

User’s Manual

GameCube DSP (GDSP)

Reversed and documented by Duddie (duddie@walla.com)

Document date: 2005.05.12
Document version: 0.0.4

mailto:duddie@walla.com

Copyright (c) 2005 Duddie.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation
License".

2

Table of Contents

I. Disclaimer ...7
II. GNU Free Documentation License ...8
III. Version history ..14
IV. Overview ...15

1. DSP Memory Map ...16
V. Registers ..17

1. Register names ...18
2. Accumulators ...19
3. Stacks ...20
4. Config register ...21
5. Status register...22
6. Product register ..23

VI. Exceptions...24
1. Exception processing ...25
2. Exception vectors...26

VII. Hardware interface..27
1. Hardware registers ...28
2. Interrupts ..29
3. Mailboxes...30
4. DMA ..32
5. Accelerator...34

VIII. Opcodes..35
1. Opcode syntax..36
2. Operation - used functions ...37
3. Meaning of bits ..39
4. Conditional opcodes...40
5. Opcodes decoding..41

ADD...42
ADDARN ..43
ADDAX ...44
ADDAXL...45
ADDI..46
ADDIS ...47
ADDP...48
ADDPAXZ ..49
ADDR ..50
ANDC ..51
ANDCF..52
ANDF...53
ANDI..54
ANDR ..55
ASL..56
ASR..57
ASR16..58
BLOOP ..59
BLOOPI ...60
CALL ...61
CALLcc..62

3

CALLR ..63
CLR..64
CLRL ...65
CLRP..66
CMP ...67
CMPI..68
CMPIS..69
DAR ...70
DEC..71
DECM..72
HALT...73
IAR...74
IFcc ..75
ILRR ..76
ILRRD..77
ILRRI ...78
ILRRN..79
INC...80
INCM ...81
JMP ..82
Jcc ..83
JMPR..84
LOOP ...85
LOOPI..86
LR ..87
LRI ...88
LRIS...89
LRR..90
LRRD...91
LRRI ..92
LRRN...93
LRS ..94
LSL ..95
LSL16 ..96
LSR ..97
LSR16 ..98
MADD ...99
MADDC...100
MADDX ..101
MOV ..102
MOVAX ..103
MOVNP ...104
MOVP..105
MOVPZ..106
MOVR..107
MRR...108
MSUB ..109
MSUBC..110
MSUBX ...111
MUL...112

4

MULAC ...113
MULC..114
MULCAC ..115
MULCMV..116
MULCMVZ ...117
MULMV ..118
MULMVZ..119
MULX..120
MULXAC ..121
MULXMV ...122
MULXMVZ...123
NEG ...124
NOP..125
NX..126
ORC ...127
ORI...128
ORR ...129
RET..130
RETcc ..131
RTI ...132
SBSET..133
SBCLR...134
SI ..135
SR...136
SRR..137
SRRD ...138
SRRI...139
SRRN ...140
SRS ..141
SUB..142
SUBAX..143
SUBP..144
SUBR ...145
TST ..146
TSTAXH..147
XORI..148
XORR ..149

6. Extended opcodes decoding...151
‘DR...152
‘IR ..153
‘L..154
‘LN...155
‘LS..156
‘LSM..157
‘LSMN ...158
‘LSN...159
‘MV..160
‘NR...161
‘S ..162
‘SL..163

5

‘SLM..164
‘SLMN ...165
‘SLN...166
‘SN ...167

7. Opcodes sorted by bit decoding...168
IX. References..171

6

I. Disclaimer

This documentation is no way enorsed by or affiliated with Nintedo,
Nintendo of America or its licenses. GameCube is a trademark of Nintendo of
America. Other trademarked names used in this documentation are
trademarks of their respective owners.

This documentation is provided “AS IS” and can be wrong, incomplete or

in any other way useless.

This documentation cannot be used for any commercial purposes

without prior agreement received from authors.

The purpose of this documentation is purely academic and it aims at

understanding described hardware. It is based on academic reverse
engineering of hardware.

7

II. GNU Free Documentation License

 GNU Free Documentation License
 Version 1.2, November 2002

 Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed

8

to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work's title, preceding the beginning of the body of the
text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

9

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.
H. Include an unaltered copy of this License.

10

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of
a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

11

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version of
this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

12

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the Free Software Foundation.
If the Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation.

13

III. Version history

Version Date Author Change
0.0.1 2005.05.08 Duddie Initial release

0.0.2 2005.05.09 Duddie
Added $prod and $config
registers, table of opcodes,
disclaimer

0.0.3 2005.05.09 Duddie
Fixed BLOOP and BLOOPI and
added description of Loop
Stack

0.0.4 2005.05.12 Duddie
Added preliminary DSP
memory map and opcode
syntax

14

IV. Overview

15

1. DSP Memory Map

DSP accesses memory in words, so all addresses refer to words. DSP
word is 16 bit long.

Instruction Memory (IMEM) is divided into instruction RAM (IRAM) and

instruction ROM (IROM).

Exception vectors are located at the top of the RAM and occupy first 8

words.

DSP IRAM is mapped through as first 8kB (4kW) of ARAM (Accelerator

RAM) therefore CPU can directly DMA DSP code to DSP IRAM. This usually
happens during boottime because DSP ROM is not enabled at cold reset and
needs to be reenabled by small stub executed in IRAM.

0x0000

0x0fff

IRAM

0x8000

0x8fff

IROM

16

V. Registers

17

1. Register names

DSP has 32 16 bit registers although their purpose and their function

differ from register to register.

$0 $r00 $ar0 Addressing register 0
$1 $r01 $ar1
$2 $r02 $ar2
$3 $r03 $ar3
$4 $r04 $ix0
$5 $r05 $ix1
$6 $r06 $ix2
$7 $r07 $ix3
$8 $r08
$9 $r09
$10 $r0a
$11 $r0b
$12 $r0c $st0
$13 $r0d $st1
$14 $r0e $st2
$15 $r0f $st3
$16 $r10 $ac0.h
$17 $r11 $ac1.h
$18 $r12 $config
$19 $r13 $sr
$20 $r14 $prod.l
$21 $r15 $prod.m1
$22 $r16 $prod.h
$23 $r17 $prod.m2
$24 $r18 $ax0.l
$25 $r19 $ax1.l
$26 $r1a $ax1.h
$27 $r1b $ax1.h
$28 $r1c $ac0.l
$29 $r1d $ac1.l
$30 $r1e $ac0.m
$31 $r1f $ac1.m

18

2. Accumulators

DSP has two long 40-bit accumulators ($acX) and their short 24-bit forms
($acsX) that reflect upper part of 40-bit accumulator. There are additional two
32-bit accumulators ($axX).

Accumulators $acX:

40-bit accumulator $acX ($acX.hml) consists of registers:

$acX = $acX.h << 32 | $acX.m << 16 | $acX.l

Short accumulators $acsX:

24-bit accumulator $acsX ($acX.hm) consists of upper 24bit of accumulator
$acX

$acsX = $acX.h << 16 | $acX.m

Additonal accumulators $axX:

$axX = $axX.h << 16 | $axX.l

19

3. Stacks

GDSP contains 4 stack registers:
- $st0 - call stack
- $st1 - data stack
- $st2 - loop address stack
- $st3 - loop counter

Stacks are implemented in hardware and have limited depth. Data stack is

limited to 4 values and call stack is limited to 8 values. Loop stack is limited to
4 values. Upon underflow or overflow of any of the stack registers exception
STOVF is raised.

Loop stack is used to control execution of repeated blocks of instructions.
Whenever there is value on stack $st2 and current PC is equal value at $st2,
then value at stack $st3 is decremented. If value is not zero then PC is
modified with calue from call stack $st0. Otherwise values from callstack $st0
and both loop stacks $st2 and $st3 are poped and execution continues at next
opcode.

20

4. Config register

It’s purpose is unknown at this time. It is written with 0x00ff and 0x0004
values.

21

5. Status register

Status register $sr reflects flags computed on accumulators after logical or
arithmetical operations. Furthermore it also contains control bits to configure
flow of certain operations.

