// Copyright 2019 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "Common/Matrix.h" #include "Common/MathUtil.h" #include #include namespace { // Multiply a NxM matrix by a NxP matrix. template auto MatrixMultiply(const std::array& a, const std::array& b) -> std::array { std::array result; for (int n = 0; n != N; ++n) { for (int p = 0; p != P; ++p) { T temp = {}; for (int m = 0; m != M; ++m) { temp += a[n * M + m] * b[m * P + p]; } result[n * P + p] = temp; } } return result; } } // namespace namespace Common { Quaternion Quaternion::Identity() { return Quaternion(1, 0, 0, 0); } Quaternion Quaternion::RotateX(float rad) { return Rotate(rad, Vec3(1, 0, 0)); } Quaternion Quaternion::RotateY(float rad) { return Rotate(rad, Vec3(0, 1, 0)); } Quaternion Quaternion::RotateZ(float rad) { return Rotate(rad, Vec3(0, 0, 1)); } Quaternion Quaternion::RotateXYZ(const Vec3& rads) { const auto length = rads.Length(); return length ? Common::Quaternion::Rotate(length, rads / length) : Common::Quaternion::Identity(); } Quaternion Quaternion::Rotate(float rad, const Vec3& axis) { const auto sin_angle_2 = std::sin(rad / 2); return Quaternion(std::cos(rad / 2), axis.x * sin_angle_2, axis.y * sin_angle_2, axis.z * sin_angle_2); } Quaternion::Quaternion(float w, float x, float y, float z) : data(x, y, z, w) { } float Quaternion::Norm() const { return data.Dot(data); } Quaternion Quaternion::Normalized() const { Quaternion result(*this); result.data /= Norm(); return result; } Quaternion Quaternion::Conjugate() const { return Quaternion(data.w, -1 * data.x, -1 * data.y, -1 * data.z); } Quaternion Quaternion::Inverted() const { return Normalized().Conjugate(); } Quaternion& Quaternion::operator*=(const Quaternion& rhs) { auto& a = data; auto& b = rhs.data; data = Vec4{a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y, a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x, a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w, // W a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z}; return *this; } Quaternion operator*(Quaternion lhs, const Quaternion& rhs) { return lhs *= rhs; } Vec3 operator*(const Quaternion& lhs, const Vec3& rhs) { const auto result = lhs * Quaternion(0, rhs.x, rhs.y, rhs.z) * lhs.Conjugate(); return Vec3(result.data.x, result.data.y, result.data.z); } Vec3 FromQuaternionToEuler(const Quaternion& q) { Vec3 result; const float qx = q.data.x; const float qy = q.data.y; const float qz = q.data.z; const float qw = q.data.w; const float sinr_cosp = 2 * (qw * qx + qy * qz); const float cosr_cosp = 1 - 2 * (qx * qx + qy * qy); result.x = std::atan2(sinr_cosp, cosr_cosp); const float sinp = 2 * (qw * qy - qz * qx); if (std::abs(sinp) >= 1) result.y = std::copysign(MathUtil::PI / 2, sinp); // use 90 degrees if out of range else result.y = std::asin(sinp); const float siny_cosp = 2 * (qw * qz + qx * qy); const float cosy_cosp = 1 - 2 * (qy * qy + qz * qz); result.z = std::atan2(siny_cosp, cosy_cosp); return result; } Matrix33 Matrix33::Identity() { Matrix33 mtx = {}; mtx.data[0] = 1.0f; mtx.data[4] = 1.0f; mtx.data[8] = 1.0f; return mtx; } Matrix33 Matrix33::FromQuaternion(const Quaternion& q) { const auto qx = q.data.x; const auto qy = q.data.y; const auto qz = q.data.z; const auto qw = q.data.w; return { 1 - 2 * qy * qy - 2 * qz * qz, 2 * qx * qy - 2 * qz * qw, 2 * qx * qz + 2 * qy * qw, 2 * qx * qy + 2 * qz * qw, 1 - 2 * qx * qx - 2 * qz * qz, 2 * qy * qz - 2 * qx * qw, 2 * qx * qz - 2 * qy * qw, 2 * qy * qz + 2 * qx * qw, 1 - 2 * qx * qx - 2 * qy * qy, }; } Matrix33 Matrix33::RotateX(float rad) { const float s = std::sin(rad); const float c = std::cos(rad); Matrix33 mtx = {}; mtx.data[0] = 1; mtx.data[4] = c; mtx.data[5] = -s; mtx.data[7] = s; mtx.data[8] = c; return mtx; } Matrix33 Matrix33::RotateY(float rad) { const float s = std::sin(rad); const float c = std::cos(rad); Matrix33 mtx = {}; mtx.data[0] = c; mtx.data[2] = s; mtx.data[4] = 1; mtx.data[6] = -s; mtx.data[8] = c; return mtx; } Matrix33 Matrix33::RotateZ(float