// Copyright 2009 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/BPFunctions.h" #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Logging/Log.h" #include "Common/SmallVector.h" #include "VideoCommon/AbstractFramebuffer.h" #include "VideoCommon/AbstractGfx.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace BPFunctions { // ---------------------------------------------- // State translation lookup tables // Reference: Yet Another GameCube Documentation // ---------------------------------------------- void FlushPipeline() { g_vertex_manager->Flush(); } void SetGenerationMode() { g_vertex_manager->SetRasterizationStateChanged(); } int ScissorRect::GetArea() const { return rect.GetWidth() * rect.GetHeight(); } int ScissorResult::GetViewportArea(const ScissorRect& rect) const { int x0 = std::clamp(rect.rect.left + rect.x_off, viewport_left, viewport_right); int x1 = std::clamp(rect.rect.right + rect.x_off, viewport_left, viewport_right); int y0 = std::clamp(rect.rect.top + rect.y_off, viewport_top, viewport_bottom); int y1 = std::clamp(rect.rect.bottom + rect.y_off, viewport_top, viewport_bottom); return (x1 - x0) * (y1 - y0); } // Compare so that a sorted collection of rectangles has the best one last, so that if they're drawn // in order, the best one is the one that is drawn last (and thus over the rest). // The exact iteration order on hardware hasn't been tested, but silly things can happen where a // polygon can intersect with itself; this only applies outside of the viewport region (in areas // that would normally be affected by clipping). No game is known to care about this. bool ScissorResult::IsWorse(const ScissorRect& lhs, const ScissorRect& rhs) const { // First, penalize any rect that is not in the viewport int lhs_area = GetViewportArea(lhs); int rhs_area = GetViewportArea(rhs); if (lhs_area != rhs_area) return lhs_area < rhs_area; // Now compare on total areas, without regard for the viewport return lhs.GetArea() < rhs.GetArea(); } namespace { using RangeList = Common::SmallVector; static RangeList ComputeScissorRanges(int start, int end, int offset, int efb_dim) { RangeList ranges; for (int extra_off = -4096; extra_off <= 4096; extra_off += 1024) { int new_off = offset + extra_off; int new_start = std::clamp(start - new_off, 0, efb_dim); int new_end = std::clamp(end - new_off + 1, 0, efb_dim); if (new_start < new_end) { ranges.emplace_back(new_off, new_start, new_end); } } return ranges; } } // namespace ScissorResult::ScissorResult(const BPMemory& bpmemory, const XFMemory& xfmemory) : ScissorResult(bpmemory, std::minmax(xfmemory.viewport.xOrig - xfmemory.viewport.wd, xfmemory.viewport.xOrig + xfmemory.viewport.wd), std::minmax(xfmemory.viewport.yOrig - xfmemory.viewport.ht, xfmemory.viewport.yOrig + xfmemory.viewport.ht)) { } ScissorResult::ScissorResult(const BPMemory& bpmemory, std::pair viewport_x, std::pair viewport_y) : scissor_tl{.hex = bpmemory.scissorTL.hex}, scissor_br{.hex = bpmemory.scissorBR.hex}, scissor_off{.hex = bpmemory.scissorOffset.hex}, viewport_left(viewport_x.first), viewport_right(viewport_x.second), viewport_top(viewport_y.first), viewport_bottom(viewport_y.second) { // Range is [left, right] and [top, bottom] (closed intervals) const int left = scissor_tl.x; const int right = scissor_br.x; const int top = scissor_tl.y; const int bottom = scissor_br.y; // When left > right or top > bottom, nothing renders (even with wrapping from the offsets) if (left > right || top > bottom) return; // Note that both the offsets and the coordinates have 342 added to them internally by GX // functions (for the offsets, this is before they are divided by 2/right shifted). This code // could undo both sets of offsets, but it doesn't need to since they cancel out when subtracting // (and those offsets actually matter for the left > right and top > bottom checks). const int x_off = scissor_off.x << 1; const int y_off = scissor_off.y << 1; RangeList x_ranges = ComputeScissorRanges(left, right, x_off, EFB_WIDTH); RangeList y_ranges = ComputeScissorRanges(top, bottom, y_off, EFB_HEIGHT); m_result.reserve(x_ranges.size() * y_ranges.size()); // Now we need to form actual rectangles from the x and y ranges, // which is a simple Cartesian product of x_ranges_clamped and y_ranges_clamped. // Each rectangle is also a Cartesian product of x_range and y_range, with // the rectangles being half-open (of the form [x0, x1) X [y0, y1)). for (const auto& x_range : x_ranges) { DEBUG_ASSERT(x_range.start < x_range.end); DEBUG_ASSERT(static_cast(x_range.end) <= EFB_WIDTH); for (const auto& y_range : y_ranges) { DEBUG_ASSERT(y_range.start < y_range.end); DEBUG_ASSERT(static_cast(y_range.end) <= EFB_HEIGHT); m_result.emplace_back(x_range, y_range); } } auto cmp = [&](const ScissorRect& lhs, const ScissorRect& rhs) { return IsWorse(lhs, rhs); }; std::sort(m_result.begin(), m_result.end(), cmp); } ScissorRect ScissorResult::Best() const { // For now, simply choose the best rectangle (see ScissorResult::IsWorse). // This does mean we calculate all rectangles and only choose one, which is not optimal, but this // is called infrequently. Eventually, all backends will support multiple scissor rects. if (!m_result.empty()) { return m_result.back(); } else { // But if we have no rectangles, use a bogus one that's out of bounds. // Ideally, all backends will support multiple scissor rects, in which case this won't be // needed. return ScissorRect(ScissorRange{0, 1000, 1001}, ScissorRange{0, 1000, 1001}); } } ScissorResult ComputeScissorRects() { return ScissorResult{bpmem, xfmem}; } void SetScissorAndViewport() { auto native_rc = ComputeScissorRects().Best(); auto target_rc = g_framebuffer_manager->ConvertEFBRectangle(native_rc.rect); auto converted_rc = g_gfx->ConvertFramebufferRectangle(target_rc, g_gfx->GetCurrentFramebuffer()); g_gfx->SetScissorRect(converted_rc); float raw_x = (xfmem.viewport.xOrig - native_rc.x_off) - xfmem.viewport.wd; float raw_y = (xfmem.viewport.yOrig - native_rc.y_off) + xfmem.viewport.ht; float raw_width = 2.0f * xfmem.viewport.wd; float raw_height = -2.0f * xfmem.viewport.ht; if (g_ActiveConfig.UseVertexRounding()) { // Round the viewport to match full 1x IR pixels as well. // This eliminates a line in the archery mode in Wii Sports Resort at 3x IR and higher. raw_x = std::round(raw_x); raw_y = std::round(raw_y); raw_width = std::round(raw_width); raw_height = std::round(raw_height); } float x = g_framebuffer_manager->EFBToScaledXf(raw_x); float y = g_framebuffer_manager->EFBToScaledYf(raw_y); float width = g_framebuffer_manager->EFBToScaledXf(raw_width); float height = g_framebuffer_manager->EFBToScaledYf(raw_height); float min_depth = (xfmem.viewport.farZ - xfmem.viewport.zRange) / 16777216.0f; float max_depth = xfmem.viewport.farZ / 16777216.0f; if (width < 0.f) { x += width; width *= -1; } if (height < 0.f) { y += height; height *= -1; } // The maximum depth that is written to the depth buffer should never exceed this value. // This is necessary because we use a 2^24 divisor for all our depth values to prevent // floating-point round-trip errors. However the console GPU doesn't ever write a value // to the depth buffer that exceeds 2^24 - 1. constexpr float GX_MAX_DEPTH = 16777215.0f / 16777216.0f; if (!g_ActiveConfig.backend_info.bSupportsDepthClamp) { // There's no way to support oversized depth ranges in this situation. Let's just clamp the // range to the maximum value supported by the console GPU and hope for the best. min_depth = std::clamp(min_depth, 0.0f, GX_MAX_DEPTH); max_depth = std::clamp(max_depth, 0.0f, GX_MAX_DEPTH); } if (VertexShaderManager::UseVertexDepthRange()) { // We need to ensure depth values are clamped the maximum value supported by the console GPU. // Taking into account whether the depth range is inverted or not. if (xfmem.viewport.zRange < 0.0f && g_ActiveConfig.backend_info.bSupportsReversedDepthRange) { min_depth = GX_MAX_DEPTH; max_depth = 0.0f; } else { min_depth = 0.0f; max_depth = GX_MAX_DEPTH; } } float near_depth, far_depth; if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange) { // Set the reversed depth range. near_depth = max_depth; far_depth = min_depth; } else { // We use an inverted depth range here to apply the Reverse Z trick. // This trick makes sure we match the precision provided by the 1:0 // clipping depth range on the hardware. near_depth = 1.0f - max_depth; far_depth = 1.0f - min_depth; } // Lower-left flip. if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin) y = static_cast(g_gfx->GetCurrentFramebuffer()->GetHeight()) - y - height; g_gfx->SetViewport(x, y, width, height, near_depth, far_depth); } void SetDepthMode() { g_vertex_manager->SetDepthStateChanged(); } void SetBlendMode() { g_vertex_manager->SetBlendingStateChanged(); } /* Explanation of the magic behind ClearScreen: There's numerous possible formats for the pixel data in the EFB. However, in the HW accelerated backends we're always using