_ps; int errno; const uint64_t epoch_time = UINT64_C(116444736000000000); // 1970.01.01 00:00:000 in MS Filetime enum windows_version windows_version = WINDOWS_CE; static int concurrent_usage = -1; // Timer thread // NB: index 0 is for monotonic and 1 is for the thread exit event HANDLE timer_thread = NULL; HANDLE timer_mutex = NULL; struct timespec timer_tp; volatile LONG request_count[2] = {0, 1}; // last one must be > 0 HANDLE timer_request[2] = { NULL, NULL }; HANDLE timer_response = NULL; HANDLE driver_handle = INVALID_HANDLE_VALUE; /* * Converts a windows error to human readable string * uses retval as errorcode, or, if 0, use GetLastError() */ #if defined(ENABLE_LOGGING) static char* windows_error_str(uint32_t retval) { static TCHAR wErr_string[ERR_BUFFER_SIZE]; static char err_string[ERR_BUFFER_SIZE]; DWORD size; size_t i; uint32_t error_code, format_error; error_code = retval?retval:GetLastError(); safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("[%d] "), error_code); size = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), &wErr_string[safe_tcslen(wErr_string)], ERR_BUFFER_SIZE - (DWORD)safe_tcslen(wErr_string), NULL); if (size == 0) { format_error = GetLastError(); if (format_error) safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("Windows error code %u (FormatMessage error code %u)"), error_code, format_error); else safe_stprintf(wErr_string, ERR_BUFFER_SIZE, _T("Unknown error code %u"), error_code); } else { // Remove CR/LF terminators for (i=safe_tcslen(wErr_string)-1; ((wErr_string[i]==0x0A) || (wErr_string[i]==0x0D)); i--) { wErr_string[i] = 0; } } if (WideCharToMultiByte(CP_ACP, 0, wErr_string, -1, err_string, ERR_BUFFER_SIZE, NULL, NULL) < 0) { strcpy(err_string, "Unable to convert error string"); } return err_string; } #endif static struct wince_device_priv *_device_priv(struct libusb_device *dev) { return (struct wince_device_priv *) dev->os_priv; } // ceusbkwrapper to libusb error code mapping static int translate_driver_error(int error) { switch (error) { case ERROR_INVALID_PARAMETER: return LIBUSB_ERROR_INVALID_PARAM; case ERROR_CALL_NOT_IMPLEMENTED: case ERROR_NOT_SUPPORTED: return LIBUSB_ERROR_NOT_SUPPORTED; case ERROR_NOT_ENOUGH_MEMORY: return LIBUSB_ERROR_NO_MEM; case ERROR_INVALID_HANDLE: return LIBUSB_ERROR_NO_DEVICE; case ERROR_BUSY: return LIBUSB_ERROR_BUSY; // Error codes that are either unexpected, or have // no suitable LIBUSB_ERROR equivilant. case ERROR_CANCELLED: case ERROR_INTERNAL_ERROR: default: return LIBUSB_ERROR_OTHER; } } static int init_dllimports() { DLL_LOAD(ceusbkwrapper.dll, UkwOpenDriver, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceList, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwReleaseDeviceList, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceAddress, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwGetDeviceDescriptor, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwGetConfigDescriptor, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwCloseDriver, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwCancelTransfer, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwIssueControlTransfer, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwClaimInterface, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwReleaseInterface, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwSetInterfaceAlternateSetting, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltHost, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwClearHaltDevice, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwGetConfig, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwSetConfig, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwResetDevice, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwKernelDriverActive, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwAttachKernelDriver, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwDetachKernelDriver, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwIssueBulkTransfer, TRUE); DLL_LOAD(ceusbkwrapper.dll, UkwIsPipeHalted, TRUE); return