// Copyright 2010 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #pragma once #include #include #include #include #include #include #include "Common/BitUtils.h" #include "Common/Common.h" #include "Common/IniFile.h" #include "Common/MathUtil.h" #include "InputCommon/ControlReference/ExpressionParser.h" #include "InputCommon/ControllerEmu/ControlGroup/ControlGroup.h" #include "InputCommon/ControllerInterface/CoreDevice.h" class ControllerInterface; constexpr const char* DIRECTION_UP = _trans("Up"); constexpr const char* DIRECTION_DOWN = _trans("Down"); constexpr const char* DIRECTION_LEFT = _trans("Left"); constexpr const char* DIRECTION_RIGHT = _trans("Right"); constexpr const char* named_directions[] = {DIRECTION_UP, DIRECTION_DOWN, DIRECTION_LEFT, DIRECTION_RIGHT}; class ControlReference; namespace ControllerEmu { class ControlGroup; // Represents calibration data found on Wii Remotes + extensions with a zero and a max value. // (e.g. accelerometer data) // Bits of precision specified to handle common situation of differing precision in the actual data. template struct TwoPointCalibration { TwoPointCalibration() = default; TwoPointCalibration(const T& zero_, const T& max_) : zero{zero_}, max{max_} {} // Sanity check is that max and zero are not equal. constexpr bool IsSane() const { if constexpr (std::is_arithmetic_v) { return max != zero; } else { return std::equal(std::begin(max.data), std::end(max.data), std::begin(zero.data), std::not_equal_to<>()); } } static constexpr size_t BITS_OF_PRECISION = Bits; T zero; T max; }; // Represents calibration data with a min, zero, and max value. (e.g. joystick data) template struct ThreePointCalibration { ThreePointCalibration() = default; ThreePointCalibration(const T& min_, const T& zero_, const T& max_) : min{min_}, zero{zero_}, max{max_} { } // Sanity check is that min and max are on opposite sides of the zero value. constexpr bool IsSane() const { if constexpr (std::is_arithmetic_v) { return MathUtil::Sign(zero - min) * MathUtil::Sign(zero - max) == -1; } else { for (size_t i = 0; i != std::size(zero.data); ++i) { if (MathUtil::Sign(zero.data[i] - min.data[i]) * MathUtil::Sign(zero.data[i] - max.data[i]) != -1) { return false; } } return true; } } static constexpr size_t BITS_OF_PRECISION = Bits; T min; T zero; T max; }; // Represents a raw/uncalibrated N-dimensional value of input data. (e.g. Joystick X and Y) // A normalized value can be calculated with a provided {Two,Three}PointCalibration. // Values are adjusted with mismatched bits of precision. // Underlying type may be an unsigned type or a a Common::TVecN<> of an unsigned type. template struct RawValue { constexpr RawValue() = default; constexpr explicit RawValue(const T& value_) : value{value_} {} static constexpr size_t BITS_OF_PRECISION = Bits; T value; constexpr bool operator==(const RawValue& other) const = default; template auto GetNormalizedValue(const TwoPointCalibration& calibration) const { const auto value_expansion = std::max(0, int(calibration.BITS_OF_PRECISION) - int(BITS_OF_PRECISION)); const auto calibration_expansion = std::max(0, int(BITS_OF_PRECISION) - int(calibration.BITS_OF_PRECISION)); const auto calibration_zero = ExpandValue(calibration.zero, calibration_expansion) * 1.f; const auto calibration_max = ExpandValue(calibration.max, calibration_expansion) * 1.f; // Multiplication by 1.f to floatify either a scalar or a Vec. return (ExpandValue(value, value_expansion) * 1.f - calibration_zero) / (calibration_max - calibration_zero); } template auto GetNormalizedValue(const ThreePointCalibration& calibration) const { const auto value_expansion = std::max(0, int(calibration.BITS_OF_PRECISION) - int(BITS_OF_PRECISION)); const auto calibration_expansion = std::max(0, int(BITS_OF_PRECISION) - int(calibration.BITS_OF_PRECISION)); const auto calibration_min = ExpandValue(calibration.min, calibration_expansion) * 1.f; const auto calibration_zero = ExpandValue(calibration.zero, calibration_expansion) * 1.f; const auto calibration_max = ExpandValue(calibration.max, calibration_expansion) * 