Bit Name Comment
14 AM Product multiply result by 2 (when AM = 0)
9 IE Interrupt enable
8 0 Hardwired to 0 (?)
6 LZ Logic zero
4 AS
3 S Sign
2 Z Zero

22

6. Product register

Product register is an intermediate product of multiply or multiply and
accumulation. It’s result should never be used for calculation although the
register can be read or writtent. It reflects state of internal multiply unit.
Product is 40 bit with 1 bit of overflow.

$prod = ($prod.h << 32) + (($prod.m1 + $prod.m2) << 16) + $prod.l

It needs to be noted that $prod.m1 + $prod.m2 overflow bit (bit 16) will
be added to $prod.h.

Bit $sr.AM affects result of multiply unit. If bit $sr.AM is equal 0 then

result of every multiply operation will be multiplied by 2 (two).

23

VI. Exceptions

24

1. Exception processing

Exception processing happens by setting program counter to different

exception vectors. At the exception time, exception program counter is stored
at call stack $st0 and status register $sr is stored at data stack $st1.

Operation:

PUSH_STACK($st0)
$st0 = $pc
PUSH_STACK($st1)
$st1 = $sr
$pc = exception_nr * 2

25

2. Exception vectors

Exception vectors are located at address 0x0000 in Instruction RAM.

Level Address Name Description
0 0x0000 RESET
1 0x0002 STOVF Stack under/overflow
2 0x0004
3 0x0006
4 0x0008
5 0x000a ACCOV Accelerator address overflow
6 0x000c
7 0x000e

26

VII. Hardware interface

27

1. Hardware registers

Hardware registers occupy address space at 0xffxx in DSP memory
space. Each register is 16 bit.

Address Name Description
Mailboxes
0xfffe CMBH CPU Mailbox H
0xffff CMBL CPU Mailbox L
0xfffc DMBH DSP Mailbox H
0xfffd DMBL DSP Mailbox L
DMA interface
0xffce DSMAH Memory address H
0xffcf DSMAL Memory address L
0xffcd DSPA DSP memory address
0xffc9 DSCR DMA Control
0xffcb DSBL Block size
Accelerator
0xffd4 ACSAH Accelerator start address H
0xffd5 ACSAL Acceleratir start address L
0xffd6 ACEAH Accelerator end address H
0xffd7 ACEAL Accelerator end address L
0xffd8 ACCAH Accelerator current address H
0xffd9 ACCAL Accelerator current address L
0xffdd ACDAT Accelerator data
Interrupts
0xfffb DIRQ IRQ request

28

2. Interrupts

DSP can raise interrupts at CPU. Usually interrupts are used to signal that
new DSP mbox has been filled with data.

0xFFFB DIRQ IRQ Request

---- ---- ---- ---I

Bit Name R/W Action
0 I W 1 - Raise interrupt at CPU

29

3. Mailboxes

CPU Mailbox (CMB) is a register that allows sending 31 bits of information
from CPU to DSP.

0xFFFE CMBH CPU Mailbox H

Mddd dddd dddd dddd

Bit Name R/W Action
15 M R 1 – Mailbox contains mail from CPU

0 – Mailbox empty
14-0 d R bits 30-16 of mail from CPU

0xFFFF CMBL CPU Mailbox L

dddd dddd dddd dddd

Bit Name R/W Action
15-0 d R bits 15-0 of mail from CPU. Reading

this register by DSP causes M bit of
register CMBH to be cleared.

Operation:

From CPU side, software usually checks M bit of CMBH. It takes action
only in case this bit is 0. Action is to write CMBH first and then CMBL. After
writing CMBL mail is ready to be received by DSP.

From DSP side, DSP loops by probing M bit. When this bit is 1 it reads

CMBH first and then CMBL. After reading CMBL bit M of CMBH signalizing
mail from CPU will be cleared.

30

DSP mailbox (DMB) is an interface to send 31 bits of information from

DSP to CPU.

0xFFFC DMBH DSP Mailbox H

Mddd dddd dddd dddd

Bit Name R/W Action
R 1 – Mailbox has not been received by CPU

0 – Mailbox empty
15 M

W Does not matter. It will be set when DMBL is
written.

14-0 d W bits 30-16 of mail from DSP to CPU

0xFFFD DMBL DSP Mailbox L

dddd dddd dddd dddd

Bit Name R/W Action
15-0 d W bits 15-0 of mail from DSP to CPU.

Writing this register by DSP causes M
bit of register DMBH to be set
signalizing that mail is ready.

Operation:

Sending mail from DSP to CPU can be achieved by writing mail to DMBH
and then to DMBL registers. After writing DMBL a flag M in DMBH will be set
signalling that mail is ready to be received by CPU. If DSP needs to receive
response from CPU then it usually waits for bit M to be cleared after sending a
mail. If DSP does processing when CPU receives a mail, then it waits for bit M
to be cleared before issuing another mail to CPU.

31

4. DMA

GDSP is connected with memory bus through DMA channel. DMA can
transfer data between DSP memory (both instruction and data) and main
memory.

0xFFCE DSMAH Memory Address H

dddd dddd dddd dddd

Bit Name R/W Action
15-0 d R bits 31-16 of main memory address

0xFFCF DSMAL Memory address L

dddd dddd dddd dddd

Bit Name R/W Action
15-0 d R bits 15-0 of main memory address

0xFFCD DSPA DSP Address

dddd dddd dddd dddd

Bit Name R/W Action
15-0 d W bits 15-0 of DSP memory address

0xFFCB DSBL DSP Address

dddd dddd dddd dddd

Bit Name R/W Action
15-0 d W length in bytes of transfer. writing to

this register starts DMA transfer.

32

0xFFC9 DSCR DSP Address
---- ---- ---- ----

Bit Name R/W Action
15-0 d W

33

5. Accelerator

Accelerator is used to transfer data from accelerator memory (ARAM) to
DSP. Accelerator area can be marked with ACSA (start) and ACEA (end)
addresses. Current address for can be set or read from ACCA register.
Reading from accelerator memory is done by reading from ACDAT register.
This register contains data from ARAM pointed by ACCA register. After
reading, ACCA is incremented by one. After ACCA grows bigger than area
pointed by ACEA, it gets reset to a value from ACSA and ACCOV interrupt is
generated.

34

VIII. Opcodes

35

1. Opcode syntax

Basic syntax of opcode:

OPC opc_params

Above syntax is correct for all opcodes.

OPC - opcode
opc_params - opcode parameters if necessary

EXAMPLES:

 JMP 0x0300
 CALL loop
 HALT

Extended syntax:

OPC’EXOPC opc_params : exopc_params

Above syntax is correct only for arithmetic opcodes because those can be
extended with additional load/store unit behaviour.

OPC - opcode
OPC - extended opcode
opc_params - opcode parameters if necessary
opc_params - opcode parameters for extended part if

necessary

EXAMPLES:

 DECM’L $acs0 : $ac1.m, @ar0
 NX’MV : $acx1.h, $ac0.l

36

2. Operation - used functions

Functions used for describing operation of opcodes

PUSH_STACK($stR)

Description:

Pushes value onto given stack referenced by stack register $stR.
Operation moves down values in internal stack.

Operation:

stack_stR[stack_ptr_stR++] = $stR;

POP_STACK($stR)

Description:

Pops value from stack referenced by stack register $stR. Operation
moves values up in internal stack.

Operation:

$stR = stack_stR[--stack_ptr_stR]

FLAGS(val)

Description:
Calculates flags depending on given value or result of operation and
setting corresponding bits in status register $sr.

Operation:

37

EXECUTE_OPCODE(new_pc)

Description:
Executes opcode at given new_pc address.

Operation:

38

3. Meaning of bits

Opcode decoding uses special naming for bits and their decimal
representations to provide easier understanding of bit fields in opcode

Binary form Decimal form Meaning
d, dd, ddd, dddd D Destination register
s, ss, sss, ssss S Source register
t, tt, ttt, tttt T Source register
r, rr, rrr, rrrr R Register (either source or destination)
Aaaaa(a) A, addrA Address in either I or D memory
xxxx xxxx X Extended opcode
mmm(m) M, addrM Address in memory
iii(i) I, Imm Immediate value
cccc cc Condition (See conditional opcodes)

39

4. Conditional opcodes

Conditional opcodes are being executed only when given condition
described by conditional field has been met. To the group of conditional
opcodes belong: CALL, JMP, IF, RET.

