// Copyright (C) 2003-2008 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include "Globals.h" #include "Profiler.h" #include "GLUtil.h" #include #include #include #include "Statistics.h" #include "Config.h" #include "ImageWrite.h" #include "Common.h" #include "Render.h" #include "VertexShader.h" #include "PixelShaderManager.h" #include "PixelShader.h" PixelShaderMngr::PSCache PixelShaderMngr::pshaders; FRAGMENTSHADER* PixelShaderMngr::pShaderLast = NULL; PIXELSHADERUID PixelShaderMngr::s_curuid; static int s_nMaxPixelInstructions; static int s_nColorsChanged[2]; // 0 - regular colors, 1 - k colors static int s_nIndTexMtxChanged = 0; static bool s_bAlphaChanged; static bool s_bZBiasChanged; static bool s_bIndTexScaleChanged; static float lastRGBAfull[2][4][4]; static u8 s_nTexDimsChanged; static u32 lastAlpha = 0; static u32 lastTexDims[8]={0}; static u32 lastZBias = 0; // lower byte describes if a texture is nonpow2 or pow2 // next byte describes whether the repeat wrap mode is enabled for the s channel // next byte is for t channel u32 s_texturemask = 0; static int maptocoord[8]; // indexed by texture map, holds the texcoord associated with the map static u32 maptocoord_mask = 0; static GLuint s_ColorMatrixProgram = 0; void PixelShaderMngr::SetPSConstant4f(int const_number, float f1, float f2, float f3, float f4) { glProgramEnvParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, const_number, f1, f2, f3, f4); } void PixelShaderMngr::SetPSConstant4fv(int const_number, const float *f) { glProgramEnvParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, const_number, f); } void PixelShaderMngr::Init() { s_nColorsChanged[0] = s_nColorsChanged[1] = 0; s_nTexDimsChanged = 0; s_nIndTexMtxChanged = 15; s_bAlphaChanged = s_bZBiasChanged = s_bIndTexScaleChanged = true; GL_REPORT_ERRORD(); for (int i = 0; i < 8; ++i) maptocoord[i] = -1; maptocoord_mask = 0; memset(lastRGBAfull, 0, sizeof(lastRGBAfull)); glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB, (GLint *)&s_nMaxPixelInstructions); int maxinst, maxattribs; glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB, (GLint *)&maxinst); glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_ATTRIBS_ARB, (GLint *)&maxattribs); ERROR_LOG("pixel max_alu=%d, max_inst=%d, max_attrib=%d\n", s_nMaxPixelInstructions, maxinst, maxattribs); char pmatrixprog[1024]; sprintf(pmatrixprog, "!!ARBfp1.0" "TEMP R0;\n" "TEMP R1;\n" "TEX R0, fragment.texcoord[0], texture[0], RECT;\n" "DP4 R1.w, R0, program.env[%d];\n" "DP4 R1.z, R0, program.env[%d];\n" "DP4 R1.x, R0, program.env[%d];\n" "DP4 R1.y, R0, program.env[%d];\n" "ADD result.color, R1, program.env[%d];\n" "END\n", C_COLORMATRIX+3, C_COLORMATRIX+2, C_COLORMATRIX, C_COLORMATRIX+1, C_COLORMATRIX+4); glGenProgramsARB(1, &s_ColorMatrixProgram); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, s_ColorMatrixProgram); glProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pmatrixprog), pmatrixprog); GLenum