///////////////////////////////////////////////////////////////////////////// // Name: src/common/image.cpp // Purpose: wxImage // Author: Robert Roebling // RCS-ID: $Id: image.cpp 53245 2008-04-17 15:10:20Z RR $ // Copyright: (c) Robert Roebling // Licence: wxWindows licence ///////////////////////////////////////////////////////////////////////////// // For compilers that support precompilation, includes "wx.h". #include "wx/wxprec.h" #ifdef __BORLANDC__ #pragma hdrstop #endif #if wxUSE_IMAGE #include "wx/image.h" #ifndef WX_PRECOMP #include "wx/log.h" #include "wx/hash.h" #include "wx/utils.h" #include "wx/math.h" #include "wx/module.h" #include "wx/palette.h" #include "wx/intl.h" #endif #include "wx/filefn.h" #include "wx/wfstream.h" #include "wx/xpmdecod.h" // For memcpy #include // make the code compile with either wxFile*Stream or wxFFile*Stream: #define HAS_FILE_STREAMS (wxUSE_STREAMS && (wxUSE_FILE || wxUSE_FFILE)) #if HAS_FILE_STREAMS #if wxUSE_FFILE typedef wxFFileInputStream wxImageFileInputStream; typedef wxFFileOutputStream wxImageFileOutputStream; #elif wxUSE_FILE typedef wxFileInputStream wxImageFileInputStream; typedef wxFileOutputStream wxImageFileOutputStream; #endif // wxUSE_FILE/wxUSE_FFILE #endif // HAS_FILE_STREAMS #if wxUSE_VARIANT IMPLEMENT_VARIANT_OBJECT_EXPORTED_SHALLOWCMP(wxImage,WXDLLEXPORT) #endif //----------------------------------------------------------------------------- // wxImage //----------------------------------------------------------------------------- class wxImageRefData: public wxObjectRefData { public: wxImageRefData(); virtual ~wxImageRefData(); int m_width; int m_height; unsigned char *m_data; bool m_hasMask; unsigned char m_maskRed,m_maskGreen,m_maskBlue; // alpha channel data, may be NULL for the formats without alpha support unsigned char *m_alpha; bool m_ok; // if true, m_data is pointer to static data and shouldn't be freed bool m_static; // same as m_static but for m_alpha bool m_staticAlpha; #if wxUSE_PALETTE wxPalette m_palette; #endif // wxUSE_PALETTE wxArrayString m_optionNames; wxArrayString m_optionValues; DECLARE_NO_COPY_CLASS(wxImageRefData) }; wxImageRefData::wxImageRefData() { m_width = 0; m_height = 0; m_data = m_alpha = (unsigned char *) NULL; m_maskRed = 0; m_maskGreen = 0; m_maskBlue = 0; m_hasMask = false; m_ok = false; m_static = m_staticAlpha = false; } wxImageRefData::~wxImageRefData() { if ( !m_static ) free( m_data ); if ( !m_staticAlpha ) free( m_alpha ); } wxList wxImage::sm_handlers; wxImage wxNullImage; //----------------------------------------------------------------------------- #define M_IMGDATA wx_static_cast(wxImageRefData*, m_refData) IMPLEMENT_DYNAMIC_CLASS(wxImage, wxObject) wxImage::wxImage( int width, int height, bool clear ) { Create( width, height, clear ); } wxImage::wxImage( int width, int height, unsigned char* data, bool static_data ) { Create( width, height, data, static_data ); } wxImage::wxImage( int width, int height, unsigned char* data, unsigned char* alpha, bool static_data ) { Create( width, height, data, alpha, static_data ); } wxImage::wxImage( const wxString& name, long type, int index ) { LoadFile( name, type, index ); } wxImage::wxImage( const wxString& name, const wxString& mimetype, int index ) { LoadFile( name, mimetype, index ); } #if wxUSE_STREAMS wxImage::wxImage( wxInputStream& stream, long type, int index ) { LoadFile( stream, type, index ); } wxImage::wxImage( wxInputStream& stream, const wxString& mimetype, int index ) { LoadFile( stream, mimetype, index ); } #endif // wxUSE_STREAMS wxImage::wxImage(const char* const* xpmData) { Create(xpmData); } bool wxImage::Create(const char* const* xpmData) { #if wxUSE_XPM UnRef(); wxXPMDecoder decoder; (*this) = decoder.ReadData(xpmData); return Ok(); #else return false; #endif } bool wxImage::Create( int width, int height, bool clear ) { UnRef(); m_refData = new