// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include "Common/Common.h" #include "Core/HW/Memmap.h" #include "VideoBackends/Software/BPMemLoader.h" #include "VideoBackends/Software/EfbInterface.h" #include "VideoBackends/Software/SWPixelEngine.h" #include "VideoCommon/LookUpTables.h" u8 efb[EFB_WIDTH*EFB_HEIGHT*6]; namespace EfbInterface { inline u32 GetColorOffset(u16 x, u16 y) { return (x + y * EFB_WIDTH) * 3; } inline u32 GetDepthOffset(u16 x, u16 y) { return (x + y * EFB_WIDTH) * 3 + DEPTH_BUFFER_START; } void DoState(PointerWrap &p) { p.DoArray(efb, EFB_WIDTH*EFB_HEIGHT*6); } void SetPixelAlphaOnly(u32 offset, u8 a) { switch (bpmem.zcontrol.pixel_format) { case PIXELFMT_RGB8_Z24: case PIXELFMT_Z24: case PIXELFMT_RGB565_Z16: // do nothing break; case PIXELFMT_RGBA6_Z24: { u32 a32 = a; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xffffffc0; val |= (a32 >> 2) & 0x0000003f; *dst = val; } break; default: ERROR_LOG(VIDEO, "Unsupported pixel format: %i", bpmem.zcontrol.pixel_format); } } void SetPixelColorOnly(u32 offset, u8 *rgb) { switch (bpmem.zcontrol.pixel_format) { case PIXELFMT_RGB8_Z24: case PIXELFMT_Z24: { u32 src = *(u32*)rgb; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= src >> 8; *dst = val; } break; case PIXELFMT_RGBA6_Z24: { u32 src = *(u32*)rgb; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff00003f; val |= (src >> 4) & 0x00000fc0; // blue val |= (src >> 6) & 0x0003f000; // green val |= (src >> 8) & 0x00fc0000; // red *dst = val; } break; case PIXELFMT_RGB565_Z16: { INFO_LOG(VIDEO, "PIXELFMT_RGB565_Z16 is not supported correctly yet"); u32 src = *(u32*)rgb; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= src >> 8; *dst = val; } break; default: ERROR_LOG(VIDEO, "Unsupported pixel format: %i", bpmem.zcontrol.pixel_format); } } void SetPixelAlphaColor(u32 offset, u8 *color) { switch (bpmem.zcontrol.pixel_format) { case PIXELFMT_RGB8_Z24: case PIXELFMT_Z24: { u32 src = *(u32*)color; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= src >> 8; *dst = val; } break; case PIXELFMT_RGBA6_Z24: { u32 src = *(u32*)color; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= (src >> 2) & 0x0000003f; // alpha val |= (src >> 4) & 0x00000fc0; // blue val |= (src >> 6) & 0x0003f000; // green val |= (src >> 8) & 0x00fc0000; // red *dst = val; } break; case PIXELFMT_RGB565_Z16: { INFO_LOG(VIDEO, "PIXELFMT_RGB565_Z16 is not supported correctly yet"); u32 src = *(u32*)color; u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= src >> 8; *dst = val; } break; default: ERROR_LOG(VIDEO, "Unsupported pixel format: %i", bpmem.zcontrol.pixel_format); } } void GetPixelColor(u32 offset, u8 *color) { switch (bpmem.zcontrol.pixel_format) { case PIXELFMT_RGB8_Z24: case PIXELFMT_Z24: { u32 src = *(u32*)&efb[offset]; u32 *dst = (u32*)color; u32 val = 0xff | ((src & 0x00ffffff) << 8); *dst = val; } break; case PIXELFMT_RGBA6_Z24: { u32 src = *(u32*)&efb[offset]; color[ALP_C] = Convert6To8(src & 0x3f); color[BLU_C] = Convert6To8((src >> 6) & 0x3f); color[GRN_C] = Convert6To8((src >> 12) & 0x3f); color[RED_C] = Convert6To8((src >> 18) & 0x3f); } break; case PIXELFMT_RGB565_Z16: { INFO_LOG(VIDEO, "PIXELFMT_RGB565_Z16 is not supported correctly yet"); u32 src = *(u32*)&efb[offset]; u32 *dst = (u32*)color; u32 val = 0xff | ((src & 0x00ffffff) << 8); *dst = val; } break; default: ERROR_LOG(VIDEO, "Unsupported pixel format: %i", bpmem.zcontrol.pixel_format); } } void SetPixelDepth(u32 offset, u32 depth) { switch (bpmem.zcontrol.pixel_format) { case PIXELFMT_RGB8_Z24: case PIXELFMT_RGBA6_Z24: case PIXELFMT_Z24: { u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= depth & 0x00ffffff; *dst = val; } break; case PIXELFMT_RGB565_Z16: { INFO_LOG(VIDEO, "PIXELFMT_RGB565_Z16 is not supported correctly yet"); u32 *dst = (u32*)&efb[offset]; u32 val = *dst & 0xff000000; val |= depth & 0x00ffffff; *dst = val; } break; default: ERROR_LOG(VIDEO, "Unsupported pixel format: %i", bpmem.zcontrol.pixel_format); } } u32 GetPixelDepth(u32 offset) { u32 depth = 0; switch (bpmem.zcontrol.pixel_format) { case PIXELFMT_RGB8_Z24: case PIXELFMT_RGBA6_Z24: case PIXELFMT_Z24: { depth = (*(u32*)&efb[offset]) & 0x00ffffff; } break; case PIXELFMT_RGB565_Z16: { INFO_LOG(VIDEO, "PIXELFMT_RGB565_Z16 is not supported correctly yet"); depth = (*(u32*)&efb[offset]) & 0x00ffffff; } break; default: ERROR_LOG(VIDEO, "Unsupported pixel format: %i", bpmem.zcontrol.pixel_format); } return depth; } u32 GetSourceFactor(u8 *srcClr, u8 *dstClr, int mode) { switch (mode) { case 0: // zero return 0; case 1: // one return 0xffffffff; case 2: // dstclr return *(u32*)dstClr; case 3: // invdstclr return 0xffffffff - *(u32*)dstClr; case 4: // srcalpha { u8 alpha = srcClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } case 5: // invsrcalpha { u8 alpha = 0xff - srcClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } case 6: // dstalpha { u8 alpha = dstClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } case 7: // invdstalpha { u8 alpha = 0xff - dstClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } } return 0; } u32 GetDestinationFactor(u8 *srcClr, u8 *dstClr, int mode) { switch (mode) { case 0: // zero return 0; case 1: // one return 0xffffffff; case 2: // srcclr return *(u32*)srcClr; case 3: // invsrcclr return 0xffffffff - *(u32*)srcClr; case 4: // srcalpha { u8 alpha = srcClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } case 5: // invsrcalpha { u8 alpha = 0xff - srcClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } case 6: // dstalpha { u8 alpha = dstClr[ALP_C] & 0xff; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } case 7: // invdstalpha { u8 alpha = 0xff - dstClr[ALP_C]; u32 factor = alpha << 24 | alpha << 16 | alpha << 8 | alpha; return factor; } } return 0; } void BlendColor(u8 *srcClr, u8 *dstClr) { u32 srcFactor = GetSourceFactor(srcClr, dstClr, bpmem.blendmode.srcfactor); u32 dstFactor = GetDestinationFactor(srcClr, dstClr, bpmem.blendmode.dstfactor); for (int i = 0; i < 4; i++) { // add MSB of factors to make their range 0 -> 256 u32 sf = (srcFactor & 0xff); sf += sf >> 7; u32 df = (dstFactor & 0xff); df += df >> 7; u32 color = (srcClr[i] * sf + dstClr[i] * df) >> 8; dstClr[i] = (color>255)?255:color; dstFactor >>= 8; srcFactor >>= 8; } } void LogicBlend(u32 srcClr, u32 &dstClr, int op) { switch (op) { case 0: // clear dstClr = 0; break; case 1: // and dstClr = srcClr & dstClr; break; case 2: // revand dstClr = srcClr & (~dstClr); break; case 3: // copy dstClr = srcClr; break; case 4: // invand dstClr = (~srcClr) & dstClr; break; case 5: // noop // Do nothing break; case 6: // xor dstClr = srcClr ^ dstClr; break; case 7: // or dstClr = srcClr | dstClr; break; case 8: // nor dstClr = ~(srcClr | dstClr); break; case 9: // equiv dstClr = ~(srcClr ^ dstClr); break; case 10: // inv dstClr = ~dstClr; break; case 11: // revor dstClr = srcClr | (~dstClr); break; case 12: // invcopy dstClr = ~srcClr; break; case 13: // invor dstClr = (~srcClr) | dstClr; break; case 14: // nand dstClr = ~(srcClr & dstClr); break; case 15: // set dstClr = 0xffffffff; break; } } void SubtractBlend(u8 *srcClr, u8 *dstClr) { for (int i = 0; i < 4; i++) { int c = (int)dstClr[i] - (int)srcClr[i]; dstClr[i] = (c < 0)?0:c; } } void BlendTev(u16 x, u16 y, u8 *color) { u32 dstClr; u32 offset = GetColorOffset(x, y); u8 *dstClrPtr = (u8*)&dstClr; GetPixelColor(offset, dstClrPtr); if (bpmem.blendmode.blendenable) { if (bpmem.blendmode.subtract) SubtractBlend(color, dstClrPtr); else BlendColor(color, dstClrPtr); } else if (bpmem.blendmode.logicopenable) { LogicBlend(*((u32*)color), dstClr, bpmem.blendmode.logicmode); } else { dstClrPtr = color; } if (bpmem.dstalpha.enable) dstClrPtr[ALP_C] = bpmem.dstalpha.alpha; if (bpmem.blendmode.colorupdate) { if (bpmem.blendmode.alphaupdate) SetPixelAlphaColor(offset, dstClrPtr); else