// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include "Common/ChunkFile.h" #include "Common/CommonTypes.h" #include "Common/MathUtil.h" #include "VideoBackends/Software/DebugUtil.h" #include "VideoBackends/Software/EfbInterface.h" #include "VideoBackends/Software/Tev.h" #include "VideoBackends/Software/TextureSampler.h" #include "VideoCommon/BoundingBox.h" #include "VideoCommon/PerfQueryBase.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" #ifdef _DEBUG #define ALLOW_TEV_DUMPS 1 #else #define ALLOW_TEV_DUMPS 0 #endif void Tev::Init() { FixedConstants[0] = 0; FixedConstants[1] = 32; FixedConstants[2] = 64; FixedConstants[3] = 96; FixedConstants[4] = 128; FixedConstants[5] = 159; FixedConstants[6] = 191; FixedConstants[7] = 223; FixedConstants[8] = 255; for (s16& comp : Zero16) { comp = 0; } m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C]; m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C]; m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C]; // prev.rgb m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C]; // prev.aaa m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C]; m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C]; m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C]; // c0.rgb m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C]; // c0.aaa m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C]; m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C]; m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C]; // c1.rgb m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C]; // c1.aaa m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C]; m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C]; m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C]; // c2.rgb m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C]; // c2.aaa m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C]; m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C]; m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C]; // tex.rgb m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C]; // tex.aaa m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C]; m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C]; m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C]; // ras.rgb m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C]; // ras.rgb m_ColorInputLUT[12][RED_INP] = &FixedConstants[8]; m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8]; m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8]; // one m_ColorInputLUT[13][RED_INP] = &FixedConstants[4]; m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4]; m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4]; // half m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C]; m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C]; m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C]; // konst m_ColorInputLUT[15][RED_INP] = &FixedConstants[0]; m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0]; m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0]; // zero m_AlphaInputLUT[0] = &Reg[0][ALP_C]; // prev m_AlphaInputLUT[1] = &Reg[1][ALP_C]; // c0 m_AlphaInputLUT[2] = &Reg[2][ALP_C]; // c1 m_AlphaInputLUT[3] = &Reg[3][ALP_C]; // c2 m_AlphaInputLUT[4] = &TexColor[ALP_C]; // tex m_AlphaInputLUT[5] = &RasColor[ALP_C]; // ras m_AlphaInputLUT[6] = &StageKonst[ALP_C]; // konst m_AlphaInputLUT[7] = &Zero16[ALP_C]; // zero for (int comp = 0; comp < 4; comp++) { m_KonstLUT[0][comp] = &FixedConstants[8]; m_KonstLUT[1][comp] = &FixedConstants[7]; m_KonstLUT[2][comp] = &FixedConstants[6]; m_KonstLUT[3][comp] = &FixedConstants[5]; m_KonstLUT[4][comp] = &FixedConstants[4]; m_KonstLUT[5][comp] = &FixedConstants[3]; m_KonstLUT[6][comp] = &FixedConstants[2]; m_KonstLUT[7][comp] = &FixedConstants[1]; // These are "invalid" values, not meant to be used. On hardware, // they all output zero. for (int i = 8; i < 16; ++i) { m_KonstLUT[i][comp] = &FixedConstants[0]; } if (comp != ALP_C) { m_KonstLUT[12][comp] = &KonstantColors[0][comp]; m_KonstLUT[13][comp] = &KonstantColors[1][comp]; m_KonstLUT[14][comp] = &KonstantColors[2][comp]; m_KonstLUT[15][comp] = &KonstantColors[3][comp]; } m_KonstLUT[16][comp] = &KonstantColors[0][RED_C]; m_KonstLUT[17][comp] = &KonstantColors[1][RED_C]; m_KonstLUT[18][comp] = &KonstantColors[2][RED_C]; m_KonstLUT[19][comp] = &KonstantColors[3][RED_C]; m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C]; m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C]; m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C]; m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C]; m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C]; m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C]; m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C]; m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C]; m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C]; m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C]; m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C]; m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C]; } m_BiasLUT[0] = 0; m_BiasLUT[1] = 128; m_BiasLUT[2] = -128; m_BiasLUT[3] = 0; m_ScaleLShiftLUT[0] = 0; m_ScaleLShiftLUT[1] = 1; m_ScaleLShiftLUT[2] = 2; m_ScaleLShiftLUT[3] = 0; m_ScaleRShiftLUT[0] = 0; m_ScaleRShiftLUT[1] = 0; m_ScaleRShiftLUT[2] = 0; m_ScaleRShiftLUT[3] = 1; } static inline s16 Clamp255(s16 in) { return in > 255 ? 