// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // WARNING - THIS LIBRARY IS NOT THREAD SAFE!!! #ifndef _DOLPHIN_INTEL_CODEGEN_ #define _DOLPHIN_INTEL_CODEGEN_ #include "Common.h" #include "MemoryUtil.h" namespace Gen { enum X64Reg { EAX = 0, EBX = 3, ECX = 1, EDX = 2, ESI = 6, EDI = 7, EBP = 5, ESP = 4, RAX = 0, RBX = 3, RCX = 1, RDX = 2, RSI = 6, RDI = 7, RBP = 5, RSP = 4, R8 = 8, R9 = 9, R10 = 10,R11 = 11, R12 = 12,R13 = 13,R14 = 14,R15 = 15, AL = 0, BL = 3, CL = 1, DL = 2, SIL = 6, DIL = 7, BPL = 5, SPL = 4, AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106, AX = 0, BX = 3, CX = 1, DX = 2, SI = 6, DI = 7, BP = 5, SP = 4, XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, INVALID_REG = 0xFFFFFFFF }; enum CCFlags { CC_O = 0, CC_NO = 1, CC_B = 2, CC_C = 2, CC_NAE = 2, CC_NB = 3, CC_NC = 3, CC_AE = 3, CC_Z = 4, CC_E = 4, CC_NZ = 5, CC_NE = 5, CC_BE = 6, CC_NA = 6, CC_NBE = 7, CC_A = 7, CC_S = 8, CC_NS = 9, CC_P = 0xA, CC_PE = 0xA, CC_NP = 0xB, CC_PO = 0xB, CC_L = 0xC, CC_NGE = 0xC, CC_NL = 0xD, CC_GE = 0xD, CC_LE = 0xE, CC_NG = 0xE, CC_NLE = 0xF, CC_G = 0xF }; enum { NUMGPRs = 16, NUMXMMs = 16, }; enum { SCALE_NONE = 0, SCALE_1 = 1, SCALE_2 = 2, SCALE_4 = 4, SCALE_8 = 8, SCALE_ATREG = 16, SCALE_RIP = 0xFF, SCALE_IMM8 = 0xF0, SCALE_IMM16 = 0xF1, SCALE_IMM32 = 0xF2, SCALE_IMM64 = 0xF3, }; enum NormalOp { nrmADD, nrmADC, nrmSUB, nrmSBB, nrmAND, nrmOR , nrmXOR, nrmMOV, nrmTEST, nrmCMP, nrmXCHG, }; class XEmitter; // RIP addressing does not benefit from micro op fusion on Core arch struct OpArg { OpArg() {} // dummy op arg, used for storage OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX) { operandReg = 0; scale = (u8)_scale; offsetOrBaseReg = (u16)rmReg; indexReg = (u16)scaledReg; //if scale == 0 never mind offseting offset = _offset; } void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const; void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=(X64Reg)0xFF, bool warn_64bit_offset = true) const; void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits); // This one is public - must be written to u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available. u16 operandReg; void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const; bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;} bool IsSimpleReg() const {return scale == SCALE_NONE;} bool IsSimpleReg(X64Reg reg) const { if (!IsSimpleReg()) return false; return GetSimpleReg() == reg; } bool CanDoOpWith(const OpArg &other) const { if (IsSimpleReg()) return true; if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false; return true; } int GetImmBits() const { switch (scale) { case SCALE_IMM8: return 8; case SCALE_IMM16: return 16; case SCALE_IMM32: return 32; case SCALE_IMM64: return 64; default: return -1; } } X64Reg GetSimpleReg() const { if (scale == SCALE_NONE) return (X64Reg)offsetOrBaseReg; else return INVALID_REG; } private: u8 scale; u16 offsetOrBaseReg; u16 indexReg; }; inline OpArg M(void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);} inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);} inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);} inline OpArg MDisp(X64Reg value, int offset) { return OpArg((u32)offset, SCALE_ATREG, value); } inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) { return OpArg(offset, scale, base, scaled); } inline OpArg MRegSum(X64Reg base, X64Reg offset) { return MComplex(base, offset, 1, 0); } inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);} inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);} inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);} #ifdef _M_X64 inline OpArg ImmPtr(void* imm) {return Imm64((u64)imm);} #else inline OpArg ImmPtr(void* imm) {return Imm32((u32)imm);} #endif inline u32 PtrOffset(void* ptr, void* base) { #ifdef _M_X64 s64 distance = (s64)ptr-(s64)base; if (distance >= 0x80000000LL || distance < -0x80000000LL) { _assert_msg_(DYNA_REC, 0, "pointer offset out of range"); return 0; } return (u32)distance; #else return (u32)ptr-(u32)base; #endif } //usage: int a[]; ARRAY_OFFSET(a,10) #define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0])) //usage: struct {int e;} s; STRUCT_OFFSET(s,e) #define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str))) struct FixupBranch { u8 *ptr; int type; //0 = 8bit 1 = 32bit }; enum SSECompare { EQ = 0, LT, LE, UNORD, NEQ, NLT, NLE, ORD, }; typedef const u8* JumpTarget; class XEmitter { friend struct OpArg; // for Write8 etc private: u8 *code; void Rex(int w, int r, int x, int b); void WriteSimple1Byte(int bits, u8 byte, X64Reg reg); void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg); void WriteMulDivType(int bits, OpArg src, int ext); void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2); void WriteShift(int bits, OpArg dest, OpArg &shift, int ext); void WriteMXCSR(OpArg arg, int ext); void WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes = 0); void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2); protected: inline void Write8(u8 value) {*code++ = value;} inline void Write16(u16 value) {*(u16*)code = (value); code += 2;} inline void Write32(u32 value) {*(u32*)code = (value); code += 4;} inline void Write64(u64 value) {*(u64*)code = (value); code += 8;} public: XEmitter() { code = NULL; } XEmitter(u8 *code_ptr) { code = code_ptr; } virtual ~XEmitter() {} void WriteModRM(int mod, int rm, int reg); void WriteSIB(int scale, int index, int base); void SetCodePtr(u8 *ptr); void ReserveCodeSpace(int bytes); const u8 *AlignCode4(); const u8 *AlignCode16(); const u8 *AlignCodePage(); const u8 *GetCodePtr() const; u8 *GetWritableCodePtr(); // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr., // INC and DEC are slow on Intel Core, but not on AMD. They create a // false flag dependency because they only update a subset of the flags. // XCHG is SLOW and should be avoided. // Debug breakpoint void INT3(); // Do nothing void NOP(int count = 1); //nop padding - TODO: fast nop slides, for amd and intel (check their manuals) // Save energy in wait-loops on P4 only. Probably not too useful. void PAUSE(); // Flag control void STC(); void CLC(); void CMC(); // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD! void LAHF(); // 3 cycle vector path void SAHF(); // direct path fast // Stack control void PUSH(X64Reg reg); void POP(X64Reg reg); void PUSH(int bits, const OpArg ®); void POP(int bits, const OpArg ®); void PUSHF(); void POPF(); // Flow control void RET(); void RET_FAST(); void UD2(); FixupBranch J(bool force5bytes = false); void JMP(const u8 * addr, bool force5Bytes = false); void JMP(OpArg arg); void JMPptr(const OpArg &arg); void JMPself(); //infinite loop! #ifdef CALL #undef CALL #endif void CALL(const void *fnptr); void CALLptr(OpArg arg); FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false); //void J_CC(CCFlags conditionCode, JumpTarget target); void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false); void SetJumpTarget(const FixupBranch &branch); void SETcc(CCFlags flag, OpArg dest); // Note: CMOV brings small if any benefit on current