// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include "StringUtil.h" #include "Common.h" #include "Atomic.h" #include "FileUtil.h" #include "Thread.h" #include "Timer.h" #include "Statistics.h" #include "Host.h" #include "VideoConfig.h" #include "main.h" #include "VertexManager.h" #include "PixelEngine.h" #include "Render.h" #include "OpcodeDecoding.h" #include "BPStructs.h" #include "XFStructs.h" #include "D3DUtil.h" #include "VertexShaderManager.h" #include "PixelShaderManager.h" #include "VertexShaderCache.h" #include "PixelShaderCache.h" #include "VertexLoaderManager.h" #include "TextureCache.h" #include "EmuWindow.h" #include "AVIDump.h" #include "OnScreenDisplay.h" #include "FramebufferManager.h" #include "Fifo.h" #include "TextureConverter.h" #include "DLCache.h" #include "Debugger.h" #include "Core.h" #include "Movie.h" #include "BPFunctions.h" #include "FPSCounter.h" #include "ConfigManager.h" #include "PerfQuery.h" #include namespace DX9 { static int s_fps = 0; static u32 s_blendMode; static u32 s_LastAA; static bool IS_AMD; static float m_fMaxPointSize; static bool s_vsync; static char *st; static LPDIRECT3DSURFACE9 ScreenShootMEMSurface = NULL; void SetupDeviceObjects() { D3D::font.Init(); VertexLoaderManager::Init(); g_framebuffer_manager = new FramebufferManager; VertexShaderManager::Dirty(); PixelShaderManager::Dirty(); TextureConverter::Init(); // To avoid shader compilation stutters, read back all shaders from cache. VertexShaderCache::Init(); PixelShaderCache::Init(); g_vertex_manager->CreateDeviceObjects(); ((PerfQuery*)g_perf_query)->CreateDeviceObjects(); // Texture cache will recreate themselves over time. } // Kill off all POOL_DEFAULT device objects. void TeardownDeviceObjects() { if(ScreenShootMEMSurface) ScreenShootMEMSurface->Release(); ScreenShootMEMSurface = NULL; D3D::dev->SetRenderTarget(0, D3D::GetBackBufferSurface()); D3D::dev->SetDepthStencilSurface(D3D::GetBackBufferDepthSurface()); delete g_framebuffer_manager; ((PerfQuery*)g_perf_query)->DestroyDeviceObjects(); D3D::font.Shutdown(); TextureCache::Invalidate(); VertexLoaderManager::Shutdown(); VertexShaderCache::Shutdown(); PixelShaderCache::Shutdown(); TextureConverter::Shutdown(); g_vertex_manager->DestroyDeviceObjects(); } // Init functions Renderer::Renderer() { InitFPSCounter(); st = new char[32768]; int fullScreenRes, x, y, w_temp, h_temp; s_blendMode = 0; // Multisample Anti-aliasing hasn't been implemented yet use supersamling instead int backbuffer_ms_mode = 0; Host_GetRenderWindowSize(x, y, w_temp, h_temp); for (fullScreenRes = 0; fullScreenRes < (int)D3D::GetAdapter(g_ActiveConfig.iAdapter).resolutions.size(); fullScreenRes++) { if ((D3D::GetAdapter(g_ActiveConfig.iAdapter).resolutions[fullScreenRes].xres == w_temp) && (D3D::GetAdapter(g_ActiveConfig.iAdapter).resolutions[fullScreenRes].yres == h_temp)) break; } if (fullScreenRes == D3D::GetAdapter(g_ActiveConfig.iAdapter).resolutions.size()) fullScreenRes = 0; D3D::Create(g_ActiveConfig.iAdapter, EmuWindow::GetWnd(), fullScreenRes, backbuffer_ms_mode, false); IS_AMD = D3D::IsATIDevice(); // Decide frambuffer size s_backbuffer_width = D3D::GetBackBufferWidth(); s_backbuffer_height = D3D::GetBackBufferHeight(); FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH); FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT); UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); s_LastAA = g_ActiveConfig.iMultisampleMode; int SupersampleCoeficient = (s_LastAA % 3) + 1; s_LastEFBScale = g_ActiveConfig.iEFBScale; CalculateTargetSize(s_backbuffer_width, s_backbuffer_height, SupersampleCoeficient); // Make sure to use valid texture sizes D3D::FixTextureSize(s_target_width, s_target_height); // We're not using fixed function. // Let's just set the matrices to identity to be sure. D3DXMATRIX mtx; D3DXMatrixIdentity(&mtx); D3D::dev->SetTransform(D3DTS_VIEW, &mtx); D3D::dev->SetTransform(D3DTS_WORLD, &mtx); SetupDeviceObjects(); for (int stage = 0; stage < 8; stage++) D3D::SetSamplerState(stage, D3DSAMP_MAXANISOTROPY, 1 << g_ActiveConfig.iMaxAnisotropy); D3DVIEWPORT9 vp; vp.X = 0; vp.Y = 0; vp.Width = s_backbuffer_width; vp.Height = s_backbuffer_height; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; D3D::dev->SetViewport(&vp); D3D::dev->Clear(0, NULL, D3DCLEAR_TARGET, 0x0, 0, 0); D3D::dev->SetRenderTarget(0, FramebufferManager::GetEFBColorRTSurface()); D3D::dev->SetDepthStencilSurface(FramebufferManager::GetEFBDepthRTSurface()); vp.X = 0; vp.Y = 0; vp.Width = s_target_width; vp.Height = s_target_height; D3D::dev->SetViewport(&vp); D3D::dev->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(0,0,0), 1.0f, 0); D3D::BeginFrame(); D3D::SetRenderState(D3DRS_SCISSORTESTENABLE, true); D3D::dev->CreateOffscreenPlainSurface(s_backbuffer_width,s_backbuffer_height, D3DFMT_X8R8G8B8, D3DPOOL_SYSTEMMEM, &ScreenShootMEMSurface, NULL ); D3D::SetRenderState(D3DRS_POINTSCALEENABLE,false); m_fMaxPointSize = D3D::GetCaps().MaxPointSize; // Handle VSync