// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once #include "VideoBackends/D3D12/D3DTexture.h" #include "VideoCommon/FramebufferManagerBase.h" namespace DX12 { // On the GameCube, the game sends a request for the graphics processor to // transfer its internal EFB (Embedded Framebuffer) to an area in GameCube RAM // called the XFB (External Framebuffer). The size and location of the XFB is // decided at the time of the copy, and the format is always YUYV. The video // interface is given a pointer to the XFB, which will be decoded and // displayed on the TV. // // There are two ways for Dolphin to emulate this: // // Real XFB mode: // // Dolphin will behave like the GameCube and encode the EFB to // a portion of GameCube RAM. The emulated video interface will decode the data // for output to the screen. // // Advantages: Behaves exactly like the GameCube. // Disadvantages: Resolution will be limited. // // Virtual XFB mode: // // When a request is made to copy the EFB to an XFB, Dolphin // will remember the RAM location and size of the XFB in a Virtual XFB list. // The video interface will look up the XFB in the list and use the enhanced // data stored there, if available. // // Advantages: Enables high resolution graphics, better than real hardware. // Disadvantages: If the GameCube CPU writes directly to the XFB (which is // possible but uncommon), the Virtual XFB will not capture this information. // There may be multiple XFBs in GameCube RAM. This is the maximum number to // virtualize. struct XFBSource final : public XFBSourceBase { XFBSource(D3DTexture2D* tex, int slices) : m_tex(tex), m_slices(slices) {} ~XFBSource() { m_tex->Release(); } void DecodeToTexture(u32 xfbAddr, u32 fbWidth, u32 fbHeight) override; void CopyEFB(float gamma) override; D3DTexture2D* m_tex; const int m_slices; }; class FramebufferManager final : public FramebufferManagerBase { public: FramebufferManager(); ~FramebufferManager(); static D3DTexture2D*& GetEFBColorTexture(); static D3DTexture2D*& GetEFBDepthTexture(); static D3DTexture2D*& GetResolvedEFBColorTexture(); static D3DTexture2D*& GetResolvedEFBDepthTexture(); static D3DTexture2D*& GetEFBColorTempTexture(); static void SwapReinterpretTexture(); static void ResolveDepthTexture(); static void RestoreEFBRenderTargets(); // Access EFB from CPU static u32 ReadEFBColorAccessCopy(u32 x, u32 y); static float ReadEFBDepthAccessCopy(u32 x, u32 y); static void UpdateEFBColorAccessCopy(u32 x, u32 y, u32 color); static void UpdateEFBDepthAccessCopy(u32 x, u32 y, float depth); static void InitializeEFBAccessCopies(); static void MapEFBColorAccessCopy(); static void MapEFBDepthAccessCopy(); static void InvalidateEFBAccessCopies(); static void DestroyEFBAccessCopies(); private: std::unique_ptr CreateXFBSource(unsigned int target_width, unsigned int target_height, unsigned int layers) override; void GetTargetSize(unsigned int* width, unsigned int* height) override; void CopyToRealXFB(u32 xfbAddr, u32 fbStride, u32 fbHeight, const EFBRectangle& sourceRc, float gamma) override; static struct Efb { D3DTexture2D* color_tex; D3DTexture2D* depth_tex; D3DTexture2D* color_temp_tex; D3DTexture2D* resolved_color_tex; D3DTexture2D* resolved_depth_tex; D3DTexture2D* color_access_resize_tex; ID3D12Resource* color_access_readback_buffer; u8* color_access_readback_map; u32 color_access_readback_pitch; D3DTexture2D* depth_access_resize_tex; ID3D12Resource* depth_access_readback_buffer; u8* depth_access_readback_map; u32 depth_access_readback_pitch; int slices; } m_efb; static unsigned int m_target_width; static unsigned int m_target_height; }; } // namespace DX12