1.f; const auto use_max = calibration.zero < value; // Multiplication by 1.f to floatify either a scalar or a Vec. return (ExpandValue(value, value_expansion) * 1.f - calibration_zero) / (use_max * 1.f * (calibration_max - calibration_zero) + !use_max * 1.f * (calibration_zero - calibration_min)); } template static OtherT ExpandValue(OtherT value, size_t bits) { if constexpr (std::is_arithmetic_v) { return Common::ExpandValue(value, bits); } else { for (size_t i = 0; i != std::size(value.data); ++i) value.data[i] = Common::ExpandValue(value.data[i], bits); return value; } } }; class EmulatedController { public: virtual ~EmulatedController(); virtual std::string GetName() const = 0; virtual std::string GetDisplayName() const; virtual void LoadDefaults(const ControllerInterface& ciface); virtual void LoadConfig(Common::IniFile::Section* sec, const std::string& base = ""); virtual void SaveConfig(Common::IniFile::Section* sec, const std::string& base = ""); bool IsDefaultDeviceConnected() const; const ciface::Core::DeviceQualifier& GetDefaultDevice() const; void SetDefaultDevice(const std::string& device); void SetDefaultDevice(ciface::Core::DeviceQualifier devq); void SetInputOverrideFunction(InputOverrideFunction override_func); void ClearInputOverrideFunction(); void UpdateReferences(const ControllerInterface& devi); void UpdateSingleControlReference(const ControllerInterface& devi, ControlReference* ref); // This returns a lock that should be held before calling State() on any control // references and GetState(), by extension. This prevents a race condition // which happens while handling a hotplug event because a control reference's State() // could be called before we have finished updating the reference. [[nodiscard]] static std::unique_lock GetStateLock(); const ciface::ExpressionParser::ControlEnvironment::VariableContainer& GetExpressionVariables() const; // Resets the values while keeping the list. void ResetExpressionVariables(); std::vector> groups; // Maps a float from -1.0..+1.0 to an integer in the provided range. template static T MapFloat(F input_value, T zero_value, T neg_1_value = std::numeric_limits::min(), T pos_1_value = std::numeric_limits::max()) { static_assert(std::is_integral(), "T is only sane for int types."); static_assert(std::is_floating_point(), "F is only sane for float types."); static_assert(std::numeric_limits::min() <= std::numeric_limits::min() && std::numeric_limits::max() >= std::numeric_limits::max(), "long long is not a superset of T. use of std::llround is not sane."); // Here we round when converting from float to int. // After applying our deadzone, resizing, and reshaping math // we sometimes have a near-zero value which is slightly negative. (e.g. -0.0001) // Casting would round down but rounding will yield our "zero_value". if (input_value > 0) return T(std::llround((pos_1_value - zero_value) * input_value + zero_value)); else return T(std::llround((zero_value - neg_1_value) * input_value + zero_value)); } // The inverse of the function above. // Maps an integer in the provided range to a float in the range -1.0..1.0. template static F MapToFloat(T input_value, T zero_value, T neg_1_value = std::numeric_limits::min(), T pos_1_value = std::numeric_limits::max()) { static_assert(std::is_integral(), "T is only sane for int types."); static_assert(std::is_floating_point(), "F is only sane for float types."); if (input_value >= zero_value) return F(input_value - zero_value) / F(pos_1_value - zero_value); else return -F(zero_value - input_value) / F(zero_value - neg_1_value); } protected: // TODO: Wiimote attachments actually end up using their parent controller value for this, // so theirs won't be used (and thus shouldn't even exist). ciface::ExpressionParser::ControlEnvironment::VariableContainer m_expression_vars; InputOverrideFunction m_input_override_function; void UpdateReferences(ciface::ExpressionParser::ControlEnvironment& env); private: ciface::Core::DeviceQualifier m_default_device; bool m_default_device_is_connected{false}; }; } // namespace ControllerEmu