// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // ----------------------------------------------------------------------------------------- // Partial Action Replay code system implementation. // Will never be able to support some AR codes - specifically those that patch the running // Action Replay engine itself - yes they do exist!!! // Action Replay actually is a small virtual machine with a limited number of commands. // It probably is Turning complete - but what does that matter when AR codes can write // actual PowerPC code... // ----------------------------------------------------------------------------------------- // ------------------------------------------------------------------------------------------------------------- // Codes Types: // (Unconditonal) Normal Codes (0): this one has subtypes inside // (Conditional) Normal Codes (1 - 7): these just compare values and set the line skip info // Zero Codes: any code with no address. These codes are used to do special operations like memory copy, etc // ------------------------------------------------------------------------------------------------------------- #include #include #include "Common.h" #include "StringUtil.h" #include "HW/Memmap.h" #include "ActionReplay.h" #include "Core.h" #include "ARDecrypt.h" #include "LogManager.h" #include "ConfigManager.h" namespace ActionReplay { enum { // Zero Code Types ZCODE_END = 0x00, ZCODE_NORM = 0x02, ZCODE_ROW = 0x03, ZCODE_04 = 0x04, // Conditonal Codes CONDTIONAL_IF_EQUAL = 0x01, CONDTIONAL_IF_NOT_EQUAL = 0x02, CONDTIONAL_IF_LESS_THAN_SIGNED = 0x03, CONDTIONAL_IF_GREATER_THAN_SIGNED = 0x04, CONDTIONAL_IF_LESS_THAN_UNSIGNED = 0x05, CONDTIONAL_IF_GREATER_THAN_UNSIGNED = 0x06, CONDTIONAL_IF_AND = 0x07, // Data Types DATATYPE_8BIT = 0x00, DATATYPE_16BIT = 0x01, DATATYPE_32BIT = 0x02, DATATYPE_32BIT_FLOAT = 0x03, // Normal Code 0 Subtypes SUB_RAM_WRITE = 0x00, SUB_WRITE_POINTER = 0x01, SUB_ADD_CODE = 0x02, SUB_MASTER_CODE = 0x03, }; static std::vector::const_iterator iter; static ARCode code; static bool b_RanOnce = false; static std::vector arCodes; static std::vector activeCodes; static bool logSelf = false; static std::vector arLog; void LogInfo(const char *format, ...); bool Subtype_RamWriteAndFill(u32 addr, u32 data); bool Subtype_WriteToPointer(u32 addr, u32 data); bool Subtype_AddCode(u32 addr, u32 data); bool Subtype_MasterCodeAndWriteToCCXXXXXX(u32 addr, u32 data); bool ZeroCode_FillAndSlide(u32 val_last, u32 addr, u32 data); bool ZeroCode_MemoryCopy(u32 val_last, u32 addr, u32 data); bool NormalCode(u8 subtype, u32 addr, u32 data); bool ConditionalCode(u8 subtype, u32 addr, u32 data, int *pCount, bool *pSkip, int compareType); bool SetLineSkip(int codetype, u8 subtype, bool *pSkip, bool skip, int *pCount); bool CompareValues(u32 val1, u32 val2, int type); // ---------------------- // AR Remote Functions void LoadCodes(IniFile &ini, bool forceLoad) { // Parses the Action Replay section of a game ini file. if (!SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats && !forceLoad) return; std::vector lines; std::vector encryptedLines; ARCode currentCode; arCodes.clear(); if (!ini.GetLines("ActionReplay", lines)) return; // no codes found. for (std::vector::const_iterator it = lines.begin(); it != lines.end(); ++it) { std::string line = *it; std::vector pieces; // Check if the line is a name of the code if (line[0] == '+' || line[0] == '$') { if (currentCode.ops.size()) { arCodes.push_back(currentCode); currentCode.ops.clear(); } if (encryptedLines.size()) { DecryptARCode(encryptedLines, currentCode.ops); arCodes.push_back(currentCode); currentCode.ops.clear(); encryptedLines.clear(); } if (line.size() > 1) { if (line[0] == '+') { currentCode.active = true; currentCode.name = line.substr(2, line.size() - 2);; if (!forceLoad) Core::DisplayMessage("AR code active: " + currentCode.name, 5000); } else { currentCode.active = false; currentCode.name = line.substr(1, line.size() - 1); } } continue; } SplitString(line, " ", pieces); // Check if the AR code is decrypted if (pieces.size() == 2 && pieces[0].size() == 8 && pieces[1].size() == 8) { AREntry op; bool success_addr = TryParseUInt(std::string("0x") + pieces[0], &op.cmd_addr); bool success_val = TryParseUInt(std::string("0x") + pieces[1], &op.value); if (!(success_addr | success_val)) { PanicAlert("Action Replay Error: invalid AR code line: %s", line.c_str()); if (!success_addr) PanicAlert("The address is invalid"); if (!success_val) PanicAlert("The value is invalid"); } else currentCode.ops.push_back(op); } else { SplitString(line, "-", pieces); if (pieces.size() == 3 && pieces[0].size() == 4 && pieces[1].size() == 4 && pieces[2].size() == 5) { // Encrypted AR code // Decryption is done in "blocks", so we must push blocks into a vector, // then send to decrypt when a new block is encountered, or if it's the last block. encryptedLines.push_back(pieces[0]+pieces[1]+pieces[2]); } } } // Handle the last code correctly. if (currentCode.ops.size()) { arCodes.push_back(currentCode); } if (encryptedLines.size()) { DecryptARCode(encryptedLines, currentCode.ops); arCodes.push_back(currentCode); } UpdateActiveList(); } void LoadCodes(std::vector &_arCodes, IniFile &ini) { LoadCodes(ini, true); _arCodes = arCodes; } void LogInfo(const char *format, ...) { if (!b_RanOnce) { if (LogManager::GetMaxLevel() >= LogTypes::LINFO || logSelf) { char* temp = (char*)alloca(strlen(format)+512); va_list args; va_start(args, format); CharArrayFromFormatV(temp, 512, format, args); va_end(args); INFO_LOG(ACTIONREPLAY, temp); if (logSelf) { std::string text = temp; text += "\n"; arLog.push_back(text.c_str()); } } } } void RunAllActive() { if (SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats) { for (std::vector::iterator i = activeCodes.begin(); i != activeCodes.end(); ++i) { if (i->active) { i->active = RunCode(*i); LogInfo("\n"); } } if (!b_RanOnce) b_RanOnce = true; } } bool RunCode(const ARCode &arcode) { // The mechanism is different than what the real AR uses, so there may be compatibility problems. u8 cmd; u32 addr; u32 data; bool doFillNSlide = false; bool doMemoryCopy = false; int count = 0; bool skip = false; bool cond = false; u32 addr_last = 0; u32 val_last = 0; code = arcode; LogInfo("Code Name: %s", code.name.c_str()); LogInfo("Number of codes: %i", code.ops.size()); for (iter = code.ops.begin(); iter != code.ops.end(); ++iter) { // If conditional mode has been set to true, then run our code execution control if (cond) { // Some checks on the count value if (count == -1 || count < -2 || count > (int)code.ops.size()) { LogInfo("Bad Count: %i", count); PanicAlert("Action Replay: Bad Count: %i (%s)", count, code.name.c_str()); return false; } if (skip && count > 0) { LogInfo("Line skipped"); if (count-- == 0) cond = false; continue; } // Skip n lines if (skip && count == -2) { LogInfo("Line skipped"); continue; } // Skip all lines if (!skip && count == 0) { LogInfo("Line skipped"); continue; }// Skip rest of lines if (!skip && count > 0) count--; // execute n lines // if -2 : execute all lines if (b_RanOnce) b_RanOnce = false; } cmd = iter->cmd_addr >> 24; // AR command