LIBUSB_SUCCESS; } static int init_device(struct libusb_device *dev, UKW_DEVICE drv_dev, unsigned char bus_addr, unsigned char dev_addr) { struct wince_device_priv *priv = _device_priv(dev); int r = LIBUSB_SUCCESS; dev->bus_number = bus_addr; dev->device_address = dev_addr; priv->dev = drv_dev; if (!UkwGetDeviceDescriptor(priv->dev, &(priv->desc))) { r = translate_driver_error(GetLastError()); } return r; } // Internal API functions static int wince_init(struct libusb_context *ctx) { int i, r = LIBUSB_ERROR_OTHER; HANDLE semaphore; TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID) _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF); semaphore = CreateSemaphore(NULL, 1, 1, sem_name); if (semaphore == NULL) { usbi_err(ctx, "could not create semaphore: %s", windows_error_str(0)); return LIBUSB_ERROR_NO_MEM; } // A successful wait brings our semaphore count to 0 (unsignaled) // => any concurent wait stalls until the semaphore's release if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) { usbi_err(ctx, "failure to access semaphore: %s", windows_error_str(0)); CloseHandle(semaphore); return LIBUSB_ERROR_NO_MEM; } // NB: concurrent usage supposes that init calls are equally balanced with // exit calls. If init is called more than exit, we will not exit properly if ( ++concurrent_usage == 0 ) { // First init? // Initialize pollable file descriptors init_polling(); // Load DLL imports if (init_dllimports() != LIBUSB_SUCCESS) { usbi_err(ctx, "could not resolve DLL functions"); r = LIBUSB_ERROR_NOT_SUPPORTED; goto init_exit; } // try to open a handle to the driver driver_handle = UkwOpenDriver(); if (driver_handle == INVALID_HANDLE_VALUE) { usbi_err(ctx, "could not connect to driver"); r = LIBUSB_ERROR_NOT_SUPPORTED; goto init_exit; } // Windows CE doesn't have a way of specifying thread affinity, so this code // just has to hope QueryPerformanceCounter doesn't report different values when // running on different cores. r = LIBUSB_ERROR_NO_MEM; for (i = 0; i < 2; i++) { timer_request[i] = CreateEvent(NULL, TRUE, FALSE, NULL); if (timer_request[i] == NULL) { usbi_err(ctx, "could not create timer request event %d - aborting", i); goto init_exit; } } timer_response = CreateSemaphore(NULL, 0, MAX_TIMER_SEMAPHORES, NULL); if (timer_response == NULL) { usbi_err(ctx, "could not create timer response semaphore - aborting"); goto init_exit; } timer_mutex = CreateMutex(NULL, FALSE, NULL); if (timer_mutex == NULL) { usbi_err(ctx, "could not create timer mutex - aborting"); goto init_exit; } timer_thread = CreateThread(NULL, 0, wince_clock_gettime_threaded, NULL, 0, NULL); if (timer_thread == NULL) { usbi_err(ctx, "Unable to create timer thread - aborting"); goto init_exit; } } // At this stage, either we went through full init successfully, or didn't need to r = LIBUSB_SUCCESS; init_exit: // Holds semaphore here. if (!concurrent_usage && r != LIBUSB_SUCCESS) { // First init failed? if (driver_handle != INVALID_HANDLE_VALUE) { UkwCloseDriver(driver_handle); driver_handle = INVALID_HANDLE_VALUE; } if (timer_thread) { SetEvent(timer_request[1]); // actually the signal to quit the thread. if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) { usbi_warn(ctx, "could not wait for timer thread to quit"); TerminateThread(timer_thread, 1); // shouldn't happen, but we're destroying // all objects it might have held anyway. } CloseHandle(timer_thread); timer_thread = NULL; } for (i = 0; i < 2; i++) { if (timer_request[i]) { CloseHandle(timer_request[i]); timer_request[i] = NULL; } } if (timer_response) { CloseHandle(timer_response); timer_response = NULL; } if (timer_mutex) { CloseHandle(timer_mutex); timer_mutex = NULL; } } if (r != LIBUSB_SUCCESS) --concurrent_usage; // Not expected to call libusb_exit if we failed. ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1 CloseHandle(semaphore); return r; } static void wince_exit(void) { int i; HANDLE semaphore; TCHAR sem_name[11+1+8]; // strlen(libusb_init)+'\0'+(32-bit hex PID) _stprintf(sem_name, _T("libusb_init%08X"), (unsigned int)GetCurrentProcessId()&0xFFFFFFFF); semaphore = CreateSemaphore(NULL, 1, 1, sem_name); if (semaphore == NULL) { return; } // A successful wait brings our semaphore count to 0 (unsignaled) // => any concurent wait stalls until the semaphore release if (WaitForSingleObject(semaphore, INFINITE) != WAIT_OBJECT_0) { CloseHandle(semaphore); return; } // Only works if exits and inits are balanced exactly if (--concurrent_usage < 0) { // Last exit exit_polling(); if (timer_thread) { SetEvent(timer_request[1]); // actually the signal to quit the thread. if (WAIT_OBJECT_0 != WaitForSingleObject(timer_thread, INFINITE)) { usbi_dbg("could not wait for timer thread to quit"); TerminateThread(timer_thread, 1); } CloseHandle(timer_thread); timer_thread = NULL; } for (i = 0; i < 2; i++) { if (timer_request[i]) { CloseHandle(timer_request[i]); timer_request[i] = NULL; } } if (timer_response) { CloseHandle(timer_response); timer_response = NULL; } if (timer_mutex) { CloseHandle(timer_mutex); timer_mutex = NULL; } if (driver_handle != INVALID_HANDLE_VALUE) { UkwCloseDriver(driver_handle); driver_handle = INVALID_HANDLE_VALUE; } } ReleaseSemaphore(semaphore, 1, NULL); // increase count back to 1 CloseHandle(semaphore); } static int wince_get_device_list( struct libusb_context *ctx, struct discovered_devs **discdevs) { UKW_DEVICE devices[MAX_DEVICE_COUNT]; struct discovered_devs * new_devices = *discdevs; DWORD count = 0, i; struct libusb_device *dev = NULL; unsigned char bus_addr, dev_addr; unsigned long session_id; BOOL success; DWORD release_list_offset = 0; int r = LIBUSB_SUCCESS; success = UkwGetDeviceList(driver_handle, devices, MAX_DEVICE_COUNT, &count); if (!success) { int libusbErr = translate_driver_error(GetLastError()); usbi_err(ctx, "could not get devices: %s", windows_error_str(0)); return libusbErr; } for(i = 0; i < count; ++i) { release_list_offset = i; success = UkwGetDeviceAddress(devices[i], &bus_addr, &dev_addr, &session_id); if (!success) { r = translate_driver_error(GetLastError()); usbi_err(ctx, "could not get device address for %d: %s", i, windows_error_str(0)); goto err_out; } dev = usbi_get_device_by_session_id(ctx, session_id); if (dev) { usbi_dbg("using existing device for %d/%d (session %ld)", bus_addr, dev_addr, session_id); libusb_ref_device(dev); // Release just this element in the device list (as we already hold a // reference to it). UkwReleaseDeviceList(driver_handle, &devices[i], 1); release_list_offset++; } else { usbi_dbg("allocating new device for %d/%d (session %ld)", bus_addr, dev_addr, session_id); dev = usbi_alloc_device(ctx, session_id); if (!dev) { r = LIBUSB_ERROR_NO_MEM; goto err_out; } r = init_device(dev, devices[i], bus_addr, dev_addr); if (r < 0) goto err_out; r = usbi_sanitize_device(dev); if (r < 0) goto err_out; } new_devices = discovered_devs_append(new_devices, dev); if (!discdevs) { r = LIBUSB_ERROR_NO_MEM; goto err_out; } safe_unref_device(dev); } *discdevs = new_devices; return r; err_out: *discdevs = new_devices; safe_unref_device(dev); // Release the remainder of the unprocessed device list. // The devices added to new_devices already will still be passed up to libusb, // which can dispose of them at its leisure. UkwReleaseDeviceList(driver_handle, &devices[release_list_offset], count - release_list_offset); return r; } static int wince_open(struct libusb_device_handle *handle) { // Nothing to do to open devices as a handle to it has // been retrieved by wince_get_device_list return LIBUSB_SUCCESS; } static void wince_close(struct libusb_device_handle *handle) { // Nothing to do as wince_open does nothing. } static int wince_get_device_descriptor( struct libusb_device *device, unsigned char *buffer, int *host_endian) { struct wince_device_priv *priv = _device_priv(device); *host_endian = 1; memcpy(buffer, &priv->desc, DEVICE_DESC_LENGTH); return LIBUSB_SUCCESS; } static int wince_get_active_config_descriptor( struct libusb_device *device, unsigned char *buffer, size_t len, int *host_endian) { struct wince_device_priv *priv = _device_priv(device); DWORD actualSize = len; *host_endian = 0; if (!UkwGetConfigDescriptor(priv->dev, UKW_ACTIVE_CONFIGURATION, buffer, len, &actualSize)) { return translate_driver_error(GetLastError()); } return actualSize; } static int wince_get_config_descriptor( struct libusb_device *device, uint8_t config_index, unsigned char *buffer, size_t len, int *host_endian) { struct wince_device_priv *priv = _device_priv(device); DWORD actualSize = len; *host_endian = 0; if (!UkwGetConfigDescriptor(priv->dev, config_index, buffer, len, &actualSize)) { return translate_driver_error(GetLastError()); } return actualSize; } static int wince_get_configuration( struct libusb_device_handle *handle, int *config) { struct wince_device_priv *priv = _device_priv(handle->dev); UCHAR cv = 0; if (!UkwGetConfig(priv->dev, &cv)) { return translate_driver_error(GetLastError()); } (*config) = cv; return LIBUSB_SUCCESS; } static int wince_set_configuration( struct libusb_device_handle *handle, int config) { struct wince_device_priv *priv = _device_priv(handle->dev); // Setting configuration 0 places the device in Address state. // This should correspond to the "unconfigured state" required by // libusb when the specified configuration is -1. UCHAR cv = (config < 0) ? 0 : config; if (!UkwSetConfig(priv->dev, cv)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_claim_interface( struct libusb_device_handle *handle, int interface_number) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwClaimInterface(priv->dev, interface_number)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_release_interface( struct libusb_device_handle *handle, int interface_number) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, 0)) { return translate_driver_error(GetLastError()); } if (!UkwReleaseInterface(priv->dev, interface_number)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_set_interface_altsetting( struct libusb_device_handle *handle, int interface_number, int altsetting) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwSetInterfaceAlternateSetting(priv->dev, interface_number, altsetting)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_clear_halt( struct libusb_device_handle *handle, unsigned char endpoint) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwClearHaltHost(priv->dev, endpoint)) { return translate_driver_error(GetLastError()); } if (!UkwClearHaltDevice(priv->dev, endpoint)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_reset_device( struct libusb_device_handle *handle) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwResetDevice(priv->dev)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_kernel_driver_active( struct libusb_device_handle *handle, int interface_number) { struct wince_device_priv *priv = _device_priv(handle->dev); BOOL result = FALSE; if (!UkwKernelDriverActive(priv->dev, interface_number, &result)) { return translate_driver_error(GetLastError()); } return result ? 