255 : (in < 0 ? 0 : in); } static inline s16 Clamp1024(s16 in) { return in > 1023 ? 1023 : (in < -1024 ? -1024 : in); } void Tev::SetRasColor(int colorChan, int swaptable) { switch (colorChan) { case 0: // Color0 { const u8* color = Color[0]; RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1]; RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2]; swaptable++; RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1]; RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2]; } break; case 1: // Color1 { const u8* color = Color[1]; RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1]; RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2]; swaptable++; RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1]; RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2]; } break; case 5: // alpha bump { for (s16& comp : RasColor) { comp = AlphaBump; } } break; case 6: // alpha bump normalized { const u8 normalized = AlphaBump | AlphaBump >> 5; for (s16& comp : RasColor) { comp = normalized; } } break; default: // zero { for (s16& comp : RasColor) { comp = 0; } } break; } } void Tev::DrawColorRegular(const TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4]) { for (int i = 0; i < 3; i++) { const InputRegType& InputReg = inputs[BLU_C + i]; const u16 c = InputReg.c + (InputReg.c >> 7); s32 temp = InputReg.a * (256 - c) + (InputReg.b * c); temp <<= m_ScaleLShiftLUT[cc.shift]; temp += (cc.shift == 3) ? 0 : (cc.op == 1) ? 127 : 128; temp >>= 8; temp = cc.op ? -temp : temp; s32 result = ((InputReg.d + m_BiasLUT[cc.bias]) << m_ScaleLShiftLUT[cc.shift]) + temp; result = result >> m_ScaleRShiftLUT[cc.shift]; Reg[cc.dest][BLU_C + i] = result; } } void Tev::DrawColorCompare(const TevStageCombiner::ColorCombiner& cc, const InputRegType inputs[4]) { for (int i = BLU_C; i <= RED_C; i++) { switch ((cc.shift << 1) | cc.op | 8) // encoded compare mode { case TEVCMP_R8_GT: Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[i].c : 0); break; case TEVCMP_R8_EQ: Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[i].c : 0); break; case TEVCMP_GR16_GT: { const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0); } break; case TEVCMP_GR16_EQ: { const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0); } break; case TEVCMP_BGR24_GT: { const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0); } break; case TEVCMP_BGR24_EQ: { const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0); } break; case TEVCMP_RGB8_GT: Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a > inputs[i].b) ? inputs[i].c : 0); break; case TEVCMP_RGB8_EQ: Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a == inputs[i].b) ? inputs[i].c : 0); break; } } } void Tev::DrawAlphaRegular(const TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4]) { const InputRegType& InputReg = inputs[ALP_C]; const u16 c = InputReg.c + (InputReg.c >> 7); s32 temp = InputReg.a * (256 - c) + (InputReg.b * c); temp <<= m_ScaleLShiftLUT[ac.shift]; temp += (ac.shift != 3) ? 0 : (ac.op == 1) ? 127 : 128; temp = ac.op ? (-temp >> 8) : (temp >> 8); s32 result = ((InputReg.d + m_BiasLUT[ac.bias]) << m_ScaleLShiftLUT[ac.shift]) + temp; result = result >> m_ScaleRShiftLUT[ac.shift]; Reg[ac.dest][ALP_C] = result; } void Tev::DrawAlphaCompare(const TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4]) { switch ((ac.shift << 1) | ac.op | 8) // encoded compare mode { case TEVCMP_R8_GT: Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[ALP_C].c : 0); break; case TEVCMP_R8_EQ: Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[ALP_C].c : 0); break; case TEVCMP_GR16_GT: { const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0); } break; case TEVCMP_GR16_EQ: { const u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0); } break; case TEVCMP_BGR24_GT: { const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0); } break; case TEVCMP_BGR24_EQ: { const u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a; const u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b; Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0); } break; case