addr = iter->cmd_addr; // AR command with address offset data = iter->value; LogInfo("--- Running Code: %08x %08x ---", addr, data); LogInfo("Command: %08x", cmd); // Do Fill & Slide if (doFillNSlide) { doFillNSlide = false; LogInfo("Doing Fill And Slide"); if (!ZeroCode_FillAndSlide(val_last, addr, data)) return false; continue; } // Memory Copy if (doMemoryCopy) { doMemoryCopy = false; LogInfo("Doing Memory Copy"); if (!ZeroCode_MemoryCopy(val_last, addr, data)) return false; continue; } // ActionReplay program self modification codes if (addr >= 0x00002000 && addr < 0x00003000) { LogInfo("This action replay simulator does not support codes that modify Action Replay itself."); PanicAlert("This action replay simulator does not support codes that modify Action Replay itself."); return false; } // skip these weird init lines if (iter == code.ops.begin() && cmd == 1) continue; // Zero codes if (addr == 0x0) // Check if the code is a zero code { u8 zcode = ((data >> 29) & 0x07); LogInfo("Doing Zero Code %08x", zcode); switch (zcode) { case ZCODE_END: // END OF CODES LogInfo("ZCode: End Of Codes"); return true; case ZCODE_NORM: // Normal execution of codes // Todo: Set register 1BB4 to 0 LogInfo("ZCode: Normal execution of codes, set register 1BB4 to 0 (zcode not supported)"); break; case ZCODE_ROW: // Executes all codes in the same row // Todo: Set register 1BB4 to 1 LogInfo("ZCode: Executes all codes in the same row, Set register 1BB4 to 1 (zcode not supported)"); PanicAlert("Zero 3 code not supported"); return false; case ZCODE_04: // Fill & Slide or Memory Copy if (((addr >> 25) & 0x03) == 0x3) { LogInfo("ZCode: Memory Copy"); doMemoryCopy = true; addr_last = addr; val_last = data; } else { LogInfo("ZCode: Fill And Slide"); doFillNSlide = true; val_last = data; } continue; default: LogInfo("ZCode: Unknown"); PanicAlert("Zero code unknown to dolphin: %08x",zcode); return false; } } // Normal codes u8 type = ((addr >> 27) & 0x07); u8 subtype = ((addr >> 30) & 0x03); LogInfo("Doing Normal Code %08x", type); LogInfo("Subtype: %08x", subtype); if (type == 0x00) { if (!NormalCode(subtype, addr, data)) return false; } else if (type >= 1 && type <= 7) { cond = true; LogInfo("This Normal Code is a Conditional Code"); if (!ConditionalCode(subtype, addr, data, &count, &skip, type)) return false; } else { LogInfo("Bad Normal Code type"); return false; } } if (b_RanOnce && cond) b_RanOnce = true; return true; } size_t GetCodeListSize() { return arCodes.size(); } ARCode GetARCode(size_t index) { if (index > arCodes.size()) { PanicAlert("GetARCode: Index is greater than ar code list size %i", index); return ARCode(); } return arCodes[index]; } void SetARCode_IsActive(bool active, size_t index) { if (index > arCodes.size()) { PanicAlert("SetARCode_IsActive: Index is greater than ar code list size %i", index); return; } arCodes[index].active = active; UpdateActiveList(); } void UpdateActiveList() { SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats = false; b_RanOnce = false; activeCodes.clear(); for (size_t i = 0; i < arCodes.size(); i++) { if (arCodes[i].active) activeCodes.push_back(arCodes[i]); } SConfig::GetInstance().m_LocalCoreStartupParameter.bEnableCheats = true; } void EnableSelfLogging(bool enable) { logSelf = enable; } const std::vector &GetSelfLog() { return arLog; } bool IsSelfLogging() { return logSelf; } // ---------------------- // Code Functions bool Subtype_RamWriteAndFill(u32 addr, u32 data) { u32 new_addr = (addr & 0x01FFFFFF) | 0x80000000; // real GC address u8 size = (addr >> 25) & 0x03; LogInfo("Hardware