err = GL_NO_ERROR; GL_REPORT_ERROR(); if (err != GL_NO_ERROR) { ERROR_LOG("Failed to create color matrix fragment program\n"); glDeleteProgramsARB(1, &s_ColorMatrixProgram); s_ColorMatrixProgram = 0; } } void PixelShaderMngr::Shutdown() { glDeleteProgramsARB(1, &s_ColorMatrixProgram); s_ColorMatrixProgram = 0; PSCache::iterator iter = pshaders.begin(); for (; iter != pshaders.end(); iter++) iter->second.Destroy(); pshaders.clear(); } FRAGMENTSHADER* PixelShaderMngr::GetShader() { DVSTARTPROFILE(); PIXELSHADERUID uid; GetPixelShaderId(uid); PSCache::iterator iter = pshaders.find(uid); if (iter != pshaders.end()) { iter->second.frameCount = frameCount; PSCacheEntry &entry = iter->second; if (&entry.shader != pShaderLast) { pShaderLast = &entry.shader; } return pShaderLast; } PSCacheEntry& newentry = pshaders[uid]; char *code = GeneratePixelShader(s_texturemask, Renderer::GetZBufferTarget() != 0, Renderer::GetRenderMode() != Renderer::RM_Normal); #if defined(_DEBUG) || defined(DEBUGFAST) if (g_Config.iLog & CONF_SAVESHADERS && code) { static int counter = 0; char szTemp[MAX_PATH]; sprintf(szTemp, "%s/ps_%04i.txt", g_Config.texDumpPath, counter++); SaveData(szTemp, code); } #endif // printf("Compiling pixel shader. size = %i\n", strlen(code)); if (!code || !CompilePixelShader(newentry.shader, code)) { ERROR_LOG("failed to create pixel shader\n"); return NULL; } //Make an entry in the table newentry.frameCount = frameCount; pShaderLast = &newentry.shader; INCSTAT(stats.numPixelShadersCreated); SETSTAT(stats.numPixelShadersAlive, pshaders.size()); return pShaderLast; } void PixelShaderMngr::Cleanup() { PSCache::iterator iter = pshaders.begin(); while (iter != pshaders.end()) { PSCacheEntry &entry = iter->second; if (entry.frameCount < frameCount - 400) { entry.Destroy(); #ifdef _WIN32 iter = pshaders.erase(iter); #else pshaders.erase(iter++); // (this is gcc standard!) #endif } else iter++; } SETSTAT(stats.numPixelShadersAlive,(int)pshaders.size()); } bool PixelShaderMngr::CompilePixelShader(FRAGMENTSHADER& ps, const char* pstrprogram) { char stropt[64]; sprintf(stropt, "MaxLocalParams=32,NumInstructionSlots=%d", s_nMaxPixelInstructions); const char* opts[] = {"-profileopts", stropt, "-O2", "-q", NULL}; CGprogram tempprog = cgCreateProgram(g_cgcontext, CG_SOURCE, pstrprogram, g_cgfProf, "main", opts); if (!cgIsProgram(tempprog) || cgGetError() != CG_NO_ERROR) { ERROR_LOG("Failed to create ps %s:\n", cgGetLastListing(g_cgcontext)); ERROR_LOG(pstrprogram); return false; } char *pcompiledprog = (char*)cgGetProgramString(tempprog, CG_COMPILED_PROGRAM); char *plocal = strstr(pcompiledprog, "program.local"); while (plocal != NULL) { const char* penv = " program.env"; memcpy(plocal, penv, 13); plocal = strstr(plocal+13, "program.local"); } if (Renderer::IsUsingATIDrawBuffers()) { // sometimes compilation can use ARB_draw_buffers, which would fail for ATI cards // replace the three characters ARB with ATI. TODO - check whether this is fixed in modern ATI drivers. char* poptions = strstr(pcompiledprog, "ARB_draw_buffers"); if (poptions != NULL) { poptions[0] = 'A'; poptions[1] = 'T'; poptions[2] = 'I'; } } glGenProgramsARB( 1, &ps.glprogid ); glBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, ps.glprogid ); glProgramStringARB( GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pcompiledprog), pcompiledprog); GLenum err = GL_NO_ERROR; GL_REPORT_ERROR(); if (err != GL_NO_ERROR) { ERROR_LOG(pstrprogram); ERROR_LOG(pcompiledprog); } cgDestroyProgram(tempprog); // printf("Compiled pixel shader %i\n", ps.glprogid); #if defined(_DEBUG) || defined(DEBUGFAST) ps.strprog = pstrprogram; #endif return true; } void PixelShaderMngr::SetConstants() { for (int i = 0; i < 2; ++i) { if (s_nColorsChanged[i]) { int baseind = i ? C_KCOLORS : C_COLORS; for (int j = 0; j < 4; ++j) { if (s_nColorsChanged[i] & (1 << j)) { SetPSConstant4fv(baseind+j, &lastRGBAfull[i][j][0]); } } s_nColorsChanged[i] = 0; } } u32 newmask = 0; for (u32 i = 0; i < (u32)bpmem.genMode.numtevstages+1; ++i) { if (bpmem.tevorders[i/2].getEnable(i&1)) { int texmap = bpmem.tevorders[i/2].getTexMap(i&1); maptocoord[texmap] = bpmem.tevorders[i/2].getTexCoord(i&1); newmask |= 1 << texmap; SetTexDimsChanged(texmap); } } if (maptocoord_mask != newmask) { //u32 changes = maptocoord_mask ^ newmask; for (int i = 0; i < 8; ++i) { if (newmask & (1 << i)) { SetTexDimsChanged(i); } else { maptocoord[i] = -1; } } maptocoord_mask = newmask; } if (s_nTexDimsChanged) { for (int i = 0; i < 8; ++i) { if (s_nTexDimsChanged & (1<>8)&0xff)/255.0f, 0, ((lastAlpha>>16)&0xff)/255.0f); } if (s_bZBiasChanged) { u32 bits; float ffrac = 255.0f/256.0f; float ftemp[4]; switch (bpmem.ztex2.type) { case 0: bits = 8; ftemp[0] = ffrac/(256.0f*256.0f); ftemp[1] = ffrac/256.0f; ftemp[2] = ffrac; ftemp[3] = 0; break; case 1: bits = 16; ftemp[0] = 0; ftemp[1] = ffrac/(256.0f*256.0f); ftemp[2] = ffrac/256.0f; ftemp[3] = ffrac; break; case 2: bits = 24; ftemp[0] = ffrac/(256.0f*256.0f); ftemp[1] = ffrac/256.0f; ftemp[2] = ffrac; ftemp[3] = 0; break; } //ERROR_LOG("pixel=%x,%x, bias=%x\n", bpmem.zcontrol.pixel_format, bpmem.ztex2.type, lastZBias); SetPSConstant4fv(C_ZBIAS, ftemp); SetPSConstant4f(C_ZBIAS+1, 0, 0, 0, (float)( (((int)lastZBias<<8)>>8))/16777216.0f); } // indirect incoming texture scales, update all! if (s_bIndTexScaleChanged) { // set as two sets of vec4s, each containing S and T of two ind stages. float f[8]; for (u32 i = 0; i < bpmem.genMode.numindstages; ++i) { int srctexmap = bpmem.tevindref.getTexMap(i); int texcoord = bpmem.tevindref.getTexCoord(i); TCoordInfo& tc = bpmem.texcoords[texcoord]; f[2*i] = bpmem.texscale[i/2].getScaleS(i&1) * (float)(tc.s.scale_minus_1+1) / (float)(lastTexDims[srctexmap] & 0xffff); f[2*i+1] = bpmem.texscale[i/2].getScaleT(i&1) * (float)(tc.t.scale_minus_1+1) / (float)((lastTexDims[srctexmap] >> 16) & 0xfff); // Yes, the above should really be 0xfff. The top 4 bits are used for other stuff. PRIM_LOG("tex indscale%d: %f %f\n", i, f[2*i], f[2*i+1]); } SetPSConstant4fv(C_INDTEXSCALE, f); if (bpmem.genMode.numindstages > 2) SetPSConstant4fv(C_INDTEXSCALE+1, &f[4]); s_bIndTexScaleChanged = false; } if (s_nIndTexMtxChanged) { for (int i = 0; i < 3; ++i) { if (s_nIndTexMtxChanged & (1 << i)) { int scale = ((u32)bpmem.indmtx[i].col0.s0 << 0) | ((u32)bpmem.indmtx[i].col1.s1 << 2) | ((u32)bpmem.indmtx[i].col2.s2 << 4); float fscale = powf(2.0f, (float)(scale - 17)) / 1024.0f; // xyz - static matrix //TODO w - dynamic matrix scale / 256...... somehow / 4 works better SetPSConstant4f(C_INDTEXMTX+2*i, bpmem.indmtx[i].col0.ma * fscale, bpmem.indmtx[i].col1.mc * fscale, bpmem.indmtx[i].col2.me * fscale, fscale * 256.0f); SetPSConstant4f(C_INDTEXMTX+2*i+1, bpmem.indmtx[i].col0.mb * fscale, bpmem.indmtx[i].col1.md * fscale, bpmem.indmtx[i].col2.mf * fscale, fscale * 256.0f); PRIM_LOG("indmtx%d: scale=%f, mat=(%f %f %f; %f %f %f)\n", i, 1024.0f*fscale, bpmem.indmtx[i].col0.ma * fscale, bpmem.indmtx[i].col1.mc * fscale, bpmem.indmtx[i].col2.me * fscale, bpmem.indmtx[i].col0.mb * fscale, bpmem.indmtx[i].col1.md * fscale, bpmem.indmtx[i].col2.mf * fscale, fscale); } } s_nIndTexMtxChanged = 0; } } void PixelShaderMngr::SetPSTextureDims(int texid) { float fdims[4]; if (s_texturemask & (1<= 0) { TCoordInfo& tc = bpmem.texcoords[maptocoord[texid]]; fdims[0] = (float)(lastTexDims[texid]&0xffff); fdims[1] = (float)((lastTexDims[texid]>>16)&0xfff); fdims[2] = (float)(tc.s.scale_minus_1+1)/(float)(lastTexDims[texid]&0xffff); fdims[3] = (float)(tc.t.scale_minus_1+1)/(float)((lastTexDims[texid]>>16)&0xfff); } else { fdims[0] = (float)(lastTexDims[texid]&0xffff); fdims[1] = (float)((lastTexDims[texid]>>16)&0xfff); fdims[2] = 1.0f; fdims[3] = 1.0f; } } else { if (maptocoord[texid] >= 0) { TCoordInfo& tc = bpmem.texcoords[maptocoord[texid]]; fdims[0] = (float)(tc.s.scale_minus_1+1)/(float)(lastTexDims[texid]&0xffff); fdims[1] = (float)(tc.t.scale_minus_1+1)/(float)((lastTexDims[texid]>>16)&0xfff); fdims[2] = 1.0f/(float)(tc.s.scale_minus_1+1); fdims[3] = 1.0f/(float)(tc.t.scale_minus_1+1); } else { fdims[0] = 1.0f; fdims[1] = 1.0f; fdims[2] = 1.0f/(float)(lastTexDims[texid]&0xffff); fdims[3] = 1.0f/(float)((lastTexDims[texid]>>16)&0xfff); } } PRIM_LOG("texdims%d: %f %f %f %f\n", texid, fdims[0], fdims[1], fdims[2], fdims[3]); SetPSConstant4fv(C_TEXDIMS + texid, fdims); } void PixelShaderMngr::SetColorChanged(int type, int num) { int r = bpmem.tevregs[num].low.a; int a = bpmem.tevregs[num].low.b; int