wxImageRefData(); M_IMGDATA->m_data = (unsigned char *) malloc( width*height*3 ); if (!M_IMGDATA->m_data) { UnRef(); return false; } if (clear) memset(M_IMGDATA->m_data, 0, width*height*3); M_IMGDATA->m_width = width; M_IMGDATA->m_height = height; M_IMGDATA->m_ok = true; return true; } bool wxImage::Create( int width, int height, unsigned char* data, bool static_data ) { UnRef(); wxCHECK_MSG( data, false, _T("NULL data in wxImage::Create") ); m_refData = new wxImageRefData(); M_IMGDATA->m_data = data; M_IMGDATA->m_width = width; M_IMGDATA->m_height = height; M_IMGDATA->m_ok = true; M_IMGDATA->m_static = static_data; return true; } bool wxImage::Create( int width, int height, unsigned char* data, unsigned char* alpha, bool static_data ) { UnRef(); wxCHECK_MSG( data, false, _T("NULL data in wxImage::Create") ); m_refData = new wxImageRefData(); M_IMGDATA->m_data = data; M_IMGDATA->m_alpha = alpha; M_IMGDATA->m_width = width; M_IMGDATA->m_height = height; M_IMGDATA->m_ok = true; M_IMGDATA->m_static = static_data; return true; } void wxImage::Destroy() { UnRef(); } wxObjectRefData* wxImage::CreateRefData() const { return new wxImageRefData; } wxObjectRefData* wxImage::CloneRefData(const wxObjectRefData* that) const { const wxImageRefData* refData = wx_static_cast(const wxImageRefData*, that); wxCHECK_MSG(refData->m_ok, NULL, wxT("invalid image") ); wxImageRefData* refData_new = new wxImageRefData; refData_new->m_width = refData->m_width; refData_new->m_height = refData->m_height; refData_new->m_maskRed = refData->m_maskRed; refData_new->m_maskGreen = refData->m_maskGreen; refData_new->m_maskBlue = refData->m_maskBlue; refData_new->m_hasMask = refData->m_hasMask; refData_new->m_ok = true; unsigned size = unsigned(refData->m_width) * unsigned(refData->m_height); if (refData->m_alpha != NULL) { refData_new->m_alpha = (unsigned char*)malloc(size); memcpy(refData_new->m_alpha, refData->m_alpha, size); } size *= 3; refData_new->m_data = (unsigned char*)malloc(size); memcpy(refData_new->m_data, refData->m_data, size); #if wxUSE_PALETTE refData_new->m_palette = refData->m_palette; #endif refData_new->m_optionNames = refData->m_optionNames; refData_new->m_optionValues = refData->m_optionValues; return refData_new; } wxImage wxImage::Copy() const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); image.m_refData = CloneRefData(m_refData); return image; } wxImage wxImage::ShrinkBy( int xFactor , int yFactor ) const { if( xFactor == 1 && yFactor == 1 ) return *this; wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); // can't scale to/from 0 size wxCHECK_MSG( (xFactor > 0) && (yFactor > 0), image, wxT("invalid new image size") ); long old_height = M_IMGDATA->m_height, old_width = M_IMGDATA->m_width; wxCHECK_MSG( (old_height > 0) && (old_width > 0), image, wxT("invalid old image size") ); long width = old_width / xFactor ; long height = old_height / yFactor ; image.Create( width, height, false ); char unsigned *data = image.GetData(); wxCHECK_MSG( data, image, wxT("unable to create image") ); bool hasMask = false ; unsigned char maskRed = 0; unsigned char maskGreen = 0; unsigned char maskBlue =0 ; unsigned char *source_data = M_IMGDATA->m_data; unsigned char *target_data = data; unsigned char *source_alpha = 0 ; unsigned char *target_alpha = 0 ; if (M_IMGDATA->m_hasMask) { hasMask = true ; maskRed = M_IMGDATA->m_maskRed; maskGreen = M_IMGDATA->m_maskGreen; maskBlue =M_IMGDATA->m_maskBlue ; image.SetMaskColour( M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue ); } else { source_alpha = M_IMGDATA->m_alpha ; if ( source_alpha ) { image.SetAlpha() ; target_alpha = image.GetAlpha() ; } } for (long y = 0; y < height; y++) { for (long x = 0; x < width; x++) { unsigned long avgRed = 0 ; unsigned long avgGreen = 0; unsigned long avgBlue = 0; unsigned long avgAlpha = 0 ; unsigned long counter = 0 ; // determine average for ( int y1 = 0 ; y1 < yFactor ; ++y1 ) { long y_offset = (y * yFactor + y1) * old_width; for ( int x1 = 0 ; x1 < xFactor ; ++x1 ) { unsigned char *pixel = source_data + 3 * ( y_offset + x * xFactor + x1 ) ; unsigned char red = pixel[0] ; unsigned char green = pixel[1] ; unsigned char blue = pixel[2] ; unsigned char alpha = 255 ; if ( source_alpha ) alpha = *(source_alpha + y_offset + x * xFactor + x1) ; if ( !hasMask || red != maskRed || green != maskGreen || blue != maskBlue ) { if ( alpha > 0 ) { avgRed += red ; avgGreen += green ; avgBlue += blue ; } avgAlpha += alpha ; counter++ ; } } } if ( counter == 0 ) { *(target_data++) = M_IMGDATA->m_maskRed ; *(target_data++) = M_IMGDATA->m_maskGreen ; *(target_data++) = M_IMGDATA->m_maskBlue ; } else { if ( source_alpha ) *(target_alpha++) = (unsigned char)(avgAlpha / counter ) ; *(target_data++) = (unsigned char)(avgRed / counter); *(target_data++) = (unsigned char)(avgGreen / counter); *(target_data++) = (unsigned char)(avgBlue / counter); } } } // In case this is a cursor, make sure the hotspot is scaled accordingly: if ( HasOption(wxIMAGE_OPTION_CUR_HOTSPOT_X) ) image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, (GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_X))/xFactor); if ( HasOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y) ) image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, (GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y))/yFactor); return image; } wxImage wxImage::Scale( int width, int height, int quality ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); // can't scale to/from 0 size wxCHECK_MSG( (width > 0) && (height > 0), image, wxT("invalid new image size") ); long old_height = M_IMGDATA->m_height, old_width = M_IMGDATA->m_width; wxCHECK_MSG( (old_height > 0) && (old_width > 0), image, wxT("invalid old image size") ); // If the image's new width and height are the same as the original, no // need to waste time or CPU cycles if ( old_width == width && old_height == height ) return *this; // Scale the image (...or more appropriately, resample the image) using // either the high-quality or normal method as specified if ( quality == wxIMAGE_QUALITY_HIGH ) { // We need to check whether we are downsampling or upsampling the image if ( width < old_width && height < old_height ) { // Downsample the image using the box averaging method for best results image = ResampleBox(width, height); } else { // For upsampling or other random/wierd image dimensions we'll use // a bicubic b-spline scaling method image = ResampleBicubic(width, height); } } else // Default scaling method == simple pixel replication { if ( old_width % width == 0 && old_width >= width && old_height % height == 0 && old_height >= height ) { return ShrinkBy( old_width / width , old_height / height ) ; } image.Create( width, height, false ); unsigned char *data = image.GetData(); wxCHECK_MSG( data, image, wxT("unable to create image") ); unsigned char *source_data = M_IMGDATA->m_data; unsigned char *target_data = data; unsigned char *source_alpha = 0 ; unsigned char *target_alpha = 0 ; if ( !M_IMGDATA->m_hasMask ) { source_alpha = M_IMGDATA->m_alpha ; if ( source_alpha ) { image.SetAlpha() ; target_alpha = image.GetAlpha() ; } } long x_delta = (old_width<<16) / width; long y_delta = (old_height<<16) / height; unsigned char* dest_pixel = target_data; long y = 0; for ( long j = 0; j < height; j++ ) { unsigned char* src_line = &source_data[(y>>16)*old_width*3]; unsigned char* src_alpha_line = source_alpha ? &source_alpha[(y>>16)*old_width] : 0 ; long x = 0; for ( long i = 0; i < width; i++ ) { unsigned char* src_pixel = &src_line[(x>>16)*3]; unsigned char* src_alpha_pixel = source_alpha ? &src_alpha_line[(x>>16)] : 0 ; dest_pixel[0] = src_pixel[0]; dest_pixel[1] = src_pixel[1]; dest_pixel[2] = src_pixel[2]; dest_pixel += 3; if ( source_alpha ) *(target_alpha++) = *src_alpha_pixel ; x += x_delta; } y += y_delta; } } // If the original image has a mask, apply the mask to the new image if (M_IMGDATA->m_hasMask) { image.SetMaskColour( M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue ); } // In case this is a cursor, make sure the hotspot is scaled accordingly: if ( HasOption(wxIMAGE_OPTION_CUR_HOTSPOT_X) ) image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_X, (GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_X)*width)/old_width); if ( HasOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y) ) image.SetOption(wxIMAGE_OPTION_CUR_HOTSPOT_Y, (GetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y)*height)/old_height); return image; } wxImage wxImage::ResampleBox(int width, int height) const { // This function implements a simple pre-blur/box averaging method for // downsampling that gives reasonably smooth results To scale the image // down we will need to gather a grid of pixels of the size of the scale // factor in each direction and then do an averaging of the pixels. wxImage ret_image(width, height, false); const double scale_factor_x = double(M_IMGDATA->m_width) / width; const double scale_factor_y = double(M_IMGDATA->m_height) / height; const int scale_factor_x_2 = (int)(scale_factor_x / 2); const int scale_factor_y_2 = (int)(scale_factor_y / 2); unsigned char* src_data = M_IMGDATA->m_data; unsigned char* src_alpha = M_IMGDATA->m_alpha; unsigned char* dst_data = ret_image.GetData(); unsigned char* dst_alpha = NULL; if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } int averaged_pixels, src_pixel_index; double sum_r, sum_g, sum_b, sum_a; for ( int y = 0; y < height; y++ ) // Destination image - Y direction { // Source pixel in the Y direction int src_y = (int)(y * scale_factor_y); for ( int x = 0; x < width; x++ ) // Destination image - X direction { // Source pixel in the X direction int src_x = (int)(x * scale_factor_x); // Box of pixels to average averaged_pixels = 0; sum_r = sum_g = sum_b = sum_a = 0.0; for ( int j = int(src_y - scale_factor_y/2.0 + 1); j <= int(src_y + scale_factor_y_2); j++ ) { // We don't care to average pixels that don't exist (edges) if ( j < 0 || j > M_IMGDATA->m_height - 1 ) continue; for ( int i = int(src_x - scale_factor_x/2.0 + 1); i <= src_x + scale_factor_x_2; i++ ) { // Don't average edge pixels if ( i < 0 || i > M_IMGDATA->m_width - 1 ) continue; // Calculate the actual index in our source pixels src_pixel_index = j * M_IMGDATA->m_width + i; sum_r += src_data[src_pixel_index * 3 + 0]; sum_g += src_data[src_pixel_index * 3 + 1]; sum_b += src_data[src_pixel_index * 3 + 2]; if ( src_alpha ) sum_a += src_alpha[src_pixel_index]; averaged_pixels++; } } // Calculate the average from the sum and number of averaged pixels dst_data[0] = (unsigned char)(sum_r / averaged_pixels); dst_data[1] = (unsigned char)(sum_g / averaged_pixels); dst_data[2] = (unsigned char)(sum_b / averaged_pixels); dst_data += 3; if ( src_alpha ) *dst_alpha++ = (unsigned char)(sum_a / averaged_pixels); } } return ret_image; } // The following two local functions are for the B-spline weighting of the // bicubic sampling algorithm static inline double spline_cube(double value) { return value <= 0.0 ? 0.0 : value * value * value; } static inline double spline_weight(double value) { return (spline_cube(value + 2) - 4 * spline_cube(value + 1) + 6 * spline_cube(value) - 4 * spline_cube(value - 1)) / 6; } // This is the bicubic resampling algorithm wxImage wxImage::ResampleBicubic(int width, int height) const { // This function implements a Bicubic B-Spline algorithm for resampling. // This method is certainly a little slower than wxImage's default pixel // replication method, however for most reasonably sized images not being // upsampled too much on a fairly average CPU this difference is hardly // noticeable and the results are far more pleasing to look at. // // This particular bicubic