// Copyright 2009 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include #include "Common/CommonTypes.h" #include "Common/FileUtil.h" #include "Common/Logging/Log.h" #include "DiscIO/DiscScrubber.h" #include "DiscIO/Filesystem.h" #include "DiscIO/Volume.h" #include "DiscIO/VolumeCreator.h" namespace DiscIO { #define CLUSTER_SIZE 0x8000 DiscScrubber::DiscScrubber() = default; DiscScrubber::~DiscScrubber() = default; bool DiscScrubber::SetupScrub(const std::string& filename, int block_size) { m_filename = filename; m_block_size = block_size; if (CLUSTER_SIZE % m_block_size != 0) { ERROR_LOG(DISCIO, "Block size %i is not a factor of 0x8000, scrubbing not possible", m_block_size); return false; } m_disc = CreateVolumeFromFilename(filename); if (!m_disc) return false; m_file_size = m_disc->GetSize(); u32 numClusters = (u32)(m_file_size / CLUSTER_SIZE); // Warn if not DVD5 or DVD9 size if (numClusters != 0x23048 && numClusters != 0x46090) { WARN_LOG(DISCIO, "%s is not a standard sized Wii disc! (%x blocks)", filename.c_str(), numClusters); } // Table of free blocks m_free_table.resize(numClusters, 1); // Fill out table of free blocks const bool success = ParseDisc(); // Done with it; need it closed for the next part m_disc.reset(); m_block_count = 0; m_is_scrubbing = success; return success; } size_t DiscScrubber::GetNextBlock(File::IOFile& in, u8* buffer) { const u64 current_offset = m_block_count * m_block_size; const u64 i = current_offset / CLUSTER_SIZE; size_t read_bytes = 0; if (m_is_scrubbing && m_free_table[i]) { DEBUG_LOG(DISCIO, "Freeing 0x%016" PRIx64, current_offset); std::fill(buffer, buffer + m_block_size, 0x00); in.Seek(m_block_size, SEEK_CUR); read_bytes = m_block_size; } else { DEBUG_LOG(DISCIO, "Used 0x%016" PRIx64, current_offset); in.ReadArray(buffer, m_block_size, &read_bytes); } m_block_count++; return read_bytes; } void DiscScrubber::MarkAsUsed(u64 offset, u64 size) { u64 current_offset = offset; const u64 end_offset = current_offset + size; DEBUG_LOG(DISCIO, "Marking 0x%016" PRIx64 " - 0x%016" PRIx64 " as used", offset, end_offset); while (current_offset < end_offset && current_offset < m_file_size) { m_free_table[current_offset / CLUSTER_SIZE] = 0; current_offset += CLUSTER_SIZE; } } // Compensate for 0x400 (SHA-1) per 0x8000 (cluster), and round to whole clusters void DiscScrubber::MarkAsUsedE(u64 partition_data_offset, u64 offset, u64 size) { u64 first_cluster_start = offset / 0x7c00 * CLUSTER_SIZE + partition_data_offset; u64 last_cluster_end; if (size == 0) { // Without this special case, a size of 0 can be rounded to 1 cluster instead of 0 last_cluster_end = first_cluster_start; } else { last_cluster_end = ((offset + size - 1) / 0x7c00 + 1) * CLUSTER_SIZE + partition_data_offset; } MarkAsUsed(first_cluster_start, last_cluster_end - first_cluster_start); } // Helper functions for reading the BE volume bool DiscScrubber::ReadFromVolume(u64 offset, u32& buffer, bool decrypt) { return m_disc->ReadSwapped(offset, &buffer, decrypt); } bool DiscScrubber::ReadFromVolume(u64 offset, u64& buffer, bool decrypt) { u32 temp_buffer; if (!m_disc->ReadSwapped(offset, &temp_buffer, decrypt)) return false; buffer = static_cast(temp_buffer) << 2; return true; } bool DiscScrubber::ParseDisc() { // Mark the header as used - it's mostly 0s anyways MarkAsUsed(0, 0x50000); for (int x = 0; x < 4; x++) { if (!ReadFromVolume(0x40000 + (x * 8) + 0, m_partition_group[x].num_partitions, false) || !ReadFromVolume(0x40000 + (x * 8) + 4, m_partition_group[x].partitions_offset, false)) { return false; } // Read all partitions for (u32 i = 0; i < m_partition_group[x].num_partitions; i++) { Partition partition; partition.group_number = x; partition.number = i; if (!ReadFromVolume(m_partition_group[x].partitions_offset + (i * 8) + 0, partition.offset, false) || !ReadFromVolume(m_partition_group[x].partitions_offset + (i * 8) + 4, partition.type, false) || !ReadFromVolume(partition.offset + 0x2a4, partition.header.tmd_size, false) || !ReadFromVolume(partition.offset + 0x2a8, partition.header.tmd_offset, false) || !ReadFromVolume(partition.offset + 0x2ac, partition.header.cert_chain_size, false) || !ReadFromVolume(partition.offset + 0x2b0, partition.header.cert_chain_offset, false) || !ReadFromVolume(partition.offset + 0x2b4, partition.header.h3_offset, false) || !ReadFromVolume(partition.offset + 0x2b8, partition.header.data_offset, false) || !ReadFromVolume(partition.offset + 0x2bc, partition.header.data_size, false)) { return false; } m_partition_group[x].partitions.push_back(partition); } for (auto& partition : m_partition_group[x].partitions) { const PartitionHeader& header = partition.header; MarkAsUsed(partition.offset, 0x2c0); MarkAsUsed(partition.offset + header.tmd_offset, header.tmd_size); MarkAsUsed(partition.offset + header.cert_chain_offset, header.cert_chain_size); MarkAsUsed(partition.offset + header.h3_offset, 0x18000); // This would mark the whole (encrypted) data area // we need to parse FST and other crap to find what's free within it! // MarkAsUsed(partition.offset + header.data_offset, header.data_size); // Parse Data! This is where the big gain is if (!ParsePartitionData(partition)) return false; } } return true; } // Operations dealing with encrypted space are done here - the volume is swapped to allow this bool DiscScrubber::ParsePartitionData(Partition& partition) { bool parsed_ok = true; // Switch out the main volume temporarily std::unique_ptr old_volume; m_disc.swap(old_volume); // Ready some stuff m_disc = CreateVolumeFromFilename(m_filename, partition.group_number, partition.number); if (m_disc == nullptr) { ERROR_LOG(DISCIO, "Failed to create volume from file %s", m_filename.c_str()); m_disc.swap(old_volume); return false; } std::unique_ptr filesystem(CreateFileSystem(m_disc.get())); if (!filesystem) { ERROR_LOG(DISCIO, "Failed to create filesystem for group %d partition %u", partition.group_number, partition.number); parsed_ok = false; } else { // Mark things as used which are not in the filesystem // Header, Header Information, Apploader parsed_ok = parsed_ok && ReadFromVolume(0x2440 + 0x14, partition.header.apploader_size, true); parsed_ok = parsed_ok && ReadFromVolume(0x2440 + 0x18, partition.header.apploader_trailer_size, true); MarkAsUsedE(partition.offset + partition.header.data_offset, 0, 0x2440 + partition.header.apploader_size + partition.header.apploader_trailer_size); // DOL partition.header.dol_offset = filesystem->GetBootDOLOffset(); partition.header.dol_size = filesystem->GetBootDOLSize(partition.header.dol_offset); parsed_ok = parsed_ok && partition.header.dol_offset && partition.header.dol_size; MarkAsUsedE(partition.offset + partition.header.data_offset, partition.header.dol_offset, partition.header.dol_size); // FST parsed_ok = parsed_ok && ReadFromVolume(0x424, partition.header.fst_offset, true); parsed_ok = parsed_ok && ReadFromVolume(0x428, partition.header.fst_size, true); MarkAsUsedE(partition.offset + partition.header.data_offset, partition.header.fst_offset, partition.header.fst_size); // Go through the filesystem and mark entries as used for (SFileInfo file : filesystem->GetFileList()) { DEBUG_LOG(DISCIO, "%s", file.m_FullPath.empty() ? "/" : file.m_FullPath.c_str()); if ((file.m_NameOffset & 0x1000000) == 0) { MarkAsUsedE(partition.offset + partition.header.data_offset, file.m_Offset, file.m_FileSize); } } } // Swap back m_disc.swap(old_volume); return parsed_ok; } } // namespace DiscIO