cpus. void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag); // Fences void LFENCE(); void MFENCE(); void SFENCE(); // Bit scan void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit // Cache control enum PrefetchLevel { PF_NTA, //Non-temporal (data used once and only once) PF_T0, //All cache levels PF_T1, //Levels 2+ (aliased to T0 on AMD) PF_T2, //Levels 3+ (aliased to T0 on AMD) }; void PREFETCH(PrefetchLevel level, OpArg arg); void MOVNTI(int bits, OpArg dest, X64Reg src); void MOVNTDQ(OpArg arg, X64Reg regOp); void MOVNTPS(OpArg arg, X64Reg regOp); void MOVNTPD(OpArg arg, X64Reg regOp); // Multiplication / division void MUL(int bits, OpArg src); //UNSIGNED void IMUL(int bits, OpArg src); //SIGNED void IMUL(int bits, X64Reg regOp, OpArg src); void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm); void DIV(int bits, OpArg src); void IDIV(int bits, OpArg src); // Shift void ROL(int bits, OpArg dest, OpArg shift); void ROR(int bits, OpArg dest, OpArg shift); void RCL(int bits, OpArg dest, OpArg shift); void RCR(int bits, OpArg dest, OpArg shift); void SHL(int bits, OpArg dest, OpArg shift); void SHR(int bits, OpArg dest, OpArg shift); void SAR(int bits, OpArg dest, OpArg shift); // Extend EAX into EDX in various ways void CWD(int bits = 16); inline void CDQ() {CWD(32);} inline void CQO() {CWD(64);} void CBW(int bits = 8); inline void CWDE() {CBW(16);} inline void CDQE() {CBW(32);} // Load effective address void LEA(int bits, X64Reg dest, OpArg src); // Integer arithmetic void NEG (int bits, OpArg src); void ADD (int bits, const OpArg &a1, const OpArg &a2); void ADC (int bits, const OpArg &a1, const OpArg &a2); void SUB (int bits, const OpArg &a1, const OpArg &a2); void SBB (int bits, const OpArg &a1, const OpArg &a2); void AND (int bits, const OpArg &a1, const OpArg &a2); void CMP (int bits, const OpArg &a1, const OpArg &a2); // Bit operations void NOT (int bits, OpArg src); void OR (int bits, const OpArg &a1, const OpArg &a2); void XOR (int bits, const OpArg &a1, const OpArg &a2); void MOV (int bits, const OpArg &a1, const OpArg &a2); void TEST(int bits, const OpArg &a1, const OpArg &a2); // Are these useful at all? Consider removing. void XCHG(int bits, const OpArg &a1, const OpArg &a2); void XCHG_AHAL(); // Byte swapping (32 and 64-bit only). void BSWAP(int bits, X64Reg reg); // Sign/zero extension void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src); // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64) void STMXCSR(OpArg memloc); void LDMXCSR(OpArg memloc); // Prefixes void LOCK(); void REP(); void REPNE(); void FWAIT(); // SSE/SSE2: Floating point arithmetic void ADDSS(X64Reg regOp, OpArg arg); void ADDSD(X64Reg regOp, OpArg arg); void SUBSS(X64Reg regOp, OpArg arg); void SUBSD(X64Reg regOp, OpArg arg); void MULSS(X64Reg regOp, OpArg arg); void MULSD(X64Reg regOp, OpArg arg); void DIVSS(X64Reg regOp, OpArg arg); void DIVSD(X64Reg regOp, OpArg arg); void MINSS(X64Reg regOp, OpArg arg); void MINSD(X64Reg regOp, OpArg arg); void MAXSS(X64Reg regOp, OpArg arg); void MAXSD(X64Reg regOp, OpArg arg); void SQRTSS(X64Reg regOp, OpArg arg); void SQRTSD(X64Reg regOp, OpArg arg); void RSQRTSS(X64Reg regOp, OpArg arg); // SSE/SSE2: Floating point bitwise (yes) void CMPSS(X64Reg regOp, OpArg arg, u8 compare); void CMPSD(X64Reg regOp, OpArg arg, u8 compare); void ANDSS(X64Reg regOp, OpArg arg); void ANDSD(X64Reg regOp, OpArg arg); void ANDNSS(X64Reg regOp, OpArg arg); void ANDNSD(X64Reg regOp, OpArg arg); void ORSS(X64Reg regOp, OpArg arg); void ORSD(X64Reg