b = bpmem.tevregs[num].high.a; int g = bpmem.tevregs[num].high.b; float *pf = &lastRGBAfull[type][num][0]; pf[0] = (float)r / 255.0f; pf[1] = (float)g / 255.0f; pf[2] = (float)b / 255.0f; pf[3] = (float)a / 255.0f; s_nColorsChanged[type] |= 1 << num; PRIM_LOG("pixel %scolor%d: %f %f %f %f\n", type?"k":"", num, pf[0], pf[1], pf[2], pf[3]); } void PixelShaderMngr::SetAlpha(const AlphaFunc& alpha) { if ((alpha.hex & 0xffff) != lastAlpha) { lastAlpha = (lastAlpha & ~0xffff) | (alpha.hex & 0xffff); s_bAlphaChanged = true; } } void PixelShaderMngr::SetDestAlpha(const ConstantAlpha& alpha) { if (alpha.alpha != (lastAlpha >> 16)) { lastAlpha = (lastAlpha & ~0xff0000) | ((alpha.hex & 0xff) << 16); s_bAlphaChanged = true; } } void PixelShaderMngr::SetTexDims(int texmapid, u32 width, u32 height, u32 wraps, u32 wrapt) { u32 wh = width | (height << 16) | (wraps << 28) | (wrapt << 30); if (lastTexDims[texmapid] != wh) { lastTexDims[texmapid] = wh; s_nTexDimsChanged |= 1 << texmapid; } } void PixelShaderMngr::SetZTextureBias(u32 bias) { if (lastZBias != bias) { s_bZBiasChanged = true; lastZBias = bias; } } void PixelShaderMngr::SetIndTexScaleChanged() { s_bIndTexScaleChanged = true; } void PixelShaderMngr::SetIndMatrixChanged(int matrixidx) { s_nIndTexMtxChanged |= 1 << matrixidx; } void PixelShaderMngr::SetGenModeChanged() { } void PixelShaderMngr::SetTevCombinerChanged(int id) { } void PixelShaderMngr::SetTevKSelChanged(int id) { } void PixelShaderMngr::SetTevOrderChanged(int id) { } void PixelShaderMngr::SetTevIndirectChanged(int id) { } void PixelShaderMngr::SetZTextureOpChanged() { s_bZBiasChanged = true; } void PixelShaderMngr::SetTexturesUsed(u32 nonpow2tex) { if (s_texturemask != nonpow2tex) { for (int i = 0; i < 8; ++i) { if (nonpow2tex & (0x10101 << i)) { // this check was previously implicit, but should it be here? if (s_nTexDimsChanged ) s_nTexDimsChanged |= 1 << i; } } s_texturemask = nonpow2tex; } } void PixelShaderMngr::SetTexDimsChanged(int texmapid) { // this check was previously implicit, but should it be here? if (s_nTexDimsChanged) s_nTexDimsChanged |= 1 << texmapid; SetIndTexScaleChanged(); } void PixelShaderMngr::SetColorMatrix(const float* pmatrix, const float* pfConstAdd) { SetPSConstant4fv(C_COLORMATRIX, pmatrix); SetPSConstant4fv(C_COLORMATRIX+1, pmatrix+4); SetPSConstant4fv(C_COLORMATRIX+2, pmatrix+8); SetPSConstant4fv(C_COLORMATRIX+3, pmatrix+12); SetPSConstant4fv(C_COLORMATRIX+4, pfConstAdd); } GLuint PixelShaderMngr::GetColorMatrixProgram() { return s_ColorMatrixProgram; } // Mash together all the inputs that contribute to the code of a generated pixel shader into // a unique identifier, basically containing all the bits. Yup, it's a lot .... void PixelShaderMngr::GetPixelShaderId(PIXELSHADERUID &uid) { u32 projtexcoords = 0; for (u32 i = 0; i < (u32)bpmem.genMode.numtevstages + 1; i++) { if (bpmem.tevorders[i/2].getEnable(i&1)) { int texcoord = bpmem.tevorders[i/2].getTexCoord(i&1); if (xfregs.texcoords[texcoord].texmtxinfo.projection ) projtexcoords |= 1 << texcoord; } } u32 zbufrender = (Renderer::GetZBufferTarget() && bpmem.zmode.updateenable) ? 