SetPixelColorOnly(offset, dstClrPtr); } else if (bpmem.blendmode.alphaupdate) { SetPixelAlphaOnly(offset, dstClrPtr[ALP_C]); } // branchless bounding box update SWPixelEngine::pereg.boxLeft = SWPixelEngine::pereg.boxLeft>x?x:SWPixelEngine::pereg.boxLeft; SWPixelEngine::pereg.boxRight = SWPixelEngine::pereg.boxRighty?y:SWPixelEngine::pereg.boxTop; SWPixelEngine::pereg.boxBottom = SWPixelEngine::pereg.boxBottomY = (u8)( 0.257f * color[RED_C] + 0.504f * color[GRN_C] + 0.098f * color[BLU_C]); out->U = (u8)(-0.148f * color[RED_C] + -0.291f * color[GRN_C] + 0.439f * color[BLU_C]); out->V = (u8)( 0.439f * color[RED_C] + -0.368f * color[GRN_C] + -0.071f * color[BLU_C]); } u32 GetDepth(u16 x, u16 y) { u32 offset = GetDepthOffset(x, y); return GetPixelDepth(offset); } u8 *GetPixelPointer(u16 x, u16 y, bool depth) { if (depth) return &efb[GetDepthOffset(x, y)]; return &efb[GetColorOffset(x, y)]; } void CopyToXFB(yuv422_packed* xfb_in_ram, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc, float Gamma) { // FIXME: We should do Gamma correction if (!xfb_in_ram) { WARN_LOG(VIDEO, "Tried to copy to invalid XFB address"); return; } int left = sourceRc.left; int right = sourceRc.right; // this assumes copies will always start on an even (YU) pixel and the // copy always has an even width, which might not be true. if (left & 1 || right & 1) { WARN_LOG(VIDEO, "Trying to copy XFB to from unaligned EFB source"); // this will show up as wrongly encoded } // Scanline buffer, leave room for borders yuv444 scanline[EFB_WIDTH+2]; // our internal yuv444 type is not normalized, so black is {0, 0, 0} instead of {16, 128, 128} yuv444 black; black.Y = 0; black.U = 0; black.V = 0; scanline[0] = black; // black border at start scanline[right+1] = black; // black border at end for (u16 y = sourceRc.top; y < sourceRc.bottom; y++) { // Get a scanline of YUV pixels in 4:4:4 format for (int i = 1, x = left; x < right; i++, x++) { GetColorYUV(x, y, &scanline[i]); } // And Downsample them to 4:2:2 for (int i = 1, x = left; x < right; i+=2, x+=2) { // YU pixel xfb_in_ram[x].Y = scanline[i].Y + 16; // we mix our color difrences in 10 bit space so it will round more accurately // U[i] = 1/4 * U[i-1] + 1/2 * U[i] + 1/4 * U[i+1] xfb_in_ram[x].UV = 128 + ((scanline[i-1].U + (scanline[i].U << 1) + scanline[i+1].U) >> 2); // YV pixel xfb_in_ram[x+1].Y = scanline[i+1].Y + 16; // V[i] = 1/4 * V[i-1] + 1/2 * V[i] + 1/4 * V[i+1] xfb_in_ram[x+1].UV = 128 + ((scanline[i].V + (scanline[i+1].V << 1) + scanline[i+2].V) >> 2); } xfb_in_ram += fbWidth; } } // Like CopyToXFB, but we copy directly into the opengl colour texture without going via Gamecube main memory or doing a yuyv conversion void BypassXFB(u8* texture, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc, float Gamma) { if(fbWidth*fbHeight > 640*568) { ERROR_LOG(VIDEO, "Framebuffer is too large: %ix%i", fbWidth, fbHeight); return; } u32 color; u8* colorPtr = (u8*)&color; u32* texturePtr = (u32*)texture; u32 textureAddress = 0; int left = sourceRc.left; int right = sourceRc.right; for (u16 y = sourceRc.top; y < sourceRc.bottom; y++) { for (u16 x = left; x < right; x++) { GetColor(x, y, colorPtr); texturePtr[textureAddress++] = Common::swap32(color); } } } bool ZCompare(u16 x, u16 y, u32 z) { u32 offset = GetDepthOffset(x, y); u32 depth = GetPixelDepth(offset); bool pass; switch (bpmem.zmode.func) { case COMPARE_NEVER: pass = false; break; case COMPARE_LESS: pass = z < depth; break; case COMPARE_EQUAL: pass = z == depth; break; case COMPARE_LEQUAL: pass = z <= depth; break; case COMPARE_GREATER: pass = z > depth; break; case COMPARE_NEQUAL: pass = z != depth; break; case COMPARE_GEQUAL: pass = z >= depth; break; case COMPARE_ALWAYS: pass = true; break; default: pass = false; ERROR_LOG(VIDEO, "Bad Z compare mode %i", bpmem.zmode.func); } if (pass && bpmem.zmode.updateenable) { SetPixelDepth(offset, z); } return pass; } }