regOp, OpArg arg); void XORSS(X64Reg regOp, OpArg arg); void XORSD(X64Reg regOp, OpArg arg); // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double) void ADDPS(X64Reg regOp, OpArg arg); void ADDPD(X64Reg regOp, OpArg arg); void SUBPS(X64Reg regOp, OpArg arg); void SUBPD(X64Reg regOp, OpArg arg); void CMPPS(X64Reg regOp, OpArg arg, u8 compare); void CMPPD(X64Reg regOp, OpArg arg, u8 compare); void MULPS(X64Reg regOp, OpArg arg); void MULPD(X64Reg regOp, OpArg arg); void DIVPS(X64Reg regOp, OpArg arg); void DIVPD(X64Reg regOp, OpArg arg); void MINPS(X64Reg regOp, OpArg arg); void MINPD(X64Reg regOp, OpArg arg); void MAXPS(X64Reg regOp, OpArg arg); void MAXPD(X64Reg regOp, OpArg arg); void SQRTPS(X64Reg regOp, OpArg arg); void SQRTPD(X64Reg regOp, OpArg arg); void RSQRTPS(X64Reg regOp, OpArg arg); // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double) void ANDPS(X64Reg regOp, OpArg arg); void ANDPD(X64Reg regOp, OpArg arg); void ANDNPS(X64Reg regOp, OpArg arg); void ANDNPD(X64Reg regOp, OpArg arg); void ORPS(X64Reg regOp, OpArg arg); void ORPD(X64Reg regOp, OpArg arg); void XORPS(X64Reg regOp, OpArg arg); void XORPD(X64Reg regOp, OpArg arg); // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation. void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle); void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle); // SSE/SSE2: Useful alternative to shuffle in some cases. void MOVDDUP(X64Reg regOp, OpArg arg); // THESE TWO ARE NEW AND UNTESTED void UNPCKLPS(X64Reg dest, OpArg src); void UNPCKHPS(X64Reg dest, OpArg src); // These are OK. void UNPCKLPD(X64Reg dest, OpArg src); void UNPCKHPD(X64Reg dest, OpArg src); // SSE/SSE2: Compares. void COMISS(X64Reg regOp, OpArg arg); void COMISD(X64Reg regOp, OpArg arg); void UCOMISS(X64Reg regOp, OpArg arg); void UCOMISD(X64Reg regOp, OpArg arg); // SSE/SSE2: Moves. Use the right data type for your data, in most cases. void MOVAPS(X64Reg regOp, OpArg arg); void MOVAPD(X64Reg regOp, OpArg arg); void MOVAPS(OpArg arg, X64Reg regOp); void MOVAPD(OpArg arg, X64Reg regOp); void MOVUPS(X64Reg regOp, OpArg arg); void MOVUPD(X64Reg regOp, OpArg arg); void MOVUPS(OpArg arg, X64Reg regOp); void MOVUPD(OpArg arg, X64Reg regOp); void MOVSS(X64Reg regOp, OpArg arg); void MOVSD(X64Reg regOp, OpArg arg); void MOVSS(OpArg arg, X64Reg regOp); void MOVSD(OpArg arg, X64Reg regOp); void MOVD_xmm(X64Reg dest, const OpArg &arg); void MOVQ_xmm(X64Reg dest, OpArg arg); void MOVD_xmm(const OpArg &arg, X64Reg src); void MOVQ_xmm(OpArg arg, X64Reg src); // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question. void MOVMSKPS(X64Reg dest, OpArg arg); void MOVMSKPD(X64Reg dest, OpArg arg); // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one. void MASKMOVDQU(X64Reg dest, X64Reg src); void LDDQU(X64Reg dest, OpArg src); // SSE/SSE2: Data type conversions. void CVTPS2PD(X64Reg dest, OpArg src); void CVTPD2PS(X64Reg dest, OpArg src); void CVTSS2SD(X64Reg dest, OpArg src); void CVTSD2SS(X64Reg dest, OpArg src); void CVTSD2SI(X64Reg dest, OpArg src); void CVTDQ2PD(X64Reg regOp, OpArg arg); void CVTPD2DQ(X64Reg regOp, OpArg arg); void CVTDQ2PS(X64Reg regOp, OpArg arg); void CVTPS2DQ(X64Reg regOp, OpArg arg); void CVTTSS2SI(X64Reg xregdest, OpArg arg); // Yeah, destination really is a GPR like EAX! void CVTTPS2DQ(X64Reg regOp, OpArg arg); // SSE2: Packed integer instructions void PACKSSDW(X64Reg dest, OpArg arg); void PACKSSWB(X64Reg dest, OpArg arg); //void PACKUSDW(X64Reg dest, OpArg arg); void PACKUSWB(X64Reg dest, OpArg arg); void