Address: %08x", new_addr); LogInfo("Size: %08x", size); switch (size) { case DATATYPE_8BIT: { LogInfo("8-bit Write"); LogInfo("--------"); u32 repeat = data >> 8; for (u32 i = 0; i <= repeat; i++) { Memory::Write_U8(data & 0xFF, new_addr + i); LogInfo("Wrote %08x to address %08x", data & 0xFF, new_addr + i); } LogInfo("--------"); break; } case DATATYPE_16BIT: { LogInfo("16-bit Write"); LogInfo("--------"); u32 repeat = data >> 16; for (u32 i = 0; i <= repeat; i++) { Memory::Write_U16(data & 0xFFFF, new_addr + i * 2); LogInfo("Wrote %08x to address %08x", data & 0xFFFF, new_addr + i * 2); } LogInfo("--------"); break; } case DATATYPE_32BIT_FLOAT: case DATATYPE_32BIT: // Dword write LogInfo("32bit Write"); LogInfo("--------"); Memory::Write_U32(data, new_addr); LogInfo("Wrote %08x to address %08x", data, new_addr); LogInfo("--------"); break; default: LogInfo("Bad Size"); PanicAlert("Action Replay Error: Invalid size (%08x : address = %08x) in Ram Write And Fill (%s)", size, addr, code.name.c_str()); return false; } return true; } bool Subtype_WriteToPointer(u32 addr, u32 data) { u32 new_addr = (addr & 0x01FFFFFF) | 0x80000000; u8 size = (addr >> 25) & 0x03; LogInfo("Hardware Address: %08x", new_addr); LogInfo("Size: %08x", size); switch (size) { case DATATYPE_8BIT: { LogInfo("Write 8-bit to pointer"); LogInfo("--------"); u32 ptr = Memory::Read_U32(new_addr); u8 thebyte = data & 0xFF; u32 offset = data >> 8; LogInfo("Pointer: %08x", ptr); LogInfo("Byte: %08x", thebyte); LogInfo("Offset: %08x", offset); Memory::Write_U8(thebyte, ptr + offset); LogInfo("Wrote %08x to address %08x", thebyte, ptr + offset); LogInfo("--------"); break; } case DATATYPE_16BIT: { LogInfo("Write 16-bit to pointer"); LogInfo("--------"); u32 ptr = Memory::Read_U32(new_addr); u16 theshort = data & 0xFFFF; u32 offset = (data >> 16) << 1; LogInfo("Pointer: %08x", ptr); LogInfo("Byte: %08x", theshort); LogInfo("Offset: %08x", offset); Memory::Write_U16(theshort, ptr + offset); LogInfo("Wrote %08x to address %08x", theshort, ptr + offset); LogInfo("--------"); break; } case DATATYPE_32BIT_FLOAT: case DATATYPE_32BIT: LogInfo("Write 32-bit to pointer"); LogInfo("--------"); Memory::Write_U32(data, Memory::Read_U32(new_addr)); LogInfo("Wrote %08x to address %08x", data, Memory::Read_U32(new_addr)); LogInfo("--------"); break; default: LogInfo("Bad Size"); PanicAlert("Action Replay Error: Invalid size (%08x : address = %08x) in Write To Pointer (%s)", size, addr, code.name.c_str()); return false; } return true; } bool Subtype_AddCode(u32 addr, u32 data) { // Used to incrment a value in memory u32 new_addr = (addr & 0x81FFFFFF); u8 size = (addr >> 25) & 0x03; LogInfo("Hardware Address: %08x", new_addr); LogInfo("Size: %08x", size); switch (size) { case DATATYPE_8BIT: LogInfo("8-bit Add"); LogInfo("--------"); Memory::Write_U8(Memory::Read_U8(new_addr) + data, new_addr); LogInfo("Wrote %08x to address %08x", Memory::Read_U8(new_addr) + (data & 0xFF), new_addr); LogInfo("--------"); break; case DATATYPE_16BIT: LogInfo("16-bit Add"); LogInfo("--------"); Memory::Write_U16(Memory::Read_U16(new_addr) + data, new_addr); LogInfo("Wrote %08x to address %08x", Memory::Read_U16(new_addr) + (data & 0xFFFF), new_addr); LogInfo("--------"); break; case DATATYPE_32BIT: LogInfo("32-bit Add"); LogInfo("--------"); Memory::Write_U32(Memory::Read_U32(new_addr) + data, new_addr); LogInfo("Wrote %08x to address %08x", Memory::Read_U32(new_addr) + data, new_addr); LogInfo("--------"); break; case DATATYPE_32BIT_FLOAT: { LogInfo("32-bit floating Add"); LogInfo("--------"); u32 