Bits cc Name Evaluated expression
0000
0001
0010
0011
0100 EQ Equal
0101 NE Not equal
0110
0111
1000
1001
1010
1011
1100 ZR Zero $sr & 0x40
1101 NZ Not zero !($sr & 0x40)
1110
1111 <always>

Note:

There is two pairs of conditions that work similar: EQ/NE and ZR/NZ.
EQ/NE pair operates on arithmetic zero flag (arithmetic 0) while ZR/NZ pair
operates on logic zero flag (logic 0).

40

5. Opcodes decoding

41

ADD

0100 110d xxxx xxxx

Format:

 ADD $acD, $ac(1-D)

Description:

 Adds accumulator $ac(1-D) to accumulator register $acD.

Operation:

 $acD += $ac(1-D)
 FLAGS($acD)
 $pc++

42

ADDARN

0000 0000 0001 ssdd

Format:

 ADDARN $arD, $ixS

Description:

 Adds indexing register $ixS to an addressing register $arD.

Operation:

 $arD += $ixS
 $pc++

43

ADDAX

0100 10sd xxxx xxxx

Format:

 ADDAX $acD, $axS

Description:

 Adds secondary accumulator $axS to accumulator register $acD.

Operation:

 $acD += $axS
 FLAGS($acD)
 $pc++

44

ADDAXL

0111 00sd xxxx xxxx

Format:

 ADDAXL $acD, $axS.l

Description:

 Adds secondary accumulator $axS.l to accumulator register $acD.

Operation:

 $acD += $axS.l
 FLAGS($acD)
 $pc++

45

ADDI

0000 001r 0000 0000
iiii iiii iiii iiii

Format:

 ADDI $amR, #I

Description:

 Adds immediate (16-bit sign extended) to mid accumulator $acD.hm.

Operation:

 $acD.hm += #I
 FLAGS($acD)
 $pc++

46

ADDIS

0000 010d iiii iiii

Format:

 ADDIS $acD, #I

Description:

 Adds short immediate (8-bit sign extended) to mid accumulator
$acD.hm.

Operation:

 $acD.hm += #I
 FLAGS($acD)
 $pc++

47

ADDP

0100 111d xxxx xxxx

Format:

 ADDP $acD

Description:

 Adds product register to accumulator register.

Operation:

 $acD += $prod
 FLAGS($acD)
 $pc++

48

ADDPAXZ

1111 10sd xxxx xxxx

Format:

 ADDPAXZ $acD, $axS

Description:

 Adds secondary accumulator $axS to product register and stores result
in accumulator register. Low 16-bits of $acD ($acD.l) are set to 0.

Operation:

 $acD.hm = $prod.hm + $ax.h
 $acD.l = 0
 FLAGS($acD)
 $pc++

49

ADDR

0100 0ssd xxxx xxxx

Format:

 ADDR $acD, $(0x18+S)

Description:

 Adds register $(0x18+S) to accumulator $acD register.

Operation:

 $acD += $(0x18+S)
 FLAGS($acD)
 $pc++

50

ANDC

0011 110d xxxx xxxx

Format:

 AMDC $acD.m, $ac(1-D).m

Description:

 Logic AND middle part of accumulator $acD.m with middle part of
accumulator $ax(1-D).m.

Operation:

 $acD.m &= $ac(1-D).m
 FLAGS($acD)
 $pc++

51

ANDCF

0000 001r 1010 0000
iiii iiii iiii iiii

Format:

 ANDCF $acD.m, #I

Description:

 Set logic zero (LZ) flag in status register $sr if result of logical AND
operation of accumulator mid part $acD.m with immediate value I is equal
immediate value I.

Operation:

 IF ($acD.m & I) == I
 $sr.LZ = 1
 ELSE
 $sr.LZ = 0
 $pc++

52

ANDF

0000 001r 1100 0000
iiii iiii iiii iiii

Format:

 ANDF $acD.m, #I

Description:

 Set logic zero (LZ) flag in status register $sr if result of logic AND of
accumulator mid part $acD.m with immediate value I is equal zero.

Operation:

 IF ($acD.m & I) == 0
 $sr.LZ = 1
 ELSE
 $sr.LZ = 0
 $pc++

53

ANDI

0000 001r 0100 0000
iiii iiii iiii iiii

Format:

 ANDI $acD.m, #I

Description:

 Logic AND of accumulator mid part $acD.m with immediate value I.

Operation:

 $acD.m &= #I
 FLAGS($acD)
 $pc++

54

ANDR

0011 01sd xxxx xxxx

Format:

 ANDR $acD.m, $axS.h

Description:

 Logic AND middle part of accumulator $acD.m with hight part of
secondary accumulator $axS.h.

Operation:

 $acD.m &= $axS.h
 FLAGS($acD)
 $pc++

55

ASL

0001 010r 10ii iiii

Format:

 ASL $acR, #I

Description:

 Logically shifts left accumulator $acR by number specified by value I.

Operation:

 $acR <<= I
 FLAGS($acD)
 $pc++

56

ASR

0001 010r 11ii iiii

Format:

 ASR $acR, #I

Description:

 Arithmetically shifts left accumulator $acR by number specified by
value calculated by negating sign extended bits 0-6.

Operation:

 $acR <<= I
 FLAGS($acD)
 $pc++

57

ASR16

1001 r001 xxxx xxxx

Format:

ASR16 $acR

Description:

 Arithmetically shifts right accumulator $acR by 16.

Operation:

 $acR >>= 16
 FLAGS($acD)
 $pc++

58

BLOOP

0000 0000 011r rrrr
aaaa aaaa aaaa aaaa

Format:

 BLOOP $R, addrA

Description:

 Repeatedly execute block of code starting at following opcode until
counter specified by value from register $R reaches zero. Block ends at
specified address addrA inclusive, ie. opcode at addrA is the last opcode
included in loop. Counter is pushed on loop stack $st3, end of block address
is pushed on loop stack $st2 and repeat address is pushed on call stack $st0.
Up to 4 nested loops is allowed.

Operation:

 $st0 = $pc + 2
 $st2 = addrA
 $st3 = $R
 $pc + 2
 // in real hardware below does not happen, this
opcode only sets stack registers
 WHILE ($st3--)

DO
EXECUTE_OPCODE($pc)

 WHILE($pc != $st2)
 $pc = $st0
 $pc = addrA + 1
 // remove vaues from stack

See also:

 Description of Stack registers explains how loop stacks are working

59

BLOOPI

0001 0001 iiii iiii
aaaa aaaa aaaa aaaa

Format:

 BLOOPI #I, addrA

Description:

 Repeatedly execute block of code starting at following opcode until
counter specified by immediate value I reaches zero. Block ends at specified
address addrA inclusive, ie. opcode at addrA is the last opcode included in
loop. Counter is pushed on loop stack $st3, end of block address is pushed
on loop stack $st2 and repeat address is pushed on call stack $st0. Up to 4
nested loops is allowed.

Operation:

 $st0 = $pc + 2
 $st2 = addrA
 $st3 = I
 $pc + 2
 // in real hardware below does not happen, this
opcode only sets stack registers
 WHILE ($st3--)

DO
EXECUTE_OPCODE($pc)

 WHILE($pc != $st2)
 $pc = $st0
 $pc = addrA + 1
 // remove vaues from stack

See also:

 Description of Stack registers explains how loop stacks are working

60

CALL

0000 0010 1011 1111
aaaa aaaa aaaa aaaa

Format:

 CALL addressA

Description:

 Call function. Push program counter of instruction following “call” to
call stack $st0. Set program counter to address represented by value that
follows this “call” instruction.

Operation:

// must skip value that follows “call”
 PUSH_STACK($st0)

$st0 = $pc + 2
 $pc = addressA

61

CALLcc

0000 0010 1011 cccc
aaaa aaaa aaaa aaaa

Format:

 CALLcc addressA

Description:

 Call function if condition cc has been met. Push program counter of
instruction following “call” to call stack $st0. Set program counter to address
represented by value that follows this “call” instruction.