TEVCMP_A8_GT: Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[ALP_C].a > inputs[ALP_C].b) ? inputs[ALP_C].c : 0); break; case TEVCMP_A8_EQ: Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[ALP_C].a == inputs[ALP_C].b) ? inputs[ALP_C].c : 0); break; } } static bool AlphaCompare(int alpha, int ref, AlphaTest::CompareMode comp) { switch (comp) { case AlphaTest::ALWAYS: return true; case AlphaTest::NEVER: return false; case AlphaTest::LEQUAL: return alpha <= ref; case AlphaTest::LESS: return alpha < ref; case AlphaTest::GEQUAL: return alpha >= ref; case AlphaTest::GREATER: return alpha > ref; case AlphaTest::EQUAL: return alpha == ref; case AlphaTest::NEQUAL: return alpha != ref; default: return true; } } static bool TevAlphaTest(int alpha) { const bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0); const bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1); switch (bpmem.alpha_test.logic) { case 0: return comp0 && comp1; // and case 1: return comp0 || comp1; // or case 2: return comp0 ^ comp1; // xor case 3: return !(comp0 ^ comp1); // xnor default: return true; } } static inline s32 WrapIndirectCoord(s32 coord, int wrapMode) { switch (wrapMode) { case ITW_OFF: return coord; case ITW_256: return (coord & ((256 << 7) - 1)); case ITW_128: return (coord & ((128 << 7) - 1)); case ITW_64: return (coord & ((64 << 7) - 1)); case ITW_32: return (coord & ((32 << 7) - 1)); case ITW_16: return (coord & ((16 << 7) - 1)); case ITW_0: return 0; default: return 0; } } void Tev::Indirect(unsigned int stageNum, s32 s, s32 t) { const TevStageIndirect& indirect = bpmem.tevind[stageNum]; const u8* indmap = IndirectTex[indirect.bt]; s32 indcoord[3]; // alpha bump select switch (indirect.bs) { case ITBA_OFF: AlphaBump = 0; break; case ITBA_S: AlphaBump = indmap[TextureSampler::ALP_SMP]; break; case ITBA_T: AlphaBump = indmap[TextureSampler::BLU_SMP]; break; case ITBA_U: AlphaBump = indmap[TextureSampler::GRN_SMP]; break; } // bias select const s16 biasValue = indirect.fmt == ITF_8 ? -128 : 1; s16 bias[3]; bias[0] = indirect.bias & 1 ? biasValue : 0; bias[1] = indirect.bias & 2 ? biasValue : 0; bias[2] = indirect.bias & 4 ? biasValue : 0; // format switch (indirect.fmt) { case ITF_8: indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0]; indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1]; indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2]; AlphaBump = AlphaBump & 0xf8; break; case ITF_5: indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0]; indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1]; indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2]; AlphaBump = AlphaBump & 0xe0; break; case ITF_4: indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0]; indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1]; indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2]; AlphaBump = AlphaBump & 0xf0; break; case ITF_3: indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0]; indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1]; indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2]; AlphaBump = AlphaBump & 0xf8; break; default: PanicAlert("Tev::Indirect"); return; } s32 indtevtrans[2] = {0, 0}; // matrix multiply - results might overflow, but we don't care since we only use the lower 24 bits // of the result. const int indmtxid = indirect.mid & 3; if (indmtxid) { const IND_MTX& indmtx = bpmem.indmtx[indmtxid - 1]; const int scale = ((u32)indmtx.col0.s0 << 0) | ((u32)indmtx.col1.s1 << 2) | ((u32)indmtx.col2.s2 << 4); int shift; switch (indirect.mid & 12) { case 0: // matrix values are S0.10, output format is S17.7, so divide by 8 shift = (17 - scale); indtevtrans[0] = (indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] + indmtx.col2.me * indcoord[2]) >> 3; indtevtrans[1] = (indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] + indmtx.col2.mf * indcoord[2]) >> 3; break; case 4: // s matrix // s is S17.7, matrix elements are divided by 256, output is S17.7, so divide by 256. - TODO: // Maybe, since s is actually stored as S24, we should divide by 256*64? shift = (17 - scale); indtevtrans[0] = s * indcoord[0] / 256; indtevtrans[1] = t * indcoord[0] / 256; break; case 8: // t matrix shift = (17 - scale); indtevtrans[0] = s * indcoord[1] / 256; indtevtrans[1] = t * indcoord[1] / 256; break; default: return; } indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift; indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift; } if (indirect.fb_addprev) { TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]); TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]); } else { TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]); TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]); } } void