read = Memory::Read_U32(new_addr); float fread = *((float*)&read); fread += (float)data; u32 newval = *((u32*)&fread); Memory::Write_U32(newval, new_addr); LogInfo("Old Value %08x", read); LogInfo("Increment %08x", data); LogInfo("New value %08x", newval); LogInfo("--------"); break; } default: LogInfo("Bad Size"); PanicAlert("Action Replay Error: Invalid size(%08x : address = %08x) in Add Code (%s)", size, addr, code.name.c_str()); return false; } return true; } bool Subtype_MasterCodeAndWriteToCCXXXXXX(u32 addr, u32 data) { u32 new_addr = (addr & 0x01FFFFFF) | 0x80000000; u8 mcode_type = (data & 0xFF0000) >> 16; u8 mcode_count = (data & 0xFF00) >> 8; u8 mcode_number = data & 0xFF; // code not yet implemented - TODO PanicAlert("Action Replay Error: Master Code and Write To CCXXXXXX not implemented (%s)", code.name.c_str()); return false; } bool ZeroCode_FillAndSlide(u32 val_last, u32 addr, u32 data) // This needs more testing { u32 new_addr = (val_last & 0x81FFFFFF); u8 size = (val_last >> 25) & 0x03; s16 addr_incr = (s16)(data & 0xFFFF); s8 val_incr = (s8)((data & 0xFF000000) >> 24); u8 write_num = (data & 0xFF0000) >> 16; u32 val = addr; u32 curr_addr = new_addr; LogInfo("Current Hardware Address: %08x", new_addr); LogInfo("Size: %08x", size); LogInfo("Write Num: %08x", write_num); LogInfo("Address Increment: %i", addr_incr); LogInfo("Value Increment: %i", val_incr); switch (size) { case DATATYPE_8BIT: LogInfo("8-bit Write"); LogInfo("--------"); for (int i = 0; i < write_num; i++) { Memory::Write_U8(val & 0xFF, curr_addr); curr_addr += addr_incr; val += val_incr; LogInfo("Write %08x to address %08x", val & 0xFF, curr_addr); LogInfo("Value Update: %08x", val); LogInfo("Current Hardware Address Update: %08x", curr_addr); } LogInfo("--------"); break; case DATATYPE_16BIT: LogInfo("16-bit Write"); LogInfo("--------"); for (int i=0; i < write_num; i++) { Memory::Write_U16(val & 0xFFFF, curr_addr); LogInfo("Write %08x to address %08x", val & 0xFFFF, curr_addr); curr_addr += addr_incr * 2; val += val_incr; LogInfo("Value Update: %08x", val); LogInfo("Current Hardware Address Update: %08x", curr_addr); } LogInfo("--------"); break; case DATATYPE_32BIT: LogInfo("32-bit Write"); LogInfo("--------"); for (int i = 0; i < write_num; i++) { Memory::Write_U32(val, curr_addr); LogInfo("Write %08x to address %08x", val, curr_addr); curr_addr += addr_incr * 4; val += val_incr; LogInfo("Value Update: %08x", val); LogInfo("Current Hardware Address Update: %08x", curr_addr); } LogInfo("--------"); break; default: LogInfo("Bad Size"); PanicAlert("Action Replay Error: Invalid size (%08x : address = %08x) in Fill and Slide (%s)", size, new_addr, code.name.c_str()); return false; } return true; } // Looks like this is new?? bool ZeroCode_MemoryCopy(u32 val_last, u32 addr, u32 data) // Has not been tested { u32 addr_dest = val_last | 0x06000000; u32 addr_src = (addr & 0x01FFFFFF) | 0x80000000; u8 num_bytes = data & 0x7FFF; LogInfo("Dest Address: %08x", addr_dest); LogInfo("Src Address: %08x", addr_src); LogInfo("Size: %08x", num_bytes); if ((data & ~0x7FFF) == 0x0000) { if ((data >> 24) != 0x0) { // Memory Copy With Pointers Support LogInfo("Memory Copy With Pointers Support"); LogInfo("--------"); for (int i = 0; i < 138; i++) { Memory::Write_U8(Memory::Read_U8(addr_src + i), addr_dest + i); LogInfo("Wrote %08x to address %08x", Memory::Read_U8(addr_src + i), addr_dest + i); } LogInfo("--------"); } else { // Memory Copy Without Pointer Support LogInfo("Memory Copy Without Pointers Support"); LogInfo("--------"); for (int i=0; i < num_bytes; i++) { Memory::Write_U32(Memory::Read_U32(addr_src + i), addr_dest + i); LogInfo("Wrote %08x to address %08x", Memory::Read_U32(addr_src + i), addr_dest + i); } LogInfo("--------"); return true; } } else { LogInfo("Bad Value"); PanicAlert("Action Replay Error: Invalid value (&08x) in Memory Copy (%s)", (data & ~0x7FFF), code.name.c_str()); return false; } return true; } bool NormalCode(u8 subtype, u32 addr, u32 data) { switch (subtype) { case SUB_RAM_WRITE: // Ram write (and fill) LogInfo("Doing Ram Write And Fill"); if (!Subtype_RamWriteAndFill(addr, data)) return false; break; case SUB_WRITE_POINTER: // Write to pointer LogInfo("Doing Write To Pointer"); if (!Subtype_WriteToPointer(addr, data)) return false; break; case SUB_ADD_CODE: // Increment Value LogInfo("Doing Add Code"); if (!Subtype_AddCode(addr, data)) return false; break; case SUB_MASTER_CODE : // Master Code & Write to CCXXXXXX LogInfo("Doing Master Code And Write to CCXXXXXX (ncode not supported)"); if (!Subtype_MasterCodeAndWriteToCCXXXXXX(addr, data)) return false; break; default: LogInfo("Bad Subtype"); PanicAlert("Action Replay: Normal Code 0: Invalid Subtype %08x (%s)", subtype, code.name.c_str()); return false; } return true; } bool ConditionalCode(u8 subtype, u32 addr, u32 data, int *pCount, bool *pSkip, int compareType) { u8 size = (addr >> 25) & 0x03; u32 new_addr = ((addr & 0x01FFFFFF) | 0x80000000); LogInfo("Size: %08x", size); LogInfo("Hardware Address: %08x", new_addr); bool con = true; switch (size) { case DATATYPE_8BIT: con = CompareValues((u32)Memory::Read_U8(new_addr), (data & 0xFF), compareType); break; case DATATYPE_16BIT: con = CompareValues((u32)Memory::Read_U16(new_addr), (data & 0xFFFF), compareType); break; case DATATYPE_32BIT_FLOAT: case DATATYPE_32BIT: con = CompareValues(Memory::Read_U32(new_addr), data, compareType); break; default: LogInfo("Bad Size"); PanicAlert("Action Replay: Conditional Code: Invalid Size %08x (%s)", size, code.name.c_str()); return false; } return SetLineSkip(1, subtype, pSkip, con, pCount); } // ---------------------- // Internal Functions bool SetLineSkip(int codetype, u8 subtype, bool *pSkip, bool skip, int *pCount) { *pSkip = !skip; // set skip LogInfo("Skip set to %s", !skip ? "True" : "False"); switch (subtype) { case 0x00: *pCount = 1; break; // Skip 1 line case 0x01: *pCount = 2; break; // Skip 2 lines case 0x02: // skip all lines case 0x03: *pCount = -2; break; // While != : no idea the purpose of this case default: LogInfo("Bad Subtype"); PanicAlert("Action Replay: Normal Code %i: Invalid subtype %08x (%s)", codetype, subtype, code.name.c_str()); return false; } return true; } bool CompareValues(u32 val1, u32 val2, int type) { switch(type) { case CONDTIONAL_IF_EQUAL: LogInfo("Type 1: If Equal"); return (val1 == val2); case CONDTIONAL_IF_NOT_EQUAL: LogInfo("Type 2: If Not Equal"); return (val1 != val2); case CONDTIONAL_IF_LESS_THAN_SIGNED: LogInfo("Type 3: If Less Than (Signed)"); return ((int)val1 < (int)val2); case CONDTIONAL_IF_GREATER_THAN_SIGNED: LogInfo("Type 4: If Greater Than (Signed)"); return ((int)val1 > (int)val2); case CONDTIONAL_IF_LESS_THAN_UNSIGNED: LogInfo("Type 5: If Less Than (Unsigned)"); return (val1 < val2); case CONDTIONAL_IF_GREATER_THAN_UNSIGNED: LogInfo("Type 6: If Greater Than (Unsigned)"); return (val1 > val2); case CONDTIONAL_IF_AND: LogInfo("Type 7: If And"); return (val1 && val2); default: LogInfo("Unknown Compare type"); PanicAlert("Action Replay: Invalid Normal Code Type %08x (%s)", type, code.name.c_str()); return false; } } } // namespace ActionReplay