Operation:

// must skip value that follows “call”
 IF (cc) PUSH_STACK($st0)

$st0 = $pc + 2
 $pc = addressA
 ELSE $pc += 2

62

CALLR

0001 0111 rrr1 1111

Format:

 CALLR $R

Description:

 Call function. Push program counter of instruction following “call” to
call stack $st0. Set program counter to register $R.

Operation:

 PUSH_STACK($st0)

$st0 = $pc + 1
 $pc = $R

63

CLR

1000 r001 xxxx xxxx

Format:

 CLR $acR

Description:

 Clears accumulator $acR

Operation:

 $acR = 0
 FLAGS($acR)
 $pc++

64

CLRL

1111 110r xxxx xxxx

Format:

 CLRD $acR.l

Description:

 Clears $acR.l - low 16 bits of accumulator $acR.

Operation:

 $acR.l = 0
 FLAGS($acR)
 $pc++

65

CLRP

1000 0100 xxxx xxxx

Format:

 CLRP

Description:

 Clears product register $prod.

Operation:

 $prod = 0 // see note below
 $pc++

Note:

Actually product register gets cleared by setting registers with following
values:

$14 = 0x0000
$15 = 0xfff0
$16 = 0x00ff
$17 = 0x0010

66

CMP

1000 0010 xxxx xxxx

Format:

 CMP

Description:

 Compares accumulator $ac0 with accumulator $ac1.

Operation:

 $sr = FLAGS($ac0 - $ac1)
 $pc++

67

CMPI

0000 001r 1000 0000
iiii iiii iiii iiii

Format:

 CMPI $amD, #I

Description:

 Compares mid accumulator $acD.hm ($amD) with sign extended
immediate value I. Although flags are being set regarding whole accumulator
register.

Operation:

 res = ($acD.hm – I) | $acD.l
 FLAGS(res)
 $pc++

68

CMPIS

0000 011d iiii iiii

Format:

 CMPIS $acD, #I

Description:

 Compares accumulator with short immediate. Comaprison is executed
by subtracting short immediate (8bit sign extended) from mid accumulator
$acD.hm and computing flags based on whole accumulator $acD.

Operation:

 FLAGS($acD - #I)
 $pc++

69

DAR

0000 0000 0000 01dd

Format:

 DAR $arD

Description:

 Decrement address register $arD.

Operation:

 $arD--
 $pc++

70

DEC

0111 101d xxxx xxxx

Format:

 DEC $acD

Description:

 Decrement accumulator $acD.

Operation:

 $acD--;
 FLAGS($acD);
 $pc++;

71

DECM

0111 100d xxxx xxxx

Format:

 DECM $acsD

Description:

 Decrement 24-bit mid-accumulator $acsD.

Operation:

 $acsD--;
 FLAGS($acD);
 $pc++;

72

HALT

0000 0000 0020 0001

Format:

 HALT

Description:

 Stops execution of DSP code. Sets bit DSP_CR_HALT in register
DREG_CR.

Operation:

 DREG_CR |= DSP_CR_HALT;

73

IAR

0000 0000 0000 10dd

Format:

 IAR $arD

Description:

 Increment address register $arD.

Operation:

 $arD++
 $pc++

74

IFcc

0000 0010 0111 cccc

Format:

 IFcc

Description:

 Execute following opcode if the condition has been met.

Operation:

IF (cc) EXECUTE_OPCODE($pc + 1)
ELSE $pc += 2

75

ILRR

0000 001d 0001 00ss

Format:

 ILRR $acD.m, @$arS

Description:

 Move value from instruction memory pointed by addressing register
$arS to mid accumulator register $acD.m.

Operation:

 $acD.m = MEM[$arS]

$pc++

76

ILRRD

0000 001d 0001 01ss

Format:

 ILRRD $acD.m, @$arS

Description:

 Move value from instruction memory pointed by addressing register
$arS to mid accumulator register $acD.m. Decrement addressing register
$arS.

Operation:

 $acD.m = MEM[$arS]
 $arS--

$pc++

77

ILRRI

0000 001d 0001 10ss

Format:

 ILRRI $acD.m, @$S

Description:

 Move value from instruction memory pointed by addressing register
$arS to mid accumulator register $acD.m. Increment addressing register
$arS.

Operation:

 $acD.m = MEM[$arS]
 $arS++

$pc++

78

ILRRN

0000 001d 0001 11ss

Format:

 ILRRN $acD.m, @$arS

Description:

 Move value from instruction memory pointed by addressing register
$arS to mid accumulator register $acD.m. Add corresponding indexing
register $ixS to addressing register $arS.

Operation:

 $acD.m = MEM[$arS]
 $arS += $ixS

$pc++

79

INC

0111 011d xxxx xxxx

Format:

 INC $acD

Description:

 Increment accumulator $acD.

Operation:

 $acD++
 FLAGS($acD)
 $pc++

80

INCM

0111 010d xxxx xxxx

Format:

 INCM $acsD

Description:

 Increment 24-bit mid-accumulator $acsD.

Operation:

 $acsD++
 FLAGS($acD)
 $pc++

81

JMP

0000 0010 1001 1111
aaaa aaaa aaaa aaaa

Format:

 JMP addressA

Description:

 Jump to addressA. Set program counter to address represented by
value that follows this “jmp” instruction.

Operation:

$pc = addressA

82

Jcc

0000 0010 1001 cccc
aaaa aaaa aaaa aaaa

Format:

 Jcc addressA

Description:

 Jump to addressA if condition cc has been met. Set program counter to
address represented by value that follows this “jmp” instruction.

Operation:

IF (cc) $pc = addressA
ELSE $pc += 2

83

JMPR

0001 0111 rrr0 1111

Format:

 JMP $R

Description:

 Jump to address; set program counter to a value from register $R.

Operation:

 $pc = $R

84

LOOP

0000 0000 010r rrrr

Format:

 LOOP $R

Description:

 Repeatedly execute following opcode until counter specified by value
from register $R reaches zero. Each execution decrement counter. Register
$R remains unchanged. If register $R is set to zero at the beginning of loop
then looped instruction will not get executed.

Operation:

 counter = $R
 WHILE (counter--)

EXECUTE_OPCODE($pc+1)
 $pc += 2

85

LOOPI

0001 0000 iiii iiii

Format:

 LOOPI #I

Description:

 Repeatedly execute following opcode until counter specified by
immediate value I reaches zero. Each execution decrement counter. If
immediate value I is set to zero at the beginning of loop then looped
instruction will not get executed.

Operation:

 counter = I
 WHILE (counter--)

EXECUTE_OPCODE($pc+1)
 $pc += 2

86

LR

0000 0000 110d dddd
mmmm mmmm mmmm mmmm

Format:

 LR $D, @M

Description:

 Move value from data memory pointed by address M to register $D.
Perform additional operation depending on destination register.

Operation:

 $D = MEM[M]

$pc += 2

87

LRI

0000 0000 100d dddd
iiii iiii iiii iiii

Format:

 LRI $D, #I

Description:

 Load immediate value I to register $D. Perform additional operation
depending on destination register.

Operation:

 $D = I

$pc += 2

88

LRIS

0000 1ddd iiii iiii

Format:

 LRIS $(0x18+D), #I

Description:

 Load immediate value I (8-bit sign extended) to accumulator register
$(0x18+D). Perform additional operation depending on destination register.

Operation:

 $(0x18+D) = I

$pc++

89

LRR

0001 1000 0ssd dddd

Format:

 LRR $D, @$S

Description:

 Move value from data memory pointed by addressing register $S to
register $D. Perform additional operation depending on destination register.

Operation:

 $D = MEM[$S]

$pc++

90

LRRD

0001 1000 1ssd dddd

Format:

 LRRD $D, @$S

Description:

 Move value from data memory pointed by addressing register $S to
register $D. Decrement register $S. Perform additional operation depending
on destination register.

Operation:

 $D = MEM[$S]
 $S--

$pc++

91

LRRI

0001 1001 0ssd dddd

Format:

 LRRI $D, @$S

Description:

 Move value from data memory pointed by addressing register $S to
register $D. Increment register $S. Perform additional operation depending on
destination register.

