// Copyright 2013 Dolphin Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #ifndef _FRAMEBUFFERMANAGER_H_ #define _FRAMEBUFFERMANAGER_H_ #include "GLUtil.h" #include "FramebufferManagerBase.h" #include "ProgramShaderCache.h" #include "Render.h" // On the GameCube, the game sends a request for the graphics processor to // transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM // called the XFB (External Framebuffer). The size and location of the XFB is // decided at the time of the copy, and the format is always YUYV. The video // interface is given a pointer to the XFB, which will be decoded and // displayed on the TV. // // There are two ways for Dolphin to emulate this: // // Real XFB mode: // // Dolphin will behave like the GameCube and encode the EFB to // a portion of GameCube RAM. The emulated video interface will decode the data // for output to the screen. // // Advantages: Behaves exactly like the GameCube. // Disadvantages: Resolution will be limited. // // Virtual XFB mode: // // When a request is made to copy the EFB to an XFB, Dolphin // will remember the RAM location and size of the XFB in a Virtual XFB list. // The video interface will look up the XFB in the list and use the enhanced // data stored there, if available. // // Advantages: Enables high resolution graphics, better than real hardware. // Disadvantages: If the GameCube CPU writes directly to the XFB (which is // possible but uncommon), the Virtual XFB will not capture this information. // There may be multiple XFBs in GameCube RAM. This is the maximum number to // virtualize. namespace OGL { struct XFBSource : public XFBSourceBase { XFBSource(GLuint rbuf) : renderbuf(rbuf) {} ~XFBSource(); void CopyEFB(float Gamma); void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight); void Draw(const MathUtil::Rectangle &sourcerc, const MathUtil::Rectangle &drawrc, int width, int height) const; const GLuint renderbuf; }; inline GLenum getFbType() { #ifndef USE_GLES3 if(g_ogl_config.eSupportedGLSLVersion == GLSL_120) { return GL_TEXTURE_RECTANGLE; } #endif return GL_TEXTURE_2D; } class FramebufferManager : public FramebufferManagerBase { public: FramebufferManager(int targetWidth, int targetHeight, int msaaSamples, int msaaCoverageSamples); ~FramebufferManager(); // To get the EFB in texture form, these functions may have to transfer // the EFB to a resolved texture first. static GLuint GetEFBColorTexture(const EFBRectangle& sourceRc); static GLuint GetEFBDepthTexture(const EFBRectangle& sourceRc); static GLuint GetEFBFramebuffer() { return m_efbFramebuffer; } static GLuint GetXFBFramebuffer() { return m_xfbFramebuffer; } // Resolved framebuffer is only used in MSAA mode. static GLuint GetResolvedFramebuffer() { return m_resolvedFramebuffer; } static void SetFramebuffer(GLuint fb); // If in MSAA mode, this will perform a resolve of the specified rectangle, and return the resolve target as a texture ID. // Thus, this call may be expensive. Don't repeat it unnecessarily. // If not in MSAA mode, will just return the render target texture ID. // After calling this, before you render anything else, you MUST bind the framebuffer you want to draw to. static GLuint ResolveAndGetRenderTarget(const EFBRectangle &rect); // Same as above but for the depth Target. // After calling this, before you render anything else, you MUST bind the framebuffer you want to draw to. static GLuint ResolveAndGetDepthTarget(const EFBRectangle &rect); // Convert EFB content on pixel format change. // convtype=0 -> rgb8->rgba6, convtype=2 -> rgba6->rgb8 static void ReinterpretPixelData(unsigned int convtype); private: XFBSourceBase* CreateXFBSource(unsigned int target_width, unsigned int target_height); void GetTargetSize(unsigned int *width, unsigned int *height, const EFBRectangle& sourceRc); void CopyToRealXFB(u32 xfbAddr, u32 fbWidth, u32 fbHeight, const EFBRectangle& sourceRc,float Gamma); static int m_targetWidth; static int m_targetHeight; static int m_msaaSamples; static int m_msaaCoverageSamples; static GLuint m_efbFramebuffer; static GLuint m_efbColor; // Renderbuffer in MSAA mode; Texture otherwise static GLuint m_efbDepth; // Renderbuffer in MSAA mode; Texture otherwise // Only used in MSAA mode and to convert pixel format static GLuint m_resolvedFramebuffer; // will be hot swapped with m_efbColor on non-msaa pixel format change static GLuint m_resolvedColorTexture; static GLuint m_resolvedDepthTexture; static GLuint m_xfbFramebuffer; // Only used in MSAA mode // For pixel format draw static GLuint m_pixel_format_vbo; static GLuint m_pixel_format_vao; static SHADER m_pixel_format_shaders[2]; }; } // namespace OGL #endif