on/off s_vsync = g_ActiveConfig.IsVSync(); } Renderer::~Renderer() { TeardownDeviceObjects(); D3D::EndFrame(); D3D::Present(); D3D::Close(); delete[] st; } void Renderer::RenderText(const char *text, int left, int top, u32 color) { D3D::font.DrawTextScaled((float)left, (float)top, 20, 20, 0.0f, color, text); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } } void formatBufferDump(const u8* in, u8* out, int w, int h, int p) { for (int y = 0; y < h; y++) { auto line = in + (h - y - 1) * p; for (int x = 0; x < w; x++) { memcpy(out, line, 3); out += 3; line += 4; } } } namespace DX9 { // With D3D, we have to resize the backbuffer if the window changed // size. bool Renderer::CheckForResize() { while (EmuWindow::IsSizing()) Sleep(10); if (EmuWindow::GetParentWnd()) { // Re-stretch window to parent window size again, if it has a parent window. RECT rcParentWindow; GetWindowRect(EmuWindow::GetParentWnd(), &rcParentWindow); int width = rcParentWindow.right - rcParentWindow.left; int height = rcParentWindow.bottom - rcParentWindow.top; if (width != Renderer::GetBackbufferWidth() || height != Renderer::GetBackbufferHeight()) MoveWindow(EmuWindow::GetWnd(), 0, 0, width, height, FALSE); } RECT rcWindow; GetClientRect(EmuWindow::GetWnd(), &rcWindow); int client_width = rcWindow.right - rcWindow.left; int client_height = rcWindow.bottom - rcWindow.top; // Sanity check if ((client_width != Renderer::GetBackbufferWidth() || client_height != Renderer::GetBackbufferHeight()) && client_width >= 4 && client_height >= 4) { TeardownDeviceObjects(); D3D::Reset(); s_backbuffer_width = D3D::GetBackBufferWidth(); s_backbuffer_height = D3D::GetBackBufferHeight(); if(ScreenShootMEMSurface) ScreenShootMEMSurface->Release(); D3D::dev->CreateOffscreenPlainSurface(Renderer::GetBackbufferWidth(), Renderer::GetBackbufferHeight(), D3DFMT_X8R8G8B8, D3DPOOL_SYSTEMMEM, &ScreenShootMEMSurface, NULL ); return true; } return false; } void Renderer::SetScissorRect(const TargetRectangle& rc) { D3D::dev->SetScissorRect(rc.AsRECT()); } void Renderer::SetColorMask() { // Only enable alpha channel if it's supported by the current EFB format DWORD color_mask = 0; if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL) { if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24)) color_mask = D3DCOLORWRITEENABLE_ALPHA; if (bpmem.blendmode.colorupdate) color_mask |= D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE; } D3D::SetRenderState(D3DRS_COLORWRITEENABLE, color_mask); } // This function allows the CPU to directly access the EFB. // There are EFB peeks (which will read the color or depth of a pixel) // and EFB pokes (which will change the color or depth of a pixel). // // The behavior of EFB peeks can only be modified by: // - GX_PokeAlphaRead // The behavior of EFB pokes can be modified by: // - GX_PokeAlphaMode (TODO) // - GX_PokeAlphaUpdate (TODO) // - GX_PokeBlendMode (TODO) // - GX_PokeColorUpdate (TODO) // - GX_PokeDither (TODO) // - GX_PokeDstAlpha (TODO) // - GX_PokeZMode (TODO) u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { if (!g_ActiveConfig.bEFBAccessEnable) return 0; if (type == POKE_Z) { static bool alert_only_once = true; if (!alert_only_once) return 0; PanicAlert("EFB: Poke Z not implemented (tried to poke z value %#x at (%d,%d))", poke_data, x, y); alert_only_once = false; return 0; } // if depth textures aren't supported by the hardware, just return if (type == PEEK_Z) if (FramebufferManager::GetEFBDepthTexture() == NULL) return 0; // We're using three surfaces here: // - pEFBSurf: EFB Surface. Source surface when peeking, destination surface when poking. // - pBufferRT: A render target surface. When peeking, we render a textured quad to this surface. // - pSystemBuf: An offscreen surface. Used to retrieve the pixel data from pBufferRT. LPDIRECT3DSURFACE9 pEFBSurf, pBufferRT, pSystemBuf; if(type == PEEK_Z || type == POKE_Z) { pEFBSurf = FramebufferManager::GetEFBDepthRTSurface(); pBufferRT = FramebufferManager::GetEFBDepthReadSurface(); pSystemBuf = FramebufferManager::GetEFBDepthOffScreenRTSurface(); } else //if(type == PEEK_COLOR || type == POKE_COLOR) { pEFBSurf = FramebufferManager::GetEFBColorRTSurface(); pBufferRT = FramebufferManager::GetEFBColorReadSurface(); pSystemBuf = FramebufferManager::GetEFBColorOffScreenRTSurface(); } // Buffer not found alert if (!pEFBSurf) { PanicAlert("No %s!", (type == PEEK_Z || type == POKE_Z) ? "Z-Buffer" : "Color EFB"); return 0; } // Convert EFB dimensions to the ones of our render target EFBRectangle efbPixelRc; efbPixelRc.left = x; efbPixelRc.top = y; efbPixelRc.right = x + 1; efbPixelRc.bottom = y + 1; TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc); HRESULT hr; RECT RectToLock; RectToLock.bottom = targetPixelRc.bottom; RectToLock.left = targetPixelRc.left; RectToLock.right = targetPixelRc.right; RectToLock.top = targetPixelRc.top; if (type == PEEK_Z) { // TODO: why is D3DFMT_D24X8 singled out here? why not D3DFMT_D24X4S4/D24S8/D24FS8/D32/D16/D15S1 