RGBA8 for the EFB format, which causes some problems: - We're using an alpha channel although the game doesn't - If the actual EFB format is RGBA6_Z24 or R5G6B5_Z16, we are using more bits per channel than the native HW To properly emulate the above points, we're doing the following: (1) - disable alpha channel writing of any kind of rendering if the actual EFB format doesn't use an alpha channel - NOTE: Always make sure that the EFB has been cleared to an alpha value of 0xFF in this case! - Same for color channels, these need to be cleared to 0x00 though. (2) - convert the RGBA8 color to RGBA6/RGB8/RGB565 and convert it to RGBA8 again - convert the Z24 depth value to Z16 and back to Z24 */ void ClearScreen(const MathUtil::Rectangle& rc) { bool colorEnable = (bpmem.blendmode.colorupdate != 0); bool alphaEnable = (bpmem.blendmode.alphaupdate != 0); bool zEnable = (bpmem.zmode.updateenable != 0); auto pixel_format = bpmem.zcontrol.pixel_format; // (1): Disable unused color channels if (pixel_format == PixelFormat::RGB8_Z24 || pixel_format == PixelFormat::RGB565_Z16 || pixel_format == PixelFormat::Z24) { alphaEnable = false; } if (colorEnable || alphaEnable || zEnable) { u32 color = (bpmem.clearcolorAR << 16) | bpmem.clearcolorGB; u32 z = bpmem.clearZValue; // (2) drop additional accuracy if (pixel_format == PixelFormat::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (pixel_format == PixelFormat::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); z = Z24ToZ16ToZ24(z); } g_framebuffer_manager->ClearEFB(rc, colorEnable, alphaEnable, zEnable, color, z); } } void OnPixelFormatChange() { // TODO : Check for Z compression format change // When using 16bit Z, the game may enable a special compression format which we might need to // handle. Only a few games like RS2 and RS3 even use z compression but it looks like they // always use ZFAR when using 16bit Z (on top of linear 24bit Z) // Besides, we currently don't even emulate 16bit depth and force it to 24bit. /* * When changing the EFB format, the pixel data won't get converted to the new format but stays * the same. * Since we are always using an RGBA8 buffer though, this causes issues in some games. * Thus, we reinterpret the old EFB data with the new format here. */ if (!g_ActiveConfig.bEFBEmulateFormatChanges) return; const auto old_format = g_framebuffer_manager->GetPrevPixelFormat(); const auto new_format = bpmem.zcontrol.pixel_format; g_framebuffer_manager->StorePixelFormat(new_format); DEBUG_LOG_FMT(VIDEO, "pixelfmt: pixel={}, zc={}", new_format, bpmem.zcontrol.zformat); // no need to reinterpret pixel data in these cases if (new_format == old_format || old_format == PixelFormat::INVALID_FMT) return; // Check for pixel format changes switch (old_format) { case PixelFormat::RGB8_Z24: case PixelFormat::Z24: { // Z24 and RGB8_Z24 are treated equal, so just return in this case if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24) return; if (new_format == PixelFormat::RGBA6_Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGBA6); return; } else if (new_format == PixelFormat::RGB565_Z16) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB8ToRGB565); return; } } break; case PixelFormat::RGBA6_Z24: { if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB8); return; } else if (new_format == PixelFormat::RGB565_Z16) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGBA6ToRGB565); return; } } break; case PixelFormat::RGB565_Z16: { if (new_format == PixelFormat::RGB8_Z24 || new_format == PixelFormat::Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGB8); return; } else if (new_format == PixelFormat::RGBA6_Z24) { g_renderer->ReinterpretPixelData(EFBReinterpretType::RGB565ToRGBA6); return; } } break; default: break; } ERROR_LOG_FMT(VIDEO, "Unhandled EFB format change: {} to {}", old_format, new_format); } void SetInterlacingMode(const BPCmd& bp) { // TODO switch (bp.address) { case BPMEM_FIELDMODE: { // SDK always sets bpmem.lineptwidth.lineaspect via BPMEM_LINEPTWIDTH // just before this cmd DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMODE texLOD:{} lineaspect:{}", bpmem.fieldmode.texLOD, bpmem.lineptwidth.adjust_for_aspect_ratio); } break; case BPMEM_FIELDMASK: { // Determines if fields will be written to EFB (always computed) DEBUG_LOG_FMT(VIDEO, "BPMEM_FIELDMASK even:{} odd:{}", bpmem.fieldmask.even, bpmem.fieldmask.odd); } break; default: ERROR_LOG_FMT(VIDEO, "SetInterlacingMode default"); break; } } } // namespace BPFunctions