rad) { const float s = std::sin(rad); const float c = std::cos(rad); Matrix33 mtx = {}; mtx.data[0] = c; mtx.data[1] = -s; mtx.data[3] = s; mtx.data[4] = c; mtx.data[8] = 1; return mtx; } Matrix33 Matrix33::Rotate(float rad, const Vec3& axis) { const float s = std::sin(rad); const float c = std::cos(rad); Matrix33 mtx; mtx.data[0] = axis.x * axis.x * (1 - c) + c; mtx.data[1] = axis.x * axis.y * (1 - c) - axis.z * s; mtx.data[2] = axis.x * axis.z * (1 - c) + axis.y * s; mtx.data[3] = axis.y * axis.x * (1 - c) + axis.z * s; mtx.data[4] = axis.y * axis.y * (1 - c) + c; mtx.data[5] = axis.y * axis.z * (1 - c) - axis.x * s; mtx.data[6] = axis.z * axis.x * (1 - c) - axis.y * s; mtx.data[7] = axis.z * axis.y * (1 - c) + axis.x * s; mtx.data[8] = axis.z * axis.z * (1 - c) + c; return mtx; } Matrix33 Matrix33::Scale(const Vec3& vec) { Matrix33 mtx = {}; mtx.data[0] = vec.x; mtx.data[4] = vec.y; mtx.data[8] = vec.z; return mtx; } void Matrix33::Multiply(const Matrix33& a, const Matrix33& b, Matrix33* result) { result->data = MatrixMultiply<3, 3, 3>(a.data, b.data); } void Matrix33::Multiply(const Matrix33& a, const Vec3& vec, Vec3* result) { result->data = MatrixMultiply<3, 3, 1>(a.data, vec.data); } Matrix33 Matrix33::Inverted() const { const auto m = [this](int x, int y) { return data[y + x * 3]; }; const auto det = m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0)); const auto invdet = 1 / det; Matrix33 result; const auto minv = [&result](int x, int y) -> auto& { return result.data[y + x * 3]; }; minv(0, 0) = (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2)) * invdet; minv(0, 1) = (m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2)) * invdet; minv(0, 2) = (m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1)) * invdet; minv(1, 0) = (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2)) * invdet; minv(1, 1) = (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0)) * invdet; minv(1, 2) = (m(1, 0) * m(0, 2) - m(0, 0) * m(1, 2)) * invdet; minv(2, 0) = (m(1, 0) * m(2, 1) - m(2, 0) * m(1, 1)) * invdet; minv(2, 1) = (m(2, 0) * m(0, 1) - m(0, 0) * m(2, 1)) * invdet; minv(2, 2) = (m(0, 0) * m(1, 1) - m(1, 0) * m(0, 1)) * invdet; return result; } Matrix44 Matrix44::Identity() { Matrix44 mtx = {}; mtx.data[0] = 1.0f; mtx.data[5] = 1.0f; mtx.data[10] = 1.0f; mtx.data[15] = 1.0f; return mtx; } Matrix44 Matrix44::FromMatrix33(const Matrix33& m33) { Matrix44 mtx; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { mtx.data[i * 4 + j] = m33.data[i * 3 + j]; } } for (int i = 0; i < 3; ++i) { mtx.data[i * 4 + 3] = 0; mtx.data[i + 12] = 0; } mtx.data[15] = 1.0f; return mtx; } Matrix44 Matrix44::FromQuaternion(const Quaternion& q) { return FromMatrix33(Matrix33::FromQuaternion(q)); } Matrix44 Matrix44::FromArray(const std::array& arr) { Matrix44 mtx; mtx.data = arr; return mtx; } Matrix44 Matrix44::Translate(const Vec3& vec) { Matrix44 mtx = Matrix44::Identity(); mtx.data[3] = vec.x; mtx.data[7] = vec.y; mtx.data[11] = vec.z; return mtx; } Matrix44 Matrix44::Shear(const float a, const float b) { Matrix44 mtx = Matrix44::Identity(); mtx.data[2] = a; mtx.data[6] = b; return mtx; } Matrix44 Matrix44::Perspective(float fov_y, float aspect_ratio, float z_near, float z_far) { Matrix44 mtx{}; const float tan_half_fov_y = std::tan(fov_y / 2); mtx.data[0] = 1 / (aspect_ratio * tan_half_fov_y); mtx.data[5] = 1 / tan_half_fov_y; mtx.data[10] = -(z_far + z_near) / (z_far - z_near); mtx.data[11] = -(2 * z_far * z_near) / (z_far - z_near); mtx.data[14] = -1; return mtx; } void Matrix44::Multiply(const Matrix44& a, const Matrix44& b, Matrix44* result) { result->data = MatrixMultiply<4, 4, 4>(a.data, b.data); } Vec3 Matrix44::Transform(const Vec3& v, float w) const { const auto result = MatrixMultiply<4, 4, 1>(data, {v.x, v.y, v.z, w}); return Vec3{result[0], result[1], result[2]}; } void Matrix44::Multiply(const Matrix44& a, const Vec4& vec, Vec4* result) { result->data = MatrixMultiply<4, 4, 1>(a.data, vec.data); } } // namespace Common