PUNPCKLBW(X64Reg dest, const OpArg &arg); void PUNPCKLWD(X64Reg dest, const OpArg &arg); void PUNPCKLDQ(X64Reg dest, const OpArg &arg); void PAND(X64Reg dest, OpArg arg); void PANDN(X64Reg dest, OpArg arg); void PXOR(X64Reg dest, OpArg arg); void POR(X64Reg dest, OpArg arg); void PADDB(X64Reg dest, OpArg arg); void PADDW(X64Reg dest, OpArg arg); void PADDD(X64Reg dest, OpArg arg); void PADDQ(X64Reg dest, OpArg arg); void PADDSB(X64Reg dest, OpArg arg); void PADDSW(X64Reg dest, OpArg arg); void PADDUSB(X64Reg dest, OpArg arg); void PADDUSW(X64Reg dest, OpArg arg); void PSUBB(X64Reg dest, OpArg arg); void PSUBW(X64Reg dest, OpArg arg); void PSUBD(X64Reg dest, OpArg arg); void PSUBQ(X64Reg dest, OpArg arg); void PSUBSB(X64Reg dest, OpArg arg); void PSUBSW(X64Reg dest, OpArg arg); void PSUBUSB(X64Reg dest, OpArg arg); void PSUBUSW(X64Reg dest, OpArg arg); void PAVGB(X64Reg dest, OpArg arg); void PAVGW(X64Reg dest, OpArg arg); void PCMPEQB(X64Reg dest, OpArg arg); void PCMPEQW(X64Reg dest, OpArg arg); void PCMPEQD(X64Reg dest, OpArg arg); void PCMPGTB(X64Reg dest, OpArg arg); void PCMPGTW(X64Reg dest, OpArg arg); void PCMPGTD(X64Reg dest, OpArg arg); void PEXTRW(X64Reg dest, OpArg arg, u8 subreg); void PINSRW(X64Reg dest, OpArg arg, u8 subreg); void PMADDWD(X64Reg dest, OpArg arg); void PSADBW(X64Reg dest, OpArg arg); void PMAXSW(X64Reg dest, OpArg arg); void PMAXUB(X64Reg dest, OpArg arg); void PMINSW(X64Reg dest, OpArg arg); void PMINUB(X64Reg dest, OpArg arg); void PMOVMSKB(X64Reg dest, OpArg arg); void PSHUFB(X64Reg dest, OpArg arg); void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle); void PSRLW(X64Reg reg, int shift); void PSRLD(X64Reg reg, int shift); void PSRLQ(X64Reg reg, int shift); void PSLLW(X64Reg reg, int shift); void PSLLD(X64Reg reg, int shift); void PSLLQ(X64Reg reg, int shift); void PSRAW(X64Reg reg, int shift); void PSRAD(X64Reg reg, int shift); void RTDSC(); // Utility functions // The difference between this and CALL is that this aligns the stack // where appropriate. void ABI_CallFunction(void *func); void ABI_CallFunctionC16(void *func, u16 param1); void ABI_CallFunctionCC16(void *func, u32 param1, u16 param2); // These only support u32 parameters, but that's enough for a lot of uses. // These will destroy the 1 or 2 first "parameter regs". void ABI_CallFunctionC(void *func, u32 param1); void ABI_CallFunctionCC(void *func, u32 param1, u32 param2); void ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3); void ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3); void ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2,u32 param3, void *param4); void ABI_CallFunctionPPC(void *func, void *param1, void *param2,u32 param3); void ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2); void ABI_CallFunctionA(void *func, const Gen::OpArg &arg1); // Pass a register as a paremeter. void ABI_CallFunctionR(void *func, Gen::X64Reg reg1); void ABI_CallFunctionRR(void *func, Gen::X64Reg reg1, Gen::X64Reg reg2); // A function that doesn't have any control over what it will do to regs, // such as the dispatcher, should be surrounded by these. void ABI_PushAllCalleeSavedRegsAndAdjustStack(); void ABI_PopAllCalleeSavedRegsAndAdjustStack(); // A function that doesn't know anything about it's surroundings, should // be surrounded by these to establish a safe environment, where it can roam free. // An example is a backpatch injected function. void ABI_PushAllCallerSavedRegsAndAdjustStack(); void ABI_PopAllCallerSavedRegsAndAdjustStack(); unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize); void