1 : 0; } static int wince_detach_kernel_driver( struct libusb_device_handle *handle, int interface_number) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwDetachKernelDriver(priv->dev, interface_number)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_attach_kernel_driver( struct libusb_device_handle *handle, int interface_number) { struct wince_device_priv *priv = _device_priv(handle->dev); if (!UkwAttachKernelDriver(priv->dev, interface_number)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static void wince_destroy_device( struct libusb_device *dev) { struct wince_device_priv *priv = _device_priv(dev); UkwReleaseDeviceList(driver_handle, &priv->dev, 1); } static void wince_clear_transfer_priv( struct usbi_transfer *itransfer) { struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer); struct winfd wfd = fd_to_winfd(transfer_priv->pollable_fd.fd); // No need to cancel transfer as it is either complete or abandoned wfd.itransfer = NULL; CloseHandle(wfd.handle); usbi_free_fd(&transfer_priv->pollable_fd); } static int wince_cancel_transfer( struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev); struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer); if (!UkwCancelTransfer(priv->dev, transfer_priv->pollable_fd.overlapped, UKW_TF_NO_WAIT)) { return translate_driver_error(GetLastError()); } return LIBUSB_SUCCESS; } static int wince_submit_control_or_bulk_transfer(struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct libusb_context *ctx = DEVICE_CTX(transfer->dev_handle->dev); struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer); struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev); BOOL direction_in, ret; struct winfd wfd; DWORD flags; HANDLE eventHandle; PUKW_CONTROL_HEADER setup = NULL; const BOOL control_transfer = transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL; transfer_priv->pollable_fd = INVALID_WINFD; if (control_transfer) { setup = (PUKW_CONTROL_HEADER) transfer->buffer; direction_in = setup->bmRequestType & LIBUSB_ENDPOINT_IN; } else { direction_in = transfer->endpoint & LIBUSB_ENDPOINT_IN; } flags = direction_in ? UKW_TF_IN_TRANSFER : UKW_TF_OUT_TRANSFER; flags |= UKW_TF_SHORT_TRANSFER_OK; eventHandle = CreateEvent(NULL, FALSE, FALSE, NULL); if (eventHandle == NULL) { usbi_err(ctx, "Failed to create event for async transfer"); return LIBUSB_ERROR_NO_MEM; } wfd = usbi_create_fd(eventHandle, direction_in ? RW_READ : RW_WRITE, itransfer, &wince_cancel_transfer); if (wfd.fd < 0) { CloseHandle(eventHandle); return LIBUSB_ERROR_NO_MEM; } transfer_priv->pollable_fd = wfd; if (control_transfer) { // Split out control setup header and data buffer DWORD bufLen = transfer->length - sizeof(UKW_CONTROL_HEADER); PVOID buf = (PVOID) &transfer->buffer[sizeof(UKW_CONTROL_HEADER)]; ret = UkwIssueControlTransfer(priv->dev, flags, setup, buf, bufLen, &transfer->actual_length, wfd.overlapped); } else { ret = UkwIssueBulkTransfer(priv->dev, flags, transfer->endpoint, transfer->buffer, transfer->length, &transfer->actual_length, wfd.overlapped); } if (!ret) { int libusbErr = translate_driver_error(GetLastError()); usbi_err(ctx, "UkwIssue%sTransfer failed: error %d", control_transfer ? "Control" : "Bulk", GetLastError()); wince_clear_transfer_priv(itransfer); return libusbErr; } usbi_add_pollfd(ctx, transfer_priv->pollable_fd.fd, direction_in ? POLLIN : POLLOUT); itransfer->flags |= USBI_TRANSFER_UPDATED_FDS; return LIBUSB_SUCCESS; } static int wince_submit_iso_transfer(struct usbi_transfer *itransfer) { return LIBUSB_ERROR_NOT_SUPPORTED; } static int wince_submit_transfer( struct usbi_transfer *itransfer) { struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); switch (transfer->type) { case LIBUSB_TRANSFER_TYPE_CONTROL: case LIBUSB_TRANSFER_TYPE_BULK: case LIBUSB_TRANSFER_TYPE_INTERRUPT: return wince_submit_control_or_bulk_transfer(itransfer); case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: return wince_submit_iso_transfer(itransfer); default: usbi_err(TRANSFER_CTX(transfer), "unknown endpoint type %d", transfer->type); return LIBUSB_ERROR_INVALID_PARAM; } } static void wince_transfer_callback(struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size) { struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); struct wince_transfer_priv *transfer_priv = (struct wince_transfer_priv*)usbi_transfer_get_os_priv(itransfer); struct wince_device_priv *priv = _device_priv(transfer->dev_handle->dev); int status; usbi_dbg("handling I/O completion with errcode %d", io_result); if (io_result == ERROR_NOT_SUPPORTED && transfer->type != LIBUSB_TRANSFER_TYPE_CONTROL) { /* For functional stalls, the WinCE USB layer (and therefore the USB Kernel Wrapper * Driver) will report USB_ERROR_STALL/ERROR_NOT_SUPPORTED in situations where the * endpoint isn't actually stalled. * * One example of this is that some devices will occasionally fail to reply to an IN * token. The WinCE USB layer carries on with the transaction until it is completed * (or cancelled) but then completes it with USB_ERROR_STALL. * * This code therefore needs to confirm that there really is a stall error, by both * checking the pipe status and requesting the endpoint status from the device. */ BOOL halted = FALSE; usbi_dbg("checking I/O completion with errcode ERROR_NOT_SUPPORTED is really a stall"); if (UkwIsPipeHalted(priv->dev, transfer->endpoint, &halted)) { /* Pipe status retrieved, so now request endpoint status by sending a GET_STATUS * control request to the device. This is done synchronously, which is a bit * naughty, but this is a special corner case. */ WORD wStatus = 0; DWORD written = 0; UKW_CONTROL_HEADER ctrlHeader; ctrlHeader.bmRequestType = LIBUSB_REQUEST_TYPE_STANDARD | LIBUSB_ENDPOINT_IN | LIBUSB_RECIPIENT_ENDPOINT; ctrlHeader.bRequest = LIBUSB_REQUEST_GET_STATUS; ctrlHeader.wValue = 0; ctrlHeader.wIndex = transfer->endpoint; ctrlHeader.wLength = sizeof(wStatus); if (UkwIssueControlTransfer(priv->dev, UKW_TF_IN_TRANSFER | UKW_TF_SEND_TO_ENDPOINT, &ctrlHeader, &wStatus, sizeof(wStatus), &written, NULL)) { if (written == sizeof(wStatus) && (wStatus & STATUS_HALT_FLAG) == 0) { if (!halted || UkwClearHaltHost(priv->dev, transfer->endpoint)) { usbi_dbg("Endpoint doesn't appear to be stalled, overriding error with success"); io_result = ERROR_SUCCESS; } else { usbi_dbg("Endpoint doesn't appear to be stalled, but the host is halted, changing error"); io_result = ERROR_IO_DEVICE; } } } } } switch(io_result) { case ERROR_SUCCESS: itransfer->transferred += io_size; status = LIBUSB_TRANSFER_COMPLETED; break; case ERROR_CANCELLED: usbi_dbg("detected transfer cancel"); status = LIBUSB_TRANSFER_CANCELLED; break; case ERROR_NOT_SUPPORTED: case ERROR_GEN_FAILURE: usbi_dbg("detected endpoint stall"); status = LIBUSB_TRANSFER_STALL; break; case ERROR_SEM_TIMEOUT: usbi_dbg("detected semaphore timeout"); status = LIBUSB_TRANSFER_TIMED_OUT; break; case ERROR_OPERATION_ABORTED: if (itransfer->flags & USBI_TRANSFER_TIMED_OUT) { usbi_dbg("detected