Operation:

 $D = MEM[$S]
 $S++

$pc++

92

LRRN

0001 1001 1ssd dddd

Format:

 LRRN $D, @$S

Description:

 Move value from data memory pointed by addressing register $S to
register $D. Add indexing register $(0x4+S) to register $S. Perform additional
operation depending on destination register.

Operation:

 $D = MEM[$S]
 $S += $(4+S)

$pc++

93

LRS

0010 0ddd mmmm mmmm

Format:

 LRS $(0x18+D), @M

Description:

 Move value from data memory pointed by address M (8-bit sign
extended) to register $(0x18+D). Perform additional operation depending on
destination register.

Operation:

 $(0x18+D) = MEM[M]

$pc += 2

94

LSL

0001 010r 00ii iiii

Format:

 LSL $acR, #I

Description:

 Logically shifts left accumulator $acR by number specified by value I.

Operation:

 $acR <<= I
 FLAGS($acD)
 $pc++

95

LSL16

1111 000r xxxx xxxx

Format:

 LSL16 $acR

Description:

 Logically shifts left accumulator $acR by 16.

Operation:

 $acR <<= 16
 FLAGS($acD)
 $pc++

96

LSR

0001 010r 01ii iiii

Format:

 LSR $acR, #I

Description:

 Logically shifts left accumulator $acR by number specified by value
calculated by negating sign extended bits 0-6.

Operation:

 $acR <<= I
 FLAGS($acD)
 $pc++

97

LSR16

1111 010r xxxx xxxx

Format:

 LSR16 $acR

Description:

 Logically shifts right accumulator $acR by 16.

Operation:

 $acR >>= 16
 FLAGS($acD)
 $pc++

98

MADD

1111 001s xxxx xxxx

Format:

 MADD $axS.l, $axS.h

Description:

 Multiply low part $axS.l of secondary accumulator $axS by high part
$axS.h of secondary accumulator $axS (treat them both as signed) and add
result to product register.

Operation:

 $prod += $axS.l * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

99

MADDC

1110 10st xxxx xxxx

Format:

 MADDC $acS.m, $axT.h

Description:

 Multiply middle part of accumulator $acS.m by high part of secondary
accumulator $axT.h (treat them both as signed) and add result to product
register.

Operation:

 $prod += $acS.m * $axT.h
 $pc++

See also:

 $sr.AM bit affects multiply result

100

MADDX

1110 00st xxxx xxxx

Format:

 MADDX $(0x18+S*2), $(0x19+T*2)

Description:

 Multiply one part of secondary accumulator $ax0 (selected by S) by
one part of secondary accumulator $ax1 (selected by T) (treat them both as
signed) and add result to product register.

Operation:

 $prod += $(0x18+S*2) * $(0x19+T*2)
 $pc++

See also:

 $sr.AM bit affects multiply result

101

MOV

0110 110d xxxx xxxx

Format:

 MOV $acD, $ac(1-D)

Description:

 Moves accumulator $ax(1-D) to accumulator $axD.

Operation:

 $acD = $ax(1-D)
 FLAGS($acD)
 $pc++

102

MOVAX

0110 10sd xxxx xxxx

Format:

 MOVAX $acD, $axS

Description:

 Moves secondary accumulator $axS to accumulator $axD.

Operation:

 $acD = $axS
 FLAGS($acD)
 $pc++

103

MOVNP

0111 111d xxxx xxxx

Format:

 MOVNP $acD

Description:

 Moves negative of multiply product from $prod register to accumulator
$acD register.

Operation:

 $acD = -$prod
 FLAGS($acD)
 $pc++

104

MOVP

0110 111d xxxx xxxx

Format:

 MOVP $acD

Description:

 Moves multiply product from $prod register to accumulator $acD
register.

Operation:

 $acD = $prod
 FLAGS($acD)
 $pc++

105

MOVPZ

1111 111d xxxx xxxx

Format:

 MOVPZ $acD

Description:

 Moves multiply product from $prod register to accumulator $acD
register and sets $acD.l to 0

Operation:

 $acD.hm = $prod.hm
 $acD.l = 0
 FLAGS($acD)
 $pc++

106

MOVR

0110 0ssd xxxx xxxx

Format:

 MOVR $acD, $(0x18+S)

Description:

 Moves register $(0x18+S) (sign extended) to middle accumulator
$acD.hm. Sets $acD.l to 0.

Operation:

 $acD.hm = $(0x18+S)
 $acD.l = 0
 FLAGS($acD)
 $pc++

107

MRR

0001 11dd ddds ssss

Format:

 MRR $D, $S

Description:

 Move value from register $S to register $D. Perform additional
operation depending on destination register.

Operation:

 $D = $S

$pc++

108

MSUB

1111 011s xxxx xxxx

Format:

 MSUB $axS.l, $axS.h

Description:

Multiply low part $axS.l of secondary accumulator $axS by high part
$axS.h of secondary accumulator $axS (treat them both as signed) and
subtract result from product register.

Operation:

 $prod -= $axS.l * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

109

MSUBC

1110 11st xxxx xxxx

Format:

 MSUBC $acS.m, $axT.h

Description:

 Multiply middle part of accumulator $acS.m by high part of secondary
accumulator $axT.h (treat them both as signed) and subtract result from
product register.

Operation:

 $prod -= $acS.m * $axT.h
 $pc++

See also:

 $sr.AM bit affects multiply result

110

MSUBX

1110 01st xxxx xxxx

Format:

 MSUBX $(0x18+S*2), $(0x19+T*2)

Description:

 Multiply one part of secondary accumulator $ax0 (selected by S) by
one part of secondary accumulator $ax1 (selected by T) (treat them both as
signed) and subtract result from product register.

Operation:

 $prod -= $(0x18+S*2) * $(0x19+T*2)
 $pc++

See also:

 $sr.AM bit affects multiply result

111

MUL

1001 s000 xxxx xxxx

Format:

 MUL $axS.l, $axS.h

Description:

 Multiply low part $axS.l of secondary accumulator $axS by high part
$axS.h of secondary accumulator $axS (treat them both as signed).

Operation:

 $prod = $axS.l * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

112

MULAC

1001 s10r xxxx xxxx

Format:

 MULAC $axS.l, $axS.h, $acR

Description:

 Add product register to accumulator register $acR. Multiply low part
$axS.l of secondary accumulator $axS by high part $axS.h of secondary
accumulator $axS (treat them both as signed).

Operation:

 $acR += $prod
 $prod = $axS.l * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

113

MULC

110s t000 xxxx xxxx

Format:

 MULC $acS.m, $axT.h

Description:

 Multiply mid part of accumulator register $acS.m by high part $axS.h of
secondary accumulator $axS (treat them both as signed).

Operation:

 $prod = $acS.m * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

114

MULCAC

110s t10r xxxx xxxx

Format:

 MULCAC $acS.m, $axT.h, $acR

Description:

 Multiply mid part of accumulator register $acS.m by high part $axS.h of
secondary accumulator $axS (treat them both as signed). Add product
register before multiplication to accumulator $acR.

Operation:

 temp = $prod
 $prod = $acS.m * $axS.h
 $acR += temp
 $pc++

See also:

 $sr.AM bit affects multiply result

115

MULCMV

110s t11r xxxx xxxx

Format:

 MULCMV $acS.m, $axT.h, $acR

Description:

 Multiply mid part of accumulator register $acS.m by high part $axS.h of
secondary accumulator $axS (treat them both as signed). Move product
register before multiplication to accumulator $acR.

Operation:

 temp = $prod
 $prod = $acS.m * $axS.h
 $acR = temp
 $pc++

See also:

 $sr.AM bit affects multiply result

116

MULCMVZ

110s t01r xxxx xxxx

Format:

 MULCMVZ $acS.m, $axT.h, $acR

Description:

 Multiply mid part of accumulator register $acS.m by high part $axS.h of
secondary accumulator $axS (treat them both as signed). Move product
register before multiplication to accumulator $acR, set low part of accumulator
$acR.l to zero.