ABI_AlignStack(unsigned int frameSize); void ABI_RestoreStack(unsigned int frameSize); // Sets up a __cdecl function. // Only x64 really needs the parameter count. void ABI_EmitPrologue(int maxCallParams); void ABI_EmitEpilogue(int maxCallParams); #ifdef _M_IX86 inline int ABI_GetNumXMMRegs() { return 8; } #else inline int ABI_GetNumXMMRegs() { return 16; } #endif // Strange call wrappers. void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2); void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3); void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4); void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5); #if defined(_M_IX86) #define CallCdeclFunction3_I(a,b,c,d) CallCdeclFunction3((void *)(a), (b), (c), (d)) #define CallCdeclFunction4_I(a,b,c,d,e) CallCdeclFunction4((void *)(a), (b), (c), (d), (e)) #define CallCdeclFunction5_I(a,b,c,d,e,f) CallCdeclFunction5((void *)(a), (b), (c), (d), (e), (f)) #define CallCdeclFunction6_I(a,b,c,d,e,f,g) CallCdeclFunction6((void *)(a), (b), (c), (d), (e), (f), (g)) #define DECLARE_IMPORT(x) #else // Comments from VertexLoader.cpp about these horrors: // This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit // address space that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we // want to grab the function pointers from the import table instead. void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2); void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3); void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4); void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5); #define CallCdeclFunction3_I(a,b,c,d) ___CallCdeclImport3(&__imp_##a,b,c,d) #define CallCdeclFunction4_I(a,b,c,d,e) ___CallCdeclImport4(&__imp_##a,b,c,d,e) #define CallCdeclFunction5_I(a,b,c,d,e,f) ___CallCdeclImport5(&__imp_##a,b,c,d,e,f) #define CallCdeclFunction6_I(a,b,c,d,e,f,g) ___CallCdeclImport6(&__imp_##a,b,c,d,e,f,g) #define DECLARE_IMPORT(x) extern "C" void *__imp_##x #endif }; // class XEmitter // Everything that needs to generate X86 code should inherit from this. // You get memory management for free, plus, you can use all the MOV etc functions without // having to prefix them with gen-> or something similar. class XCodeBlock : public XEmitter { protected: u8 *region; size_t region_size; public: XCodeBlock() : region(NULL), region_size(0) {} virtual ~XCodeBlock() { if (region) FreeCodeSpace(); } // Call this before you generate any code. void AllocCodeSpace(int size) { region_size = size; region = (u8*)AllocateExecutableMemory(region_size); SetCodePtr(region); } // Always clear code space with breakpoints, so that if someone accidentally executes // uninitialized, it just breaks into the debugger. void ClearCodeSpace() { // x86/64: 0xCC = breakpoint memset(region, 0xCC, region_size); ResetCodePtr(); } // Call this when shutting down. Don't rely on the destructor, even though it'll do the job. void FreeCodeSpace() { FreeMemoryPages(region, region_size); region = NULL; region_size = 0; } bool IsInCodeSpace(u8 *ptr) { return ptr >= region && ptr < region + region_size; } // Cannot currently be undone. Will write protect the entire code region. // Start over if you need to change the code (call FreeCodeSpace(), AllocCodeSpace()). void WriteProtect() { WriteProtectMemory(region, region_size, true); } void ResetCodePtr() { SetCodePtr(region); } size_t GetSpaceLeft() const { return region_size - (GetCodePtr() - region); } }; } // namespace #endif // _DOLPHIN_INTEL_CODEGEN_