timeout"); status = LIBUSB_TRANSFER_TIMED_OUT; } else { usbi_dbg("detected operation aborted"); status = LIBUSB_TRANSFER_CANCELLED; } break; default: usbi_err(ITRANSFER_CTX(itransfer), "detected I/O error: %s", windows_error_str(io_result)); status = LIBUSB_TRANSFER_ERROR; break; } wince_clear_transfer_priv(itransfer); if (status == LIBUSB_TRANSFER_CANCELLED) { usbi_handle_transfer_cancellation(itransfer); } else { usbi_handle_transfer_completion(itransfer, (enum libusb_transfer_status)status); } } static void wince_handle_callback (struct usbi_transfer *itransfer, uint32_t io_result, uint32_t io_size) { struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer); switch (transfer->type) { case LIBUSB_TRANSFER_TYPE_CONTROL: case LIBUSB_TRANSFER_TYPE_BULK: case LIBUSB_TRANSFER_TYPE_INTERRUPT: case LIBUSB_TRANSFER_TYPE_ISOCHRONOUS: wince_transfer_callback (itransfer, io_result, io_size); break; default: usbi_err(ITRANSFER_CTX(itransfer), "unknown endpoint type %d", transfer->type); } } static int wince_handle_events( struct libusb_context *ctx, struct pollfd *fds, POLL_NFDS_TYPE nfds, int num_ready) { struct wince_transfer_priv* transfer_priv = NULL; POLL_NFDS_TYPE i = 0; BOOL found = FALSE; struct usbi_transfer *transfer; DWORD io_size, io_result; usbi_mutex_lock(&ctx->open_devs_lock); for (i = 0; i < nfds && num_ready > 0; i++) { usbi_dbg("checking fd %d with revents = %04x", fds[i].fd, fds[i].revents); if (!fds[i].revents) { continue; } num_ready--; // Because a Windows OVERLAPPED is used for poll emulation, // a pollable fd is created and stored with each transfer usbi_mutex_lock(&ctx->flying_transfers_lock); list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) { transfer_priv = usbi_transfer_get_os_priv(transfer); if (transfer_priv->pollable_fd.fd == fds[i].fd) { found = TRUE; break; } } usbi_mutex_unlock(&ctx->flying_transfers_lock); if (found && HasOverlappedIoCompleted(transfer_priv->pollable_fd.overlapped)) { io_result = (DWORD)transfer_priv->pollable_fd.overlapped->Internal; io_size = (DWORD)transfer_priv->pollable_fd.overlapped->InternalHigh; usbi_remove_pollfd(ctx, transfer_priv->pollable_fd.fd); // let handle_callback free the event using the transfer wfd // If you don't use the transfer wfd, you run a risk of trying to free a // newly allocated wfd that took the place of the one from the transfer. wince_handle_callback(transfer, io_result, io_size); } else if (found) { usbi_err(ctx, "matching transfer for fd %x has not completed", fds[i]); return LIBUSB_ERROR_OTHER; } else { usbi_err(ctx, "could not find a matching transfer for fd %x", fds[i]); return LIBUSB_ERROR_NOT_FOUND; } } usbi_mutex_unlock(&ctx->open_devs_lock); return LIBUSB_SUCCESS; } /* * Monotonic and real time functions */ unsigned __stdcall wince_clock_gettime_threaded(void* param) { LARGE_INTEGER hires_counter, li_frequency; LONG nb_responses; int timer_index; // Init - find out if we have access to a monotonic (hires) timer if (!QueryPerformanceFrequency(&li_frequency)) { usbi_dbg("no hires timer available on this platform"); hires_frequency = 0; hires_ticks_to_ps = UINT64_C(0); } else { hires_frequency = li_frequency.QuadPart; // The hires frequency can go as high as 4 GHz, so we'll use a conversion // to picoseconds to compute the tv_nsecs part in clock_gettime hires_ticks_to_ps = UINT64_C(1000000000000) / hires_frequency; usbi_dbg("hires timer available (Frequency: %"PRIu64" Hz)", hires_frequency); } // Main loop - wait for requests while (1) { timer_index = WaitForMultipleObjects(2, timer_request, FALSE, INFINITE) - WAIT_OBJECT_0; if ( (timer_index != 0) && (timer_index != 1) ) { usbi_dbg("failure to wait on requests: %s", windows_error_str(0)); continue; } if (request_count[timer_index] == 0) { // Request already handled ResetEvent(timer_request[timer_index]); // There's still a possiblity that a thread sends a request between the // time we test request_count[] == 0 and we reset the event, in which case // the request would be ignored. The simple solution to that is to test // request_count again and process requests if non zero. if (request_count[timer_index] == 0) continue; } switch (timer_index) { case 0: WaitForSingleObject(timer_mutex, INFINITE); // Requests to this thread are for hires always if (QueryPerformanceCounter(&hires_counter) != 0) { timer_tp.tv_sec = (long)(hires_counter.QuadPart / hires_frequency); timer_tp.tv_nsec = (long)(((hires_counter.QuadPart % hires_frequency)/1000) * hires_ticks_to_ps); } else { // Fallback to real-time if we can't get monotonic value // Note that real-time clock does not wait on the mutex or this thread. wince_clock_gettime(USBI_CLOCK_REALTIME, &timer_tp); } ReleaseMutex(timer_mutex); nb_responses = InterlockedExchange((LONG*)&request_count[0], 0); if ( (nb_responses) && (ReleaseSemaphore(timer_response, nb_responses, NULL) == 0) ) { usbi_dbg("unable to release timer semaphore %d: %s", windows_error_str(0)); } continue; case 1: // time to quit usbi_dbg("timer thread quitting"); return 0; } } usbi_dbg("ERROR: broken timer thread"); return 1; } static int wince_clock_gettime(int clk_id, struct timespec *tp) { FILETIME filetime; ULARGE_INTEGER rtime; DWORD r; SYSTEMTIME st; switch(clk_id) { case USBI_CLOCK_MONOTONIC: if (hires_frequency != 0) { while (1) { InterlockedIncrement((LONG*)&request_count[0]); SetEvent(timer_request[0]); r = WaitForSingleObject(timer_response, TIMER_REQUEST_RETRY_MS); switch(r) { case WAIT_OBJECT_0: WaitForSingleObject(timer_mutex, INFINITE); *tp = timer_tp; ReleaseMutex(timer_mutex); return LIBUSB_SUCCESS; case WAIT_TIMEOUT: usbi_dbg("could not obtain a timer value within reasonable timeframe - too much load?"); break; // Retry until successful default: usbi_dbg("WaitForSingleObject failed: %s", windows_error_str(0)); return LIBUSB_ERROR_OTHER; } } } // Fall through and return real-time if monotonic was not detected @ timer init case USBI_CLOCK_REALTIME: // We follow http://msdn.microsoft.com/en-us/library/ms724928%28VS.85%29.aspx // with a predef epoch_time to have an epoch that starts at 1970.01.01 00:00 // Note however that our resolution is bounded by the Windows system time // functions and is at best of the order of 1 ms (or, usually, worse) GetSystemTime(&st); SystemTimeToFileTime(&st, &filetime); rtime.LowPart = filetime.dwLowDateTime; rtime.HighPart = filetime.dwHighDateTime; rtime.QuadPart -= epoch_time; tp->tv_sec = (long)(rtime.QuadPart / 10000000); tp->tv_nsec = (long)((rtime.QuadPart % 10000000)*100); return LIBUSB_SUCCESS; default: return LIBUSB_ERROR_INVALID_PARAM; } } const struct usbi_os_backend wince_backend = { "Windows CE", 0, wince_init, wince_exit, wince_get_device_list, NULL, /* hotplug_poll */ wince_open, wince_close, wince_get_device_descriptor, wince_get_active_config_descriptor, wince_get_config_descriptor, NULL, /* get_config_descriptor_by_value() */ wince_get_configuration, wince_set_configuration, wince_claim_interface, wince_release_interface, wince_set_interface_altsetting, wince_clear_halt, wince_reset_device, wince_kernel_driver_active, wince_detach_kernel_driver, wince_attach_kernel_driver, wince_destroy_device, wince_submit_transfer, wince_cancel_transfer, wince_clear_transfer_priv, wince_handle_events, wince_clock_gettime, sizeof(struct wince_device_priv), sizeof(struct wince_device_handle_priv), sizeof(struct wince_transfer_priv), 0, };