Operation:

 temp = $prod
 $prod = $acS.m * $axS.h
 $acR.hm = temp.hm
 $acR.l = 0
 $pc++

See also:

 $sr.AM bit affects multiply result

117

MULMV

1001 s11r xxxx xxxx

Format:

 MULMV $axS.l, $axS.h, $acR

Description:

 Move product register to accumulator register $acR. Multiply low part
$axS.l of secondary accumulator $axS by high part $axS.h of secondary
accumulator $axS (treat them both as signed).

Operation:

 $acR = $prod
 $prod = $axS.l * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

118

MULMVZ

1001 s01r xxxx xxxx

Format:

 MULMVZ $axS.l, $axS.h, $acR

Description:

 Move product register to accumulator register $acR and clear low part
of accumulator register $acR.l. Multiply low part $axS.l of secondary
accumulator $axS by high part $axS.h of secondary accumulator $axS (treat
them both as signed).

Operation:

 $acR.hm = $prod.hm
 $acR.l = 0
 $prod = $axS.l * $axS.h
 $pc++

See also:

 $sr.AM bit affects multiply result

119

MULX

101s t000 xxxx xxxx

Format:

 MULX $ax0.S, $ax1.T

Description:

 Multiply one part $ax0 by one part $ax1 (treat them both as signed).
Part is selected by S and T bits. Zero selects low part, one selects high part.

Operation:

 $prod = (S==0)?$ax0.l:ax0.h * (T==0)?$ax1.l:$ax1.h
 $pc++

See also:

 $sr.AM bit affects multiply result

120

MULXAC

101s t01r xxxx xxxx

Format:

 MULXAC $ax0.S, $ax1.T, $acR

Description:

 Add product register to accumulator register $acR. Multiply one part
$ax0 by one part $ax1 (treat them both as signed). Part is selected by S and
T bits. Zero selects low part, one selects high part.

Operation:

 $acR += $prod
 $prod = (S==0)?$ax0.l:ax0.h * (T==0)?$ax1.l:$ax1.h
 $pc++

See also:

 $sr.AM bit affects multiply result

121

MULXMV

101s t11r xxxx xxxx

Format:

 MULXMV $ax0.S, $ax1.T, $acR

Description:

 Move product register to accumulator register $acR. Multiply one part
$ax0 by one part $ax1 (treat them both as signed). Part is selected by S and
T bits. Zero selects low part, one selects high part.

Operation:

 $acR = $prod
 $prod = (S==0)?$ax0.l:ax0.h * (T==0)?$ax1.l:$ax1.h
 $pc++

See also:

 $sr.AM bit affects multiply result

122

MULXMVZ

101s t01r xxxx xxxx

Format:

 MULXMV $ax0.S, $ax1.T, $acR

Description:

 Move product register to accumulator register $acR and clear low part
of accumulator register $acR.l. Multiply one part $ax0 by one part $ax1 (treat
them both as signed). Part is selected by S and T bits. Zero selects low part,
one selects high part.

Operation:

 $acR.hm = $prod.hm
 $acR.l = 0
 $prod = (S==0)?$ax0.l:ax0.h * (T==0)?$ax1.l:$ax1.h
 $pc++

See also:

 $sr.AM bit affects multiply result

123

NEG

0111 110d xxxx xxxx

Format:

 NEG $acD

Description:

 Negate accumulator $acD.

Operation:

 $acD =- $acD
 FLAGS($acD)
 $pc++

124

NOP

0000 0000 0000 0000

Format:

 NOP

Description:

 No operation.

Operation:

 $pc++;

125

NX

1000 -000 xxxx xxxx

Format:

 NX

Description:

 No operation, but can be extended with extended opcode.

Operation:

 $pc++;

126

ORC

0011 111d xxxx xxxx

Format:

 ORC $acD.m, $ac(1-D).m

Description:

 Logic OR middle part of accumulator $acD.m with middle part of
accumulator $ax(1-D).m.

Operation:

 $acD.m |= $ac(1-D).m
 FLAGS($acD)
 $pc++

127

ORI

0000 001r 0110 0000
iiii iiii iiii iiii

Format:

 ORI $acD.m, #I

Description:

 Logic OR of accumulator mid part $acD.m with immediate value I.

Operation:

 $acD.m |= #I
 FLAGS($acD)
 $pc++

128

ORR

0011 10sd xxxx xxxx

Format:

 ORR $acD.m, $axS.h

Description:

 Logic OR middle part of accumulator $acD.m with hight part of
secondary accumulator $axS.h.

Operation:

 $acD.m |= $axS.h
 FLAGS($acD)
 $pc++

129

RET

0000 0010 1101 1111

Format:

 RET

Description:

 Return from subroutine. Pops stored PC from call stack $st0 and sets
$pc to this location.

Operation:

 $pc = $st0

POP_STACK($st0)

130

RETcc

0000 0010 1101 cccc

Format:

 RETcc

Description:

 Return from subroutine if condition cc has been met. Pops stored PC
from call stack $st0 and sets $pc to this location.

Operation:

 IF (cc) $pc = POP_STACK($st0)
 ELSE $pc += 2

131

RTI

0000 0010 1111 1111

Format:

 RTI

Description:

 Return from exception. Pops stored status register $sr from data stack
$st1 and program counter PC from call stack $st0 and sets $pc to this
location.

Operation:

 $sr = $st1
 POP_STACK($st1)
 $pc = $st0

POP_STACK($st0)

132

SBSET

0001 0010 0000 0iii

Format:

 SBSET #I

Description:

 Set bit of status register $sr. Bit number is calculated by adding 6 to
immediate value I.

Operation:

 $sr |= (I + 6)

$pc++

133

SBCLR

0001 0011 0000 0iii

Format:

 SBCLR #I

Description:

 Clear bit of status register $sr. Bit number is calculated by adding 6 to
immediate value I.

Operation:

 $sr &= ~(I + 6)

$pc++

134

SI

0001 0110 mmmm mmmm
iiii iiii iiii iiii

Format:

 SI @M, #I

Description:

 Store 16-bit immediate value I to a memory location pointed by address
M (M is 8-bit value sign extended).

Operation:

 MEM[M] = I

$pc += 2

135

SR

0000 0000 111s ssss
mmmm mmmm mmmm mmmm

Format:

 SR @M, $S

Description:

 Store value from register $S to a memory pointed by address M.
Perform additional operation depending on destination register.

Operation:

 MEM[M] = $S

$pc += 2

136

SRR

0001 1010 0dds ssss

Format:

 SRR @$D, $S

Description:

 Store value from source register $S to a memory location pointed by
addressing register $D. Perform additional operation depending on source
register.

Operation:

 MEM[$D] = $S

$pc++

137

SRRD

0001 1010 1dds ssss

Format:

 SRRD @$D, $S

Description:

 Store value from source register $S to a memory location pointed by
addressing register $D. Decrement register $D. Perform additional operation
depending on source register.

Operation:

 MEM[$D] = $S
 $D--

$pc++

138

SRRI

0001 1011 0dds ssss

Format:

 SRRI @$D, $S

Description:

 Store value from source register $S to a memory location pointed by
addressing register $D. Increment register $D. Perform additional operation
depending on source register.

Operation:

 MEM[$D] = $S
 $D++

$pc++

139

SRRN

0001 1011 1dds ssss

Format:

 SRRN @$D, $S

Description:

 Store value from source register $S to a memory location pointed by
addressing register $D. Add indexing register $(0x4+D) to register $D.
Perform additional operation depending on source register.

Operation:

 MEM[$D] = $S
 $D += $(4+D)

$pc++

140

SRS

0010 1sss mmmm mmmm

Format:

 SRS @M, $(0x18+S)

Description:

 Store value from register $(0x18+S) to a memory pointed by address
M. (8-bit sign extended). Perform additional operation depending on
destination register.

Operation:

 MEM[M] = $(0x18+S)

$pc += 2

141

SUB

0101 110d xxxx xxxx

Format:

 SUB $acD, $ac(1-D)

Description:

 Subtracts accumulator $ac(1-D) from accumulator register $acD.

Operation:

 $acD -= $ac(1-D)
 FLAGS($acD)
 $pc++

142

SUBAX

0101 10sd xxxx xxxx

Format:

 SUBAX $acD, $axS

Description:

 Subtracts secondary accumulator $axS from accumulator register
$acD.