too, or none of them? if (FramebufferManager::GetEFBDepthRTSurfaceFormat() == D3DFMT_D24X8) return 0; RECT PixelRect; PixelRect.bottom = 4; PixelRect.left = 0; PixelRect.right = 4; PixelRect.top = 0; RectToLock.bottom+=2; RectToLock.right+=1; RectToLock.top-=1; RectToLock.left-=2; if ((RectToLock.bottom - RectToLock.top) > 4) RectToLock.bottom--; if ((RectToLock.right - RectToLock.left) > 4) RectToLock.left++; ResetAPIState(); // Reset any game specific settings D3D::dev->SetDepthStencilSurface(NULL); D3D::dev->SetRenderTarget(0, pBufferRT); // Stretch picture with increased internal resolution D3DVIEWPORT9 vp; vp.X = 0; vp.Y = 0; vp.Width = 4; vp.Height = 4; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; D3D::dev->SetViewport(&vp); float colmat[28] = {0.0f}; colmat[0] = colmat[5] = colmat[10] = 1.0f; PixelShaderManager::SetColorMatrix(colmat); // set transformation LPDIRECT3DTEXTURE9 read_texture = FramebufferManager::GetEFBDepthTexture(); D3D::ChangeSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT); D3DFORMAT bformat = FramebufferManager::GetEFBDepthRTSurfaceFormat(); D3D::drawShadedTexQuad( read_texture, &RectToLock, Renderer::GetTargetWidth(), Renderer::GetTargetHeight(), 4, 4, PixelShaderCache::GetDepthMatrixProgram(0, bformat != FOURCC_RAWZ), VertexShaderCache::GetSimpleVertexShader(0)); D3D::RefreshSamplerState(0, D3DSAMP_MINFILTER); D3D::dev->SetRenderTarget(0, FramebufferManager::GetEFBColorRTSurface()); D3D::dev->SetDepthStencilSurface(FramebufferManager::GetEFBDepthRTSurface()); RestoreAPIState(); // Retrieve the pixel data to the local memory buffer RectToLock.bottom = 4; RectToLock.left = 0; RectToLock.right = 4; RectToLock.top = 0; D3D::dev->GetRenderTargetData(pBufferRT, pSystemBuf); // EFB data successfully retrieved, now get the pixel data D3DLOCKED_RECT drect; pSystemBuf->LockRect(&drect, &RectToLock, D3DLOCK_READONLY); u32 z = ((u32*)drect.pBits)[6]; // 24 bit depth value pSystemBuf->UnlockRect(); // if Z is in 16 bit format you must return a 16 bit integer if(bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16) { z >>= 8; } return z; } else if(type == PEEK_COLOR) { // We can't directly StretchRect to System buf because is not supported by all implementations // this is the only safe path that works in most cases hr = D3D::dev->StretchRect(pEFBSurf, &RectToLock, pBufferRT, NULL, D3DTEXF_NONE); D3D::dev->GetRenderTargetData(pBufferRT, pSystemBuf); // EFB data successfully retrieved, now get the pixel data RectToLock.bottom = 1; RectToLock.left = 0; RectToLock.right = 1; RectToLock.top = 0; D3DLOCKED_RECT drect; pSystemBuf->LockRect(&drect, &RectToLock, D3DLOCK_READONLY); u32 ret = ((u32*)drect.pBits)[0]; pSystemBuf->UnlockRect(); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode; PixelEngine::Read16((u16&)alpha_read_mode, PE_ALPHAREAD); if (bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24) { ret = RGBA8ToRGBA6ToRGBA8(ret); } else if (bpmem.zcontrol.pixel_format == PIXELFMT_RGB565_Z16) { ret = RGBA8ToRGB565ToRGBA8(ret); } if(bpmem.zcontrol.pixel_format != PIXELFMT_RGBA6_Z24) { ret |= 0xFF000000; } if(alpha_read_mode.ReadMode == 2) return ret; // GX_READ_NONE else if(alpha_read_mode.ReadMode == 1) return (ret | 0xFF000000); // GX_READ_FF else return (ret & 0x00FFFFFF); // GX_READ_00 } else //if(type == POKE_COLOR) { // TODO: Speed this up by batching pokes? ResetAPIState(); D3D::drawColorQuad(poke_data, (float)RectToLock.left * 2.f / (float)Renderer::GetTargetWidth() - 1.f, - (float)RectToLock.top * 2.f / (float)Renderer::GetTargetHeight() + 1.f, (float)RectToLock.right * 2.f / (float)Renderer::GetTargetWidth() - 1.f, - (float)RectToLock.bottom * 2.f / (float)Renderer::GetTargetHeight() + 1.f); RestoreAPIState(); return 0; } } // Viewport correction: // Say you want a viewport at (ix, iy) with size (iw, ih), // but your viewport must be clamped at (ax, ay) with size (aw, ah). // Just multiply the projection matrix with the following to get the same // effect: // [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ] // [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ] // [ 0 0 1 0 ] // [ 0 0 0 1 ] static void ViewportCorrectionMatrix(Matrix44& result, float ix, float iy, float iw, float ih, // Intended viewport (x, y, width, height) float ax, float ay, float aw, float ah) // Actual viewport (x, y, width, height) { Matrix44::LoadIdentity(result); if (aw == 0.f || ah == 0.f) return; result.data[4*0+0] = iw / aw; result.data[4*0+3] = (iw - 2.f * (ax - ix)) / aw - 1.f; result.data[4*1+1] = ih / ah; result.data[4*1+3] = (-ih + 2.f * (ay - iy)) / ah + 1.f; } // Called from VertexShaderManager void Renderer::UpdateViewport(Matrix44& vpCorrection) { // reversed gxsetviewport(xorig, yorig, width, height, nearz, farz) // [0] = width/2 // [1] = height/2 // [2] = 16777215 * (farz - nearz) // [3] = xorig + width/2 + 342 // [4] = yorig + height/2 + 342 // [5] = 16777215 * farz int scissorXOff = bpmem.scissorOffset.x * 2; int scissorYOff = bpmem.scissorOffset.y * 2; // TODO: ceil, floor or just cast to int? int intendedX = EFBToScaledX((int)ceil(xfregs.viewport.xOrig - xfregs.viewport.wd - scissorXOff)); int intendedY = EFBToScaledY((int)ceil(xfregs.viewport.yOrig + xfregs.viewport.ht - scissorYOff)); int intendedWd = EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd)); int intendedHt = EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht)); if (intendedWd < 0) { intendedX += intendedWd; intendedWd = -intendedWd; } if (intendedHt < 0) { intendedY += intendedHt; intendedHt = -intendedHt; } // In D3D, the viewport rectangle must fit within the render target. int X = intendedX; if (X < 0) X = 0; int Y = intendedY; if (Y < 0) Y = 0; int Wd = intendedWd; if (X + Wd > GetTargetWidth()) Wd = GetTargetWidth() - X; int Ht = intendedHt; if (Y + Ht > GetTargetHeight()) Ht = GetTargetHeight() - Y; // If GX viewport is off the render target, we must clamp our viewport // within the bounds. Use the correction matrix to compensate. ViewportCorrectionMatrix(vpCorrection, (float)intendedX, (float)intendedY, (float)intendedWd, (float)intendedHt, (float)X, (float)Y, (float)Wd, (float)Ht); D3DVIEWPORT9 vp; vp.X = X; vp.Y = Y; vp.Width = Wd; vp.Height = Ht; // Some games set invalids values for z min and z max so fix them to the max an min alowed and let the shaders do this work vp.MinZ = 0.0f; // (xfregs.viewport.farZ - xfregs.viewport.zRange) / 16777216.0f; vp.MaxZ = 1.0f; // xfregs.viewport.farZ / 16777216.0f; D3D::dev->SetViewport(&vp); } void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) { // Reset rendering pipeline while keeping color masks and depth buffer settings ResetAPIState(); DWORD color_mask = 0; if (alphaEnable) color_mask = D3DCOLORWRITEENABLE_ALPHA; if (colorEnable) color_mask |= D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE; D3D::ChangeRenderState(D3DRS_COLORWRITEENABLE, color_mask); if (zEnable) { D3D::ChangeRenderState(D3DRS_ZENABLE, TRUE); D3D::ChangeRenderState(D3DRS_ZWRITEENABLE, TRUE); D3D::ChangeRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS); } else { D3D::ChangeRenderState(D3DRS_ZENABLE, FALSE); } // Update the viewport for clearing the target EFB rect TargetRectangle targetRc = ConvertEFBRectangle(rc); D3DVIEWPORT9 vp; vp.X = targetRc.left; vp.Y = targetRc.top; vp.Width = targetRc.GetWidth(); vp.Height = targetRc.GetHeight(); vp.MinZ = 0.0; vp.MaxZ = 1.0; D3D::dev->SetViewport(&vp); D3D::drawClearQuad(color, (z & 0xFFFFFF) / float(0xFFFFFF), PixelShaderCache::GetClearProgram(), VertexShaderCache::GetClearVertexShader()); RestoreAPIState(); } void Renderer::ReinterpretPixelData(unsigned int convtype) { RECT source; SetRect(&source, 0, 0, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight()); LPDIRECT3DPIXELSHADER9 pixel_shader; if (convtype == 0) pixel_shader = PixelShaderCache::ReinterpRGB8ToRGBA6(); else if (convtype == 2) pixel_shader = PixelShaderCache::ReinterpRGBA6ToRGB8(); else { ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype); return; } // convert data and set the target texture as our new EFB g_renderer->ResetAPIState(); D3D::dev->SetRenderTarget(0, FramebufferManager::GetEFBColorReinterpretSurface()); D3DVIEWPORT9 vp; vp.X = 0; vp.Y = 0; vp.Width = g_renderer->GetTargetWidth(); vp.Height = g_renderer->GetTargetHeight(); vp.MinZ = 0.0; vp.MaxZ = 1.0; D3D::dev->SetViewport(&vp); D3D::ChangeSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_POINT); D3D::drawShadedTexQuad(FramebufferManager::GetEFBColorTexture(), &source, g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight(), g_renderer->GetTargetWidth(), g_renderer->GetTargetHeight(), pixel_shader, VertexShaderCache::GetSimpleVertexShader(0)); FramebufferManager::SwapReinterpretTexture(); D3D::RefreshSamplerState(0, D3DSAMP_MINFILTER); g_renderer->RestoreAPIState(); } void Renderer::SetBlendMode(bool forceUpdate) { // Our render target always uses an alpha channel, so we need to override the blend functions to assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel // Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel is assumed to always be 1. bool target_has_alpha = bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24; //bDstAlphaPass is taken into account because the ability to disable alpha composition is //really useful for debugging shader and blending errors bool use_DstAlpha = !g_ActiveConfig.bDstAlphaPass && bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha; bool use_DualSource = use_DstAlpha && g_ActiveConfig.backend_info.bSupportsDualSourceBlend; const D3DBLEND d3dSrcFactors[8] = { D3DBLEND_ZERO, D3DBLEND_ONE, D3DBLEND_DESTCOLOR, D3DBLEND_INVDESTCOLOR, (use_DualSource) ? D3DBLEND_SRCCOLOR2 : D3DBLEND_SRCALPHA, (use_DualSource) ? D3DBLEND_INVSRCCOLOR2 : D3DBLEND_INVSRCALPHA, (target_has_alpha) ? D3DBLEND_DESTALPHA : D3DBLEND_ONE, (target_has_alpha) ? D3DBLEND_INVDESTALPHA : D3DBLEND_ZERO }; const D3DBLEND d3dDestFactors[8] = { D3DBLEND_ZERO, D3DBLEND_ONE, D3DBLEND_SRCCOLOR, D3DBLEND_INVSRCCOLOR, (use_DualSource) ? D3DBLEND_SRCCOLOR2 : D3DBLEND_SRCALPHA, (use_DualSource) ? D3DBLEND_INVSRCCOLOR2 : D3DBLEND_INVSRCALPHA, (target_has_alpha) ? D3DBLEND_DESTALPHA : D3DBLEND_ONE, (target_has_alpha) ? D3DBLEND_INVDESTALPHA : D3DBLEND_ZERO }; if (bpmem.blendmode.logicopenable && !forceUpdate) { D3D::SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE , false); return; } bool blend_enable = bpmem.blendmode.subtract || bpmem.blendmode.blendenable; D3D::SetRenderState(D3DRS_ALPHABLENDENABLE, blend_enable); D3D::SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, blend_enable && g_ActiveConfig.backend_info.bSupportsSeparateAlphaFunction); if (blend_enable) { D3DBLENDOP op = D3DBLENDOP_ADD; u32 srcidx = bpmem.blendmode.srcfactor; u32 dstidx = bpmem.blendmode.dstfactor; if (bpmem.blendmode.subtract) { op = D3DBLENDOP_REVSUBTRACT; srcidx = GX_BL_ONE; dstidx = GX_BL_ONE; } D3D::SetRenderState(D3DRS_BLENDOP, op); D3D::SetRenderState(D3DRS_SRCBLEND, d3dSrcFactors[srcidx]); D3D::SetRenderState(D3DRS_DESTBLEND, d3dDestFactors[dstidx]); if (g_ActiveConfig.backend_info.bSupportsSeparateAlphaFunction) { if (use_DualSource) { op = D3DBLENDOP_ADD; srcidx = GX_BL_ONE; dstidx = GX_BL_ZERO; } else { // we can't use D3DBLEND_DESTCOLOR or D3DBLEND_INVDESTCOLOR for source in alpha channel so use their alpha equivalent instead if (srcidx == GX_BL_DSTCLR) srcidx = GX_BL_DSTALPHA; if (srcidx == GX_BL_INVDSTCLR) srcidx = GX_BL_INVDSTALPHA; // we can't use D3DBLEND_SRCCOLOR or D3DBLEND_INVSRCCOLOR for destination in alpha channel so use their alpha equivalent instead if (dstidx == GX_BL_SRCCLR) dstidx = GX_BL_SRCALPHA; if (dstidx == GX_BL_INVSRCCLR) dstidx = GX_BL_INVSRCALPHA; } D3D::SetRenderState(D3DRS_BLENDOPALPHA, op); D3D::SetRenderState(D3DRS_SRCBLENDALPHA, d3dSrcFactors[srcidx]); D3D::SetRenderState(D3DRS_DESTBLENDALPHA, d3dDestFactors[dstidx]); } } } bool Renderer::SaveScreenshot(const std::string &filename, const TargetRectangle &dst_rect) { HRESULT hr = D3D::dev->GetRenderTargetData(D3D::GetBackBufferSurface(),ScreenShootMEMSurface); if(FAILED(hr)) { PanicAlert("Error dumping surface data."); return false; } hr = PD3DXSaveSurfaceToFileA(filename.c_str(), D3DXIFF_PNG, ScreenShootMEMSurface, NULL, dst_rect.AsRECT()); if(FAILED(hr)) { PanicAlert("Error saving screen."); return false; } return true; } // This function has the final picture. We adjust the aspect ratio here. void Renderer::Swap(u32 xfbAddr, FieldType field, u32 fbWidth, u32 fbHeight,const EFBRectangle& rc,float Gamma) { if (g_bSkipCurrentFrame || (!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight) { if (g_ActiveConfig.bDumpFrames && !frame_data.empty()) AVIDump::AddFrame(&frame_data[0], fbWidth, fbHeight); Core::Callback_VideoCopiedToXFB(false); return; } if (field == FIELD_LOWER) xfbAddr -= fbWidth * 2; u32 xfbCount = 0; const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbWidth, fbHeight, xfbCount); if ((!xfbSourceList || xfbCount == 0) && g_ActiveConfig.bUseXFB && !g_ActiveConfig.bUseRealXFB) { if (g_ActiveConfig.bDumpFrames && !frame_data.empty()) AVIDump::AddFrame(&frame_data[0], fbWidth, fbHeight); Core::Callback_VideoCopiedToXFB(false); return; } ResetAPIState(); if(g_ActiveConfig.bAnaglyphStereo) { static bool RightFrame = false; if(RightFrame) { D3D::SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_BLUE | D3DCOLORWRITEENABLE_GREEN); VertexShaderManager::ResetView(); VertexShaderManager::TranslateView(-0.001f * g_ActiveConfig.iAnaglyphStereoSeparation,0.0f); VertexShaderManager::RotateView(-0.0001f *g_ActiveConfig.iAnaglyphFocalAngle,0.0f); RightFrame = false; } else { D3D::SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_RED); VertexShaderManager::ResetView(); VertexShaderManager::TranslateView(0.001f *g_ActiveConfig.iAnaglyphStereoSeparation,0.0f); VertexShaderManager::RotateView(0.0001f * g_ActiveConfig.iAnaglyphFocalAngle,0.0f); RightFrame = true; } } // Prepare to copy the XFBs to our backbuffer D3D::dev->SetDepthStencilSurface(NULL); D3D::dev->SetRenderTarget(0, D3D::GetBackBufferSurface()); UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); D3DVIEWPORT9 vp; // Clear full target screen (edges, borders etc) if(g_ActiveConfig.bAnaglyphStereo) { // use a clear quad to keep old red or blue/green data vp.X = 0; vp.Y = 0; vp.Width = s_backbuffer_width; vp.Height = s_backbuffer_height; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; D3D::dev->SetViewport(&vp); D3D::drawClearQuad(0, 1.0, PixelShaderCache::GetClearProgram(), VertexShaderCache::GetClearVertexShader()); } else { D3D::dev->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 0), 1.0f, 0); } int X = GetTargetRectangle().left; int Y = GetTargetRectangle().top; int Width = GetTargetRectangle().right - GetTargetRectangle().left; int Height = GetTargetRectangle().bottom - GetTargetRectangle().top; // Sanity check if (X < 0) X = 0; if (Y < 0) Y = 0; if (X > s_backbuffer_width) X = s_backbuffer_width; if (Y > s_backbuffer_height) Y = s_backbuffer_height; if (Width < 0) Width = 0; if (Height < 0) Height = 0; if (Width > (s_backbuffer_width - X)) Width = s_backbuffer_width - X; if (Height > (s_backbuffer_height - Y)) Height = s_backbuffer_height - Y; vp.X = X; vp.Y = Y; vp.Width = Width; vp.Height = Height; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; D3D::dev->SetViewport(&vp); D3D::ChangeSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR); D3D::ChangeSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR); const XFBSourceBase* xfbSource = NULL; if(g_ActiveConfig.bUseXFB) { // draw each xfb source // Render to the real buffer now. for (u32 i = 0; i < xfbCount; ++i) { xfbSource = xfbSourceList[i]; MathUtil::Rectangle sourceRc; sourceRc.left = 0; sourceRc.top = 0; sourceRc.right = (float)xfbSource->texWidth; sourceRc.bottom = (float)xfbSource->texHeight; MathUtil::Rectangle drawRc; if (g_ActiveConfig.bUseRealXFB) { drawRc.top = -1; drawRc.bottom = 1; drawRc.left = -1; drawRc.right = 1; } else { // use virtual xfb with offset int xfbHeight = xfbSource->srcHeight; int xfbWidth = xfbSource->srcWidth; int hOffset = ((s32)xfbSource->srcAddr - (s32)xfbAddr) / ((s32)fbWidth * 2); drawRc.bottom = 1.0f - (2.0f * (hOffset) / (float)fbHeight); drawRc.top = 1.0f - (2.0f * (hOffset + xfbHeight) / (float)fbHeight); drawRc.left = -(xfbWidth / (float)fbWidth); drawRc.right = (xfbWidth / (float)fbWidth); // The following code disables auto stretch. Kept for reference. // scale draw area for a 1 to 1 pixel mapping with the draw target //float vScale = (float)fbHeight / (float)GetTargetRectangle().GetHeight(); //float hScale = (float)fbWidth / (float)GetTargetRectangle().GetWidth(); //drawRc.top *= vScale; //drawRc.bottom *= vScale; //drawRc.left *= hScale; //drawRc.right *= hScale; } xfbSource->Draw(sourceRc, drawRc, Width, Height); } } else { TargetRectangle targetRc = ConvertEFBRectangle(rc); LPDIRECT3DTEXTURE9 read_texture = FramebufferManager::GetEFBColorTexture(); D3D::drawShadedTexQuad(read_texture,targetRc.AsRECT(), Renderer::GetTargetWidth(),Renderer::GetTargetHeight(), Width,Height, PixelShaderCache::GetColorCopyProgram(g_ActiveConfig.iMultisampleMode), VertexShaderCache::GetSimpleVertexShader(g_ActiveConfig.iMultisampleMode),Gamma); } D3D::RefreshSamplerState(0, D3DSAMP_MINFILTER); D3D::RefreshSamplerState(0, D3DSAMP_MAGFILTER); if(g_ActiveConfig.bAnaglyphStereo) { DWORD color_mask = D3DCOLORWRITEENABLE_ALPHA | D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE; D3D::SetRenderState(D3DRS_COLORWRITEENABLE, color_mask); } vp.X = 0; vp.Y = 0; vp.Width = s_backbuffer_width; vp.Height = s_backbuffer_height; vp.MinZ = 0.0f; vp.MaxZ = 1.0f; D3D::dev->SetViewport(&vp); // Save screenshot if (s_bScreenshot) { std::lock_guard lk(s_criticalScreenshot); SaveScreenshot(s_sScreenshotName, GetTargetRectangle()); s_bScreenshot = false; } // Dump frames static int w = 0, h = 0; if (g_ActiveConfig.bDumpFrames) { static int s_recordWidth; static int s_recordHeight; HRESULT hr = D3D::dev->GetRenderTargetData(D3D::GetBackBufferSurface(),ScreenShootMEMSurface); if (!bLastFrameDumped) { s_recordWidth = GetTargetRectangle().GetWidth(); s_recordHeight = GetTargetRectangle().GetHeight(); bAVIDumping = AVIDump::Start(EmuWindow::GetParentWnd(), s_recordWidth, s_recordHeight); if (!bAVIDumping) { PanicAlert("Error dumping frames to AVI."); } else { char msg [255]; sprintf_s(msg,255, "Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), s_recordWidth, s_recordHeight); OSD::AddMessage(msg, 2000); } } if (bAVIDumping) { D3DLOCKED_RECT rect; if (SUCCEEDED(ScreenShootMEMSurface->LockRect(&rect, GetTargetRectangle().AsRECT(), D3DLOCK_NO_DIRTY_UPDATE | D3DLOCK_NOSYSLOCK | D3DLOCK_READONLY))) { if (frame_data.empty() || w != s_recordWidth || h != s_recordHeight) { frame_data.resize(3 * s_recordWidth * s_recordHeight); w = s_recordWidth; h = s_recordHeight; } formatBufferDump((const u8*)rect.pBits, &frame_data[0], s_recordWidth, s_recordHeight, rect.Pitch); AVIDump::AddFrame(&frame_data[0], fbWidth, fbHeight); ScreenShootMEMSurface->UnlockRect(); } } bLastFrameDumped = true; } else { if (bLastFrameDumped && bAVIDumping) { std::vector().swap(frame_data); w = h = 0; AVIDump::Stop(); bAVIDumping = false; OSD::AddMessage("Stop dumping frames to AVI", 2000); } bLastFrameDumped = false; } // Finish up the current frame, print some stats if (g_ActiveConfig.bShowFPS) { char fps[20]; StringCchPrintfA(fps, 20, "FPS: %d\n", s_fps); D3D::font.DrawTextScaled(0, 0, 20, 20, 0.0f, 0xFF00FFFF, fps); } if (SConfig::GetInstance().m_ShowLag) { char lag[10]; StringCchPrintfA(lag, 1000, "Lag: %llu\n", Movie::g_currentLagCount); D3D::font.DrawTextScaled(0, 18, 20, 20, 0.0f, 0xFF00FFFF, lag); } if (g_ActiveConfig.bShowInputDisplay) { char inputDisplay[1000]; StringCchPrintfA(inputDisplay, 1000, Movie::GetInputDisplay().c_str()); D3D::font.DrawTextScaled(0, 36, 20, 20, 0.0f, 0xFF00FFFF, inputDisplay); } Renderer::DrawDebugText(); if (g_ActiveConfig.bOverlayStats) { Statistics::ToString(st); D3D::font.DrawTextScaled(0, 36, 20, 20, 0.0f, 0xFF00FFFF, st); } else if (g_ActiveConfig.bOverlayProjStats) { Statistics::ToStringProj(st); D3D::font.DrawTextScaled(0, 36, 20, 20, 0.0f, 0xFF00FFFF, st); } OSD::DrawMessages(); D3D::EndFrame(); ++frameCount; GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true); DLCache::ProgressiveCleanup(); TextureCache::Cleanup(); // Flip/present backbuffer to frontbuffer here D3D::Present(); // Enable configuration changes UpdateActiveConfig(); TextureCache::OnConfigChanged(g_ActiveConfig); SetWindowSize(fbWidth, fbHeight); const bool windowResized = CheckForResize(); bool xfbchanged = false; if (FramebufferManagerBase::LastXfbWidth() != fbWidth || FramebufferManagerBase::LastXfbHeight() != fbHeight) { xfbchanged = true; unsigned int w = (fbWidth < 1 || fbWidth > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbWidth; unsigned int h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight; FramebufferManagerBase::SetLastXfbWidth(w); FramebufferManagerBase::SetLastXfbHeight(h); } u32 newAA = g_ActiveConfig.iMultisampleMode; if (xfbchanged || windowResized || s_LastEFBScale != g_ActiveConfig.iEFBScale || s_LastAA != newAA) { s_LastAA = newAA; UpdateDrawRectangle(s_backbuffer_width, s_backbuffer_height); int SupersampleCoeficient = (s_LastAA % 3) + 1; s_LastEFBScale = g_ActiveConfig.iEFBScale; CalculateTargetSize(s_backbuffer_width, s_backbuffer_height, SupersampleCoeficient); D3D::dev->SetRenderTarget(0, D3D::GetBackBufferSurface()); D3D::dev->SetDepthStencilSurface(D3D::GetBackBufferDepthSurface()); if (windowResized) { // device objects lost, so recreate all of them SetupDeviceObjects(); } else { // just resize the frame buffer delete g_framebuffer_manager; g_framebuffer_manager = new FramebufferManager; } D3D::dev->SetRenderTarget(0, FramebufferManager::GetEFBColorRTSurface()); D3D::dev->SetDepthStencilSurface(FramebufferManager::GetEFBDepthRTSurface()); D3D::dev->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_XRGB(0,0,0), 1.0f, 0); } if (XFBWrited) s_fps = UpdateFPSCounter(); // Begin new frame // Set default viewport and scissor, for the clear to work correctly // New frame stats.ResetFrame(); // Handle vsync changes during execution if(s_vsync != g_ActiveConfig.IsVSync()) { s_vsync = g_ActiveConfig.IsVSync(); TeardownDeviceObjects(); D3D::Reset(); // device objects lost, so recreate all of them SetupDeviceObjects(); } D3D::BeginFrame(); RestoreAPIState(); D3D::dev->SetRenderTarget(0, FramebufferManager::GetEFBColorRTSurface()); D3D::dev->SetDepthStencilSurface(FramebufferManager::GetEFBDepthRTSurface()); VertexShaderManager::SetViewportChanged(); Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)); XFBWrited = false; } void Renderer::ApplyState(bool bUseDstAlpha) { if (bUseDstAlpha) { // If we get here we are sure that we are using dst alpha pass. (bpmem.dstalpha.enable) // Alpha write is enabled. (because bpmem.blendmode.alphaupdate && bpmem.zcontrol.pixel_format == PIXELFMT_RGBA6_Z24) // We must disable blend because we want to write alpha value directly to the alpha channel without modifications. D3D::ChangeRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_ALPHA); D3D::ChangeRenderState(D3DRS_ALPHABLENDENABLE, false); if(bpmem.zmode.testenable && bpmem.zmode.updateenable) { // This is needed to draw to the correct pixels in multi-pass algorithms // to avoid z-fighting and grants that you write to the same pixels // affected by the last pass D3D::ChangeRenderState(D3DRS_ZWRITEENABLE, false); D3D::ChangeRenderState(D3DRS_ZFUNC, D3DCMP_EQUAL); } } } void Renderer::RestoreState() { D3D::RefreshRenderState(D3DRS_COLORWRITEENABLE); D3D::RefreshRenderState(D3DRS_ALPHABLENDENABLE); if(bpmem.zmode.testenable && bpmem.zmode.updateenable) { D3D::RefreshRenderState(D3DRS_ZWRITEENABLE); D3D::RefreshRenderState(D3DRS_ZFUNC); } // TODO: Enable this code. Caused glitches for me however (neobrain) // for (unsigned int i = 0; i < 8; ++i) // D3D::dev->SetTexture(i, NULL); } // ALWAYS call RestoreAPIState for each ResetAPIState call you're doing void Renderer::ResetAPIState() { D3D::SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID); D3D::SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE); D3D::SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE); D3D::SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE); D3D::SetRenderState(D3DRS_ZENABLE, FALSE); D3D::SetRenderState(D3DRS_ZWRITEENABLE, FALSE); DWORD color_mask = D3DCOLORWRITEENABLE_ALPHA | D3DCOLORWRITEENABLE_RED | D3DCOLORWRITEENABLE_GREEN | D3DCOLORWRITEENABLE_BLUE; D3D::SetRenderState(D3DRS_COLORWRITEENABLE, color_mask); } void Renderer::RestoreAPIState() { // Gets us back into a more game-like state. D3D::SetRenderState(D3DRS_FILLMODE, g_ActiveConfig.bWireFrame ? D3DFILL_WIREFRAME : D3DFILL_SOLID); D3D::SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE); VertexShaderManager::SetViewportChanged(); BPFunctions::SetScissor(); if (bpmem.zmode.testenable) { D3D::SetRenderState(D3DRS_ZENABLE, TRUE); if (bpmem.zmode.updateenable) D3D::SetRenderState(D3DRS_ZWRITEENABLE, TRUE); } SetColorMask(); SetLogicOpMode(); SetGenerationMode(); } void Renderer::SetGenerationMode() { const D3DCULL d3dCullModes[4] = { D3DCULL_NONE, D3DCULL_CCW, D3DCULL_CW, D3DCULL_CCW }; D3D::SetRenderState(D3DRS_CULLMODE, d3dCullModes[bpmem.genMode.cullmode]); } void Renderer::SetDepthMode() { const D3DCMPFUNC d3dCmpFuncs[8] = { D3DCMP_NEVER, D3DCMP_LESS, D3DCMP_EQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER, D3DCMP_NOTEQUAL, D3DCMP_GREATEREQUAL, D3DCMP_ALWAYS }; if (bpmem.zmode.testenable) { D3D::SetRenderState(D3DRS_ZENABLE, TRUE); D3D::SetRenderState(D3DRS_ZWRITEENABLE, bpmem.zmode.updateenable); D3D::SetRenderState(D3DRS_ZFUNC, d3dCmpFuncs[bpmem.zmode.func]); } else { // if the test is disabled write is disabled too D3D::SetRenderState(D3DRS_ZENABLE, FALSE); D3D::SetRenderState(D3DRS_ZWRITEENABLE, FALSE); } } void Renderer::SetLogicOpMode() { // D3D9 doesn't support logic blending, so this is a huge hack // 0 0x00 // 1 Source & destination // 2 Source & ~destination // 3 Source // 4 ~Source & destination // 5 Destination // 6 Source ^ destination = Source & ~destination | ~Source & destination // 7 Source | destination // 8 ~(Source | destination) // 9 ~(Source ^ destination) = ~Source & ~destination | Source & destination // 10 ~Destination // 11 Source | ~destination // 12 ~Source // 13 ~Source | destination // 14 ~(Source & destination) // 15 0xff const D3DBLENDOP d3dLogicOpop[16] = { D3DBLENDOP_ADD, D3DBLENDOP_ADD, D3DBLENDOP_SUBTRACT, D3DBLENDOP_ADD, D3DBLENDOP_REVSUBTRACT, D3DBLENDOP_ADD, D3DBLENDOP_MAX, D3DBLENDOP_ADD, D3DBLENDOP_MAX, D3DBLENDOP_MAX, D3DBLENDOP_ADD, D3DBLENDOP_ADD, D3DBLENDOP_ADD, D3DBLENDOP_ADD, D3DBLENDOP_ADD, D3DBLENDOP_ADD }; const D3DBLEND d3dLogicOpSrcFactors[16] = { D3DBLEND_ZERO, D3DBLEND_DESTCOLOR, D3DBLEND_ONE, D3DBLEND_ONE, D3DBLEND_DESTCOLOR, D3DBLEND_ZERO, D3DBLEND_INVDESTCOLOR, D3DBLEND_INVDESTCOLOR, D3DBLEND_INVSRCCOLOR, D3DBLEND_INVSRCCOLOR, D3DBLEND_INVDESTCOLOR, D3DBLEND_ONE, D3DBLEND_INVSRCCOLOR, D3DBLEND_INVSRCCOLOR, D3DBLEND_INVDESTCOLOR, D3DBLEND_ONE }; const D3DBLEND d3dLogicOpDestFactors[16] = { D3DBLEND_ZERO, D3DBLEND_ZERO, D3DBLEND_INVSRCCOLOR, D3DBLEND_ZERO, D3DBLEND_ONE, D3DBLEND_ONE, D3DBLEND_INVSRCCOLOR, D3DBLEND_ONE, D3DBLEND_INVDESTCOLOR, D3DBLEND_SRCCOLOR, D3DBLEND_INVDESTCOLOR, D3DBLEND_INVDESTCOLOR, D3DBLEND_INVSRCCOLOR, D3DBLEND_ONE, D3DBLEND_INVSRCCOLOR, D3DBLEND_ONE }; if (bpmem.blendmode.logicopenable) { D3D::SetRenderState(D3DRS_ALPHABLENDENABLE, true); D3D::SetRenderState(D3DRS_BLENDOP, d3dLogicOpop[bpmem.blendmode.logicmode]); D3D::SetRenderState(D3DRS_SRCBLEND, d3dLogicOpSrcFactors[bpmem.blendmode.logicmode]); D3D::SetRenderState(D3DRS_DESTBLEND, d3dLogicOpDestFactors[bpmem.blendmode.logicmode]); } else { SetBlendMode(true); } } void Renderer::SetDitherMode() { D3D::SetRenderState(D3DRS_DITHERENABLE, bpmem.blendmode.dither); } void Renderer::SetLineWidth() { // We can't change line width in D3D unless we use ID3DXLine float fratio = xfregs.viewport.wd != 0 ? Renderer::EFBToScaledXf(1.f) : 1.0f; float psize = bpmem.lineptwidth.linesize * fratio / 6.0f; //little hack to compensate scaling problems in dx9 must be taken out when scaling is fixed. psize *= 2.0f; if (psize > m_fMaxPointSize) { psize = m_fMaxPointSize; } D3D::SetRenderState(D3DRS_POINTSIZE, *((DWORD*)&psize)); D3D::SetRenderState(D3DRS_POINTSIZE_MIN, *((DWORD*)&psize)); D3D::SetRenderState(D3DRS_POINTSIZE_MAX, *((DWORD*)&psize)); } void Renderer::SetSamplerState(int stage, int texindex) { const D3DTEXTUREFILTERTYPE d3dMipFilters[4] = { D3DTEXF_NONE, D3DTEXF_POINT, D3DTEXF_LINEAR, D3DTEXF_NONE, //reserved }; const D3DTEXTUREADDRESS d3dClamps[4] = { D3DTADDRESS_CLAMP, D3DTADDRESS_WRAP, D3DTADDRESS_MIRROR, D3DTADDRESS_WRAP //reserved }; const FourTexUnits &tex = bpmem.tex[texindex]; const TexMode0 &tm0 = tex.texMode0[stage]; const TexMode1 &tm1 = tex.texMode1[stage]; D3DTEXTUREFILTERTYPE min, mag, mip; if (g_ActiveConfig.bForceFiltering) { min = mag = mip = D3DTEXF_LINEAR; } else { min = (tm0.min_filter & 4) ? D3DTEXF_LINEAR : D3DTEXF_POINT; mag = tm0.mag_filter ? D3DTEXF_LINEAR : D3DTEXF_POINT; mip = d3dMipFilters[tm0.min_filter & 3]; } if (texindex) stage += 4; if (mag == D3DTEXF_LINEAR && min == D3DTEXF_LINEAR && g_ActiveConfig.iMaxAnisotropy) { min = D3DTEXF_ANISOTROPIC; } D3D::SetSamplerState(stage, D3DSAMP_MINFILTER, min); D3D::SetSamplerState(stage, D3DSAMP_MAGFILTER, mag); D3D::SetSamplerState(stage, D3DSAMP_MIPFILTER, mip); D3D::SetSamplerState(stage, D3DSAMP_ADDRESSU, d3dClamps[tm0.wrap_s]); D3D::SetSamplerState(stage, D3DSAMP_ADDRESSV, d3dClamps[tm0.wrap_t]); float lodbias = (s32)tm0.lod_bias / 32.0f; D3D::SetSamplerState(stage, D3DSAMP_MIPMAPLODBIAS, *(DWORD*)&lodbias); D3D::SetSamplerState(stage, D3DSAMP_MAXMIPLEVEL, tm1.min_lod >> 4); } void Renderer::SetInterlacingMode() { // TODO } } // namespace DX9