Tev::Draw() { ASSERT(Position[0] >= 0 && Position[0] < EFB_WIDTH); ASSERT(Position[1] >= 0 && Position[1] < EFB_HEIGHT); INCSTAT(stats.thisFrame.tevPixelsIn); // initial color values for (int i = 0; i < 4; i++) { Reg[i][RED_C] = PixelShaderManager::constants.colors[i][0]; Reg[i][GRN_C] = PixelShaderManager::constants.colors[i][1]; Reg[i][BLU_C] = PixelShaderManager::constants.colors[i][2]; Reg[i][ALP_C] = PixelShaderManager::constants.colors[i][3]; } for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++) { const int stageNum2 = stageNum >> 1; const int stageOdd = stageNum & 1; const u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum); const u32 texmap = bpmem.tevindref.getTexMap(stageNum); const TEXSCALE& texscale = bpmem.texscale[stageNum2]; const s32 scaleS = stageOdd ? texscale.ss1 : texscale.ss0; const s32 scaleT = stageOdd ? texscale.ts1 : texscale.ts0; TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT, IndirectLod[stageNum], IndirectLinear[stageNum], texmap, IndirectTex[stageNum]); #if ALLOW_TEV_DUMPS if (g_ActiveConfig.bDumpTevStages) { u8 stage[4] = {IndirectTex[stageNum][TextureSampler::ALP_SMP], IndirectTex[stageNum][TextureSampler::BLU_SMP], IndirectTex[stageNum][TextureSampler::GRN_SMP], 255}; DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum); } #endif } for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++) { const int stageNum2 = stageNum >> 1; const int stageOdd = stageNum & 1; const TwoTevStageOrders& order = bpmem.tevorders[stageNum2]; const TevKSel& kSel = bpmem.tevksel[stageNum2]; // stage combiners const TevStageCombiner::ColorCombiner& cc = bpmem.combiners[stageNum].colorC; const TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[stageNum].alphaC; const int texcoordSel = order.getTexCoord(stageOdd); const int texmap = order.getTexMap(stageOdd); Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t); // sample texture if (order.getEnable(stageOdd)) { // RGBA u8 texel[4]; TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum], texmap, texel); #if ALLOW_TEV_DUMPS if (g_ActiveConfig.bDumpTevTextureFetches) DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum); #endif int swaptable = ac.tswap * 2; TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1]; TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2]; swaptable++; TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1]; TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2]; } // set konst for this stage const int kc = kSel.getKC(stageOdd); const int ka = kSel.getKA(stageOdd); StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]); StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]); StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]); StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]); // set color SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2); // combine inputs InputRegType inputs[4]; for (int i = 0; i < 3; i++) { inputs[BLU_C + i].a = *m_ColorInputLUT[cc.a][i]; inputs[BLU_C + i].b = *m_ColorInputLUT[cc.b][i]; inputs[BLU_C + i].c = *m_ColorInputLUT[cc.c][i]; inputs[BLU_C + i].d = *m_ColorInputLUT[cc.d][i]; } inputs[ALP_C].a = *m_AlphaInputLUT[ac.a]; inputs[ALP_C].b = *m_AlphaInputLUT[ac.b]; inputs[ALP_C].c = *m_AlphaInputLUT[ac.c]; inputs[ALP_C].d = *m_AlphaInputLUT[ac.d]; if (cc.bias != 3) DrawColorRegular(cc, inputs); else DrawColorCompare(cc, inputs); if (cc.clamp) { Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]); Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]); Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]); } else { Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]); Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]); Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]); } if (ac.bias != 3) DrawAlphaRegular(ac, inputs); else DrawAlphaCompare(ac, inputs); if (ac.clamp) Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]); else Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]); #if ALLOW_TEV_DUMPS if (g_ActiveConfig.bDumpTevStages) { u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]}; DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum); } #endif } // convert to 8 bits per component // the results of the last tev stage are put onto the screen, // regardless of the used destination register - TODO: Verify! const u32 color_index = bpmem.combiners[bpmem.genMode.numtevstages].colorC.dest; const u32 alpha_index = bpmem.combiners[bpmem.genMode.numtevstages].alphaC.dest; u8 output[4] = {(u8)Reg[alpha_index][ALP_C], (u8)Reg[color_index][BLU_C], (u8)Reg[color_index][GRN_C], (u8)Reg[color_index][RED_C]}; if (!TevAlphaTest(output[ALP_C])) return; // z texture if (bpmem.ztex2.op) { u32 ztex = bpmem.ztex1.bias; switch (bpmem.ztex2.type) { case 0: // 8 bit