Operation:

 $acD -= $axS
 FLAGS($acD)
 $pc++

143

SUBP

0101 111d xxxx xxxx

Format:

 SUBP $acD

Description:

 Subtracts product register from accumulator register.

Operation:

 $acD -= $prod
 FLAGS($acD)
 $pc++

144

SUBR

0101 0ssd xxxx xxxx

Format:

 SUBR $acD, $(0x18+S)

Description:

 Subtracts register $(0x18+S) from accumulator $acD register.

Operation:

 $acD -= $(0x18+S)
 FLAGS($acD)
 $pc++

145

TST

1011 r001 xxxx xxxx

Format:

 TST $acR

Description:

 Test accumulator $acR

Operation:

 FLAGS($acR)
 $pc++

146

TSTAXH

1000 011r xxxx xxxx

Format:

 TST $axR.h

Description:

 Test hight part of secondary accumulator $axR.h.

Operation:

 FLAGS($axR.h)
 $pc++

147

XORI

0000 001r 0010 0000
iiii iiii iiii iiii

Format:

 XORI $acD.m, #I

Description:

 Logic exclusive or (XOR) of accumulator mid part $acD.m with
immediate value I.

Operation:

 $acD.m ^= #I
 FLAGS($acD)
 $pc++

148

XORR

0011 00sd xxxx xxxx

Format:

 XORR $acD.m, $axS.h

Description:

 Logic XOR (exclusive or) middle part of accumulator $acD.m with
hight part of secondary accumulator $axS.h.

Operation:

 $acD.m ^= $axS.h
 FLAGS($acD)
 $pc++

149

150

6. Extended opcodes decoding

Extended opcodes do not exist on their own. These opcodes can only be
attached to opcodes that allow extending (8 lower bits of opcode not used by
opcode). Extended opcodes do not modify program counter $pc register.

151

‘DR

xxxx xxxx 0000 01rr

Format:

 ‘DR $arR

Description:

 Decrement addressing register $arR.

Operation:

 $arR—-

152

‘IR

xxxx xxxx 0000 10rr

Format:

 ‘IR $arR

Description:

 Increment addressing register $arR.

Operation:

 $arR++

153

‘L

xxxx xxxx 01dd d0ss

Format:

 ‘L $(0x18+D), @$S

Description:

 Load register $(0x18+D) with value from memory pointed by register
$S. Post increment register $S.

Operation:

 $(0x18+D) = MEM[$S]
 $S++

154

‘LN

xxxx xxxx 01dd d1ss

Format:

 ‘LN $(0x18+D), @$S

Description:

 Load register $(0x18+D) with value from memory pointed by register
$S. Add indexing register register $(0x04+S) to register $S.

Operation:

 $(0x18+D) = MEM[$S]
 $S += $(0x04+S)

155

‘LS

xxxx xxxx 10dd 000s

Format:

 ‘LS $(0x18+D), $acS.m

Description:

 Load register $(0x18+D) with value from memory pointed by register
$ar0. Store value from register $acS.m to memory location pointed by register
$ar3. Increment both $ar0 and $ar3.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0++
 $ar3++

156

‘LSM

xxxx xxxx 10dd 100s

Format:

 ‘LSM $(0x18+D), $acS.m

Description:

 Load register $(0x18+D) with value from memory pointed by register
$ar0. Store value from register $acS.m to memory location pointed by register
$ar3. Add corresponding indexing register $ix3 to addressing register $ar3
and increment $ar0.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0++
 $ar3 += $ix3

157

‘LSMN

xxxx xxxx 10dd 110s

Format:

 ‘LSMN $(0x18+D), $acS.m

Description:

 Load register $(0x18+D) with value from memory pointed by register
$ar0. Store value from register $acS.m to memory location pointed by register
$ar3. Add corresponding indexing register $ix0 to addressing register $ar0
and add corresponding indexing register $ix3 to addressing register $ar3.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0 += $ix0
 $ar3 += $ix3

158

‘LSN

xxxx xxxx 10dd 010s

Format:

 ‘LSN $(0x18+D), $acS.m

Description:

 Load register $(0x18+D) with value from memory pointed by register
$ar0. Store value from register $acS.m to memory location pointed by register
$ar3. Add corresponding indexing register $ix0 to addressing register $ar0
and increment $ar3.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0 += $ix0
 $ar3++

159

‘MV

xxxx xxxx 0001 ddss

Format:

 ‘MV $(0x18+D), $(0x1c+S)

Description:

 Move value of register $(0x1c+S) to the register $(0x18+D).

Operation:

 $(0x18+D) = $(0x1c+S)

160

‘NR

xxxx xxxx 0000 11rr

Format:

 ‘NR $arR

Description:

 Add corresponding indexing register $ixR to addressing register $arR.

Operation:

 $arR += $ixR

161

‘S

xxxx xxxx 001s s0dd

Format:

 ‘S @$D, $(0x1c+D)

Description:

 Store value of register $(0x1c+S) in the memory pointed by register $D.
Post increment register $D.

Operation:

 MEM[$D] = $(0x1c+D)
 $S++

162

‘SL

xxxx xxxx 10dd 001s

Format:

 ‘SL $acS.m, $(0x18+D)

Description:

 Store value from register $acS.m to memory location pointed by
register $ar0. Load register $(0x18+D) with value from memory pointed by
register $ar3. Increment both $ar0 and $ar3.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0++
 $ar3++

163

‘SLM

xxxx xxxx 10dd 101s

Format:

 ‘SLM $acS.m, $(0x18+D)

Description:

 Store value from register $acS.m to memory location pointed by
register $ar0. Load register $(0x18+D) with value from memory pointed by
register $ar3. Add corresponding indexing register $ix3 to addressing register
$ar3 and increment $ar0.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0++
 $ar3 += $ix3

164

‘SLMN

xxxx xxxx 10dd 111s

Format:

 ‘SLMN $acS.m, $(0x18+D)

Description:

 Store value from register $acS.m to memory location pointed by
register $ar0. Load register $(0x18+D) with value from memory pointed by
register $ar3. Add corresponding indexing register $ix0 to addressing register
$ar0 and add corresponding indexing register $ix3 to addressing register
$ar3.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0 += $ix0
 $ar3 += $ix3

165

‘SLN

xxxx xxxx 10dd 011s

Format:

 ‘SLN $acS.m, $(0x18+D)

Description:

 Store value from register $acS.m to memory location pointed by
register $ar0. Load register $(0x18+D) with value from memory pointed by
register $ar3. Add corresponding indexing register $ix0 to addressing register
$ar0 and increment $ar3.

Operation:

 $(0x18+D) = MEM[$ar0]
 MEM[$ar3] = $acS.m
 $ar0 += $ix0
 $ar3++

166

‘SN

xxxx xxxx 001s s1dd

Format:

 ‘SN @$D, $(0x1c+D)

Description:

 Store value of register $(0x1c+S) in the memory pointed by register $D.
Add indexing register register $(0x04+D) to register $D.

Operation:

 MEM[$D] = $(0x1c+D)
 $D += $(0x04+D)

167

7. Opcodes sorted by bit decoding

NOP * 0000 0000 0000 0000
DAR * 0000 0000 0000 01aa
IAR * 0000 0000 0000 10aa
XXX NOT USED 0000 0000 0000 11xx
ADDARN * 0000 0000 0001 bbaa
HALT * 0000 0000 0010 0001

LOOP * 0000 0000 010r rrrr
BLOOP * 0000 0000 011r rrrr

LRI * 0000 0000 100r rrrr iiii iiii iiii iiii
XXX NOT USED 0000 0000 101x xxxx
LR * 0000 0000 110r rrrr mmmm mmmm mmmm mmmm
SR * 0000 0000 111r rrrr mmmm mmmm mmmm mmmm

IF cc * 0000 0010 0111 cccc
JMP cc * 0000 0010 1001 cccc
CALL cc * 0000 0010 1011 cccc
RET cc * 0000 0010 1101 cccc

ADDI * 0000 001r 0000 0000 iiii iiii iiii iiii
XORI * 0000 001r 0010 0000 iiii iiii iiii iiii
ANDI * 0000 001r 0100 0000 iiii iiii iiii iiii
ORI * 0000 001r 0110 0000 iiii iiii iiii iiii
CMPI * 0000 001r 1000 0000 iiii iiii iiii iiii
ANDCF * 0000 001r 1010 0000 iiii iiii iiii iiii
ANDF * 0000 001r 1100 0000 iiii iiii iiii iiii