1 : 0; u32 zBufRenderToCol0 = Renderer::GetRenderMode() != Renderer::RM_Normal; uid.values[0] = (u32)bpmem.genMode.numtevstages | ((u32)bpmem.genMode.numindstages << 4) | ((u32)bpmem.genMode.numtexgens << 7) | ((u32)bpmem.dstalpha.enable << 11) | ((u32)((bpmem.alphaFunc.hex >> 16) & 0xff) << 12) | (projtexcoords << 20) | ((u32)bpmem.ztex2.op << 28) | (zbufrender << 30) | (zBufRenderToCol0 << 31); s_curuid.values[0] = (s_curuid.values[0] & ~0x0ff00000) | (projtexcoords << 20); // swap table for (int i = 0; i < 8; i += 2) ((u8*)&uid.values[1])[i/2] = (bpmem.tevksel[i].hex & 0xf) | ((bpmem.tevksel[i + 1].hex & 0xf) << 4); uid.values[2] = s_texturemask; int hdr = 3; u32* pcurvalue = &uid.values[hdr]; for (u32 i = 0; i < (u32)bpmem.genMode.numtevstages+1; ++i) { TevStageCombiner::ColorCombiner &cc = bpmem.combiners[i].colorC; TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[i].alphaC; u32 val0 = cc.hex&0xffffff; u32 val1 = ac.hex&0xffffff; val0 |= bpmem.tevksel[i/2].getKC(i&1)<<24; val1 |= bpmem.tevksel[i/2].getKA(i&1)<<24; pcurvalue[0] = val0; pcurvalue[1] = val1; pcurvalue += 2; } for (u32 i = 0; i < ((u32)bpmem.genMode.numtevstages+1)/2; ++i) { u32 val0, val1; if (bpmem.tevorders[i].hex & 0x40) val0 = bpmem.tevorders[i].hex & 0x3ff; else val0 = bpmem.tevorders[i].hex & 0x380; if (bpmem.tevorders[i].hex & 0x40000) val1 = (bpmem.tevorders[i].hex & 0x3ff000) >> 12; else val1 = (bpmem.tevorders[i].hex & 0x380000) >> 12; switch (i % 3) { case 0: pcurvalue[0] = val0|(val1<<10); break; case 1: pcurvalue[0] |= val0<<20; pcurvalue[1] = val1; pcurvalue++; break; case 2: pcurvalue[1] |= (val0<<10)|(val1<<20); pcurvalue++; break; } } if ((bpmem.genMode.numtevstages + 1) & 1) { // odd u32 val0; if (bpmem.tevorders[bpmem.genMode.numtevstages/2].hex & 0x40) val0 = bpmem.tevorders[bpmem.genMode.numtevstages/2].hex&0x3ff; else val0 = bpmem.tevorders[bpmem.genMode.numtevstages/2].hex & 0x380; switch (bpmem.genMode.numtevstages % 3) { case 0: pcurvalue[0] = val0; break; case 1: pcurvalue[0] |= val0 << 20; break; case 2: pcurvalue[1] |= val0 << 10; pcurvalue++; break; } } if ((bpmem.genMode.numtevstages % 3) != 2) ++pcurvalue; uid.tevstages = (u32)(pcurvalue-&uid.values[0]-hdr); for (u32 i = 0; i < bpmem.genMode.numindstages; ++i) { u32 val = bpmem.tevind[i].hex & 0x1fffff; // 21 bits switch (i%3) { case 0: pcurvalue[0] = val; break; case 1: pcurvalue[0] |= val << 21; pcurvalue[1] = val >> 11; ++pcurvalue; break; case 2: pcurvalue[0] |= val << 10; ++pcurvalue; break; } } // yeah, well .... uid.indstages = (u32)(pcurvalue - &uid.values[0] - 2 - uid.tevstages); }