ztex += TexColor[ALP_C]; break; case 1: // 16 bit ztex += TexColor[ALP_C] << 8 | TexColor[RED_C]; break; case 2: // 24 bit ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C]; break; } if (bpmem.ztex2.op == ZTEXTURE_ADD) ztex += Position[2]; Position[2] = ztex & 0x00ffffff; } // fog if (bpmem.fog.c_proj_fsel.fsel) { float ze; if (bpmem.fog.c_proj_fsel.proj == 0) { // perspective // ze = A/(B - (Zs >> B_SHF)) const s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift); // in addition downscale magnitude and zs to 0.24 bits ze = (bpmem.fog.GetA() * 16777215.0f) / static_cast(denom); } else { // orthographic // ze = a*Zs // in addition downscale zs to 0.24 bits ze = bpmem.fog.GetA() * (static_cast(Position[2]) / 16777215.0f); } if (bpmem.fogRange.Base.Enabled) { // TODO: This is untested and should definitely be checked against real hw. // - No idea if offset is really normalized against the viewport width or against the // projection matrix or yet something else // - scaling of the "k" coefficient isn't clear either. // First, calculate the offset from the viewport center (normalized to 0..1) const float offset = (Position[0] - (static_cast(bpmem.fogRange.Base.Center.Value()) - 342)) / static_cast(xfmem.viewport.wd); // Based on that, choose the index such that points which are far away from the z-axis use the // 10th "k" value and such that central points use the first value. float floatindex = 9.f - std::abs(offset) * 9.f; floatindex = MathUtil::Clamp(floatindex, 0.f, 9.f); // TODO: This shouldn't be necessary! // Get the two closest integer indices, look up the corresponding samples const int indexlower = (int)floor(floatindex); const int indexupper = indexlower + 1; // Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog // is too strong without the factor) const float klower = bpmem.fogRange.K[indexlower / 2].GetValue(indexlower % 2) * 4.f; const float kupper = bpmem.fogRange.K[indexupper / 2].GetValue(indexupper % 2) * 4.f; // linearly interpolate the samples and multiple ze by the resulting adjustment factor const float factor = indexupper - floatindex; const float k = klower * factor + kupper * (1.f - factor); const float x_adjust = sqrt(offset * offset + k * k) / k; ze *= x_adjust; // NOTE: This is basically dividing by a cosine (hidden behind // GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b } ze -= bpmem.fog.GetC(); // clamp 0 to 1 float fog = MathUtil::Clamp(ze, 0.f, 1.f); switch (bpmem.fog.c_proj_fsel.fsel) { case 4: // exp fog = 1.0f - pow(2.0f, -8.0f * fog); break; case 5: // exp2 fog = 1.0f - pow(2.0f, -8.0f * fog * fog); break; case 6: // backward exp fog = 1.0f - fog; fog = pow(2.0f, -8.0f * fog); break; case 7: // backward exp2 fog = 1.0f - fog; fog = pow(2.0f, -8.0f * fog * fog); break; } // lerp from output to fog color const u32 fogInt = (u32)(fog * 256); const u32 invFog = 256 - fogInt; output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8; output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8; output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8; } const bool late_ztest = !bpmem.zcontrol.early_ztest || !g_ActiveConfig.bZComploc; if (late_ztest && bpmem.zmode.testenable) { // TODO: Check against hw if these values get incremented even if depth testing is disabled EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT); if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2])) return; EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT); } // branchless bounding box update BoundingBox::coords[BoundingBox::LEFT] = std::min((u16)Position[0], BoundingBox::coords[BoundingBox::LEFT]); BoundingBox::coords[BoundingBox::RIGHT] = std::max((u16)Position[0], BoundingBox::coords[BoundingBox::RIGHT]); BoundingBox::coords[BoundingBox::TOP] = std::min((u16)Position[1], BoundingBox::coords[BoundingBox::TOP]); BoundingBox::coords[BoundingBox::BOTTOM] = std::max((u16)Position[1], BoundingBox::coords[BoundingBox::BOTTOM]); #if ALLOW_TEV_DUMPS if (g_ActiveConfig.bDumpTevStages) { for (u32 i = 0; i < bpmem.genMode.numindstages; ++i) DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect"); for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i) DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage"); } if (g_ActiveConfig.bDumpTevTextureFetches) { for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i) { TwoTevStageOrders& order = bpmem.tevorders[i >> 1]; if (order.getEnable(i & 1)) DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch"); } } #endif INCSTAT(stats.thisFrame.tevPixelsOut); EfbInterface::IncPerfCounterQuadCount(PQ_BLEND_INPUT); EfbInterface::BlendTev(Position[0], Position[1], output); } void Tev::SetRegColor(int reg, int comp, s16 color) { KonstantColors[reg][comp] = color; }