ILRR * 0000 001r 0001 mmaa

ADDIS * 0000 010d iiii iiii
CMPIS * 0000 011d iiii iiii
LRIS * 0000 1rrr iiii iiii

LOOPI * 0001 0000 iiii iiii aaaa aaaa aaaa aaaa
BLOOPI * 0001 0001 iiii iiii aaaa aaaa aaaa aaaa
SBSET bit set * 0001 0010 ???? ?iii
SBCLR bit clear * 0001 0011 ???? ?iii
LSL/LSR * 0001 010r 0sss ssss
ASL/ASR * 0001 010r 1sss ssss
SI * 0001 0110 iiii iiii mmmm mmmm mmmm mmmm
CALLR * 0001 0111 rrr1 1111
JMPR * 0001 0111 rrr0 1111

168

LRR(I|D|X) * 0001 100x xaar rrrr
SRR(I|D|X) * 0001 101x xaar rrrr
MRR * 0001 11dd ddds ssss

LRS * 0010 0rrr mmmm mmmm
SRS * 0010 1rrr mmmm mmmm

XORR * 0011 00sr xxxx xxxx
ANDR * 0011 01sr xxxx xxxx
ORR * 0011 10sr xxxx xxxx
ANDC * 0011 110r xxxx xxxx
ORC * 0011 111r xxxx xxxx

ADDR * 0100 0ssd xxxx

* 0100
ADD xxxx

0101

xxxx

 xxxx

MOVR * 0110 xxxx

 xxxx
0110 110d xxxx xxxx

MOVP

 0111

0111

*
* 0111 101r

NEG xxxx
0111

x000

1000 x001 xxxx
CMP *

UNUSED
0100

TSTAXH
xxxx

 110x xxxx
1000

xxxx
ADDAX 10sd xxxx xxxx

 * 0100 110d xxxx
ADDP * 0100 111d xxxx xxxx

SUBR * 0ssd xxxx xxxx
SUBAX * 0101 10sd xxxx xxxx
SUB * 0101 110d xxxx
SUBP * 0101 111d xxxx

 0ssd xxxx
MOVAX * 0110 10sd xxxx
MOV *

 * 0110 111d xxxx xxxx

ADDAXL * 00sr xxxx xxxx
INCM * 0111 010r xxxx xxxx
INC * 011r xxxx xxxx
DECM 0111 100r xxxx xxxx
DEC xxxx xxxx

* 0111 110r xxxx
MOVNP * 111r xxxx xxxx

NX 1000 xxxx xxxx
CLR * xxxx

1000 0010 xxxx xxxx
??? 1000 0011 xxxx xxxx
CLRP * 1000 xxxx xxxx

 * 1000 011x xxxx xxxx
M0/M2 1000 101x xxxx
CLR15/SET15 1000 xxxx
SET40/16 111x xxxx xxxx

MUL * 1001 a000 xxxx xxxx

169

ASR16 * 1001 r001 xxxx xxxx
* a01r xxxx

xxxx xxxx

 1001

101b

??? xxxx

xxxx

 xxxx
101b

a000 xxxx
CMP 110x xxxx
MULCMVZ xxxx xxxx

a10r

 * a11r

MADDX xxxx
MSUBX **

** 1110 xxxx

 xxxx

*
* 1111

LSR16 xxxx xxxx

 xxxx

CLRL * xxxx

111r

* xxxx 0001

 xxxx

 xxxx ba0r

 *
LD[NM|M|N] 11mn
LD2[NM|M|N] 11rm

MULMVZ 1001 xxxx
MULAC * 1001 a10r
MULMV * a11r xxxx xxxx

MULX * a000 xxxx xxxx

 1010 r001 xxxx
TST * 1011 r001 xxxx xxxx
MULXMVZ * 101b a01r xxxx
MULXAC * 101b a10r xxxx
MULXMV * a11r xxxx xxxx

MULC * 110s xxxx

* r001 xxxx

 * 110s a01r
MULCAC * 110s xxxx xxxx
MULCMV 110s xxxx xxxx

** 1110 00st xxxx

 1110 01st xxxx xxxx
MADDC 10st xxxx
MSUBC ** 1110 11st xxxx

LSL16 1111 000r xxxx xxxx
MADD 001s xxxx xxxx

 * 1111 010r
MSUB * 1111 011s xxxx
ADDPAXZ * 1111 10ar xxxx xxxx

 1111 110r xxxx
MOVPZ * 1111 xxxx xxxx

Opcode Extensions

[D|I|N]R * xxxx xxxx 0000 nnaa
MV xxxx ddss
S[N] * xxxx 001r rnaa
L[N] * xxxx xxxx 01dd diss
LS[NM|M|N] * xxxx 10dd
SL[NM|M|N] xxxx xxxx 10dd ba1r

 xxxx xxxx barr

 xxxx xxxx ba11

170

IX. References

1. United States Patent No.: US 6,606,689 “Method and apparatus for
pre-caching audio data”. Assigne: Nintendo Co., Ltd., Kyoto (JP).
Inventors: Howard H. Cheng, Dan Shimizu, Genyo Takeda
(http://www.uspto.gov)

2. Yet Another Gamecube Documentation by groepaz/hitmen
(http://www.gc-linux.org/docs/yagcd.html)

3. LibOGC and DevkitPro by shagkur and WntrMute
(http://sourceforge.net/projects/devkitpro)

171

http://www.uspto.gov/
http://www.gc-linux.org/docs/yagcd.html
http://sourceforge.net/projects/devkitpro

172

	User’s Manual
	Disclaimer
	GNU Free Documentation License
	Version history
	Overview
	DSP Memory Map

	Registers
	Register names
	Accumulators
	Stacks
	Config register
	Status register
	Product register

	Exceptions
	Exception processing
	Exception vectors

	Hardware interface
	Hardware registers
	Accelerator
	Interrupts

	Interrupts
	Mailboxes
	DMA
	Accelerator

	Opcodes
	Opcode syntax
	Operation - used functions
	Meaning of bits
	Conditional opcodes
	Opcodes decoding

	ADD
	ADDARN
	ADDAX
	ADDAXL
	ADDI
	ADDIS
	ADDP
	ADDPAXZ
	ADDR
	ANDC
	ANDCF
	ANDF
	ANDI
	ANDR
	ASL
	ASR
	ASR16
	BLOOP
	BLOOPI
	CALL
	CALLcc
	CALLR
	CLR
	CLRL
	CLRP
	CMP
	CMPI
	CMPIS
	DAR
	DEC
	DECM
	HALT
	IAR
	IFcc
	ILRR
	ILRRD
	ILRRI
	ILRRN
	INC
	INCM
	JMP
	Jcc
	JMPR
	LOOP
	LOOPI
	LR
	LRI
	LRIS
	LRR
	LRRD
	LRRI
	LRRN
	LRS
	LSL
	LSL16
	LSR
	LSR16
	MADD
	MADDC
	MADDX
	MOV
	MOVAX
	MOVNP
	MOVP
	MOVPZ
	MOVR
	MRR
	MSUB
	MSUBC
	MSUBX
	MUL
	MULAC
	MULC
	MULCAC
	MULCMV
	MULCMVZ
	MULMV
	MULMVZ
	MULX
	MULXAC
	MULXMV
	MULXMVZ
	NEG
	NOP
	NX
	ORC
	ORI
	ORR
	RET
	RETcc
	RTI
	SBSET
	SBCLR
	SI
	SR
	SRR
	SRRD
	SRRI
	SRRN
	SRS
	SUB
	SUBAX
	SUBP
	SUBR
	TST
	TSTAXH
	XORI
	XORR
	Extended opcodes decoding

	‘DR
	‘IR
	‘L
	‘LN
	‘LS
	‘LSM
	‘LSMN
	‘LSN
	‘MV
	‘NR
	‘S
	‘SL
	‘SLM
	‘SLMN
	‘SLN
	‘SN
	Opcodes sorted by bit decoding

	References