algorithm does pixel weighting according to a // B-Spline that basically implements a Gaussian bell-like weighting // kernel. Because of this method the results may appear a bit blurry when // upsampling by large factors. This is basically because a slight // gaussian blur is being performed to get the smooth look of the upsampled // image. // Edge pixels: 3-4 possible solutions // - (Wrap/tile) Wrap the image, take the color value from the opposite // side of the image. // - (Mirror) Duplicate edge pixels, so that pixel at coordinate (2, n), // where n is nonpositive, will have the value of (2, 1). // - (Ignore) Simply ignore the edge pixels and apply the kernel only to // pixels which do have all neighbours. // - (Clamp) Choose the nearest pixel along the border. This takes the // border pixels and extends them out to infinity. // // NOTE: below the y_offset and x_offset variables are being set for edge // pixels using the "Mirror" method mentioned above wxImage ret_image; ret_image.Create(width, height, false); unsigned char* src_data = M_IMGDATA->m_data; unsigned char* src_alpha = M_IMGDATA->m_alpha; unsigned char* dst_data = ret_image.GetData(); unsigned char* dst_alpha = NULL; if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } for ( int dsty = 0; dsty < height; dsty++ ) { // We need to calculate the source pixel to interpolate from - Y-axis double srcpixy = double(dsty * M_IMGDATA->m_height) / height; double dy = srcpixy - (int)srcpixy; for ( int dstx = 0; dstx < width; dstx++ ) { // X-axis of pixel to interpolate from double srcpixx = double(dstx * M_IMGDATA->m_width) / width; double dx = srcpixx - (int)srcpixx; // Sums for each color channel double sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; // Here we actually determine the RGBA values for the destination pixel for ( int k = -1; k <= 2; k++ ) { // Y offset int y_offset = srcpixy + k < 0.0 ? 0 : srcpixy + k >= M_IMGDATA->m_height ? M_IMGDATA->m_height - 1 : (int)(srcpixy + k); // Loop across the X axis for ( int i = -1; i <= 2; i++ ) { // X offset int x_offset = srcpixx + i < 0.0 ? 0 : srcpixx + i >= M_IMGDATA->m_width ? M_IMGDATA->m_width - 1 : (int)(srcpixx + i); // Calculate the exact position where the source data // should be pulled from based on the x_offset and y_offset int src_pixel_index = y_offset*M_IMGDATA->m_width + x_offset; // Calculate the weight for the specified pixel according // to the bicubic b-spline kernel we're using for // interpolation double pixel_weight = spline_weight(i - dx)*spline_weight(k - dy); // Create a sum of all velues for each color channel // adjusted for the pixel's calculated weight sum_r += src_data[src_pixel_index * 3 + 0] * pixel_weight; sum_g += src_data[src_pixel_index * 3 + 1] * pixel_weight; sum_b += src_data[src_pixel_index * 3 + 2] * pixel_weight; if ( src_alpha ) sum_a += src_alpha[src_pixel_index] * pixel_weight; } } // Put the data into the destination image. The summed values are // of double data type and are rounded here for accuracy dst_data[0] = (unsigned char)(sum_r + 0.5); dst_data[1] = (unsigned char)(sum_g + 0.5); dst_data[2] = (unsigned char)(sum_b + 0.5); dst_data += 3; if ( src_alpha ) *dst_alpha++ = (unsigned char)sum_a; } } return ret_image; } // Blur in the horizontal direction wxImage wxImage::BlurHorizontal(int blurRadius) { wxImage ret_image; ret_image.Create(M_IMGDATA->m_width, M_IMGDATA->m_height, false); unsigned char* src_data = M_IMGDATA->m_data; unsigned char* dst_data = ret_image.GetData(); unsigned char* src_alpha = M_IMGDATA->m_alpha; unsigned char* dst_alpha = NULL; // Check for a mask or alpha if ( M_IMGDATA->m_hasMask ) { ret_image.SetMaskColour(M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue); } else { if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } } // number of pixels we average over const int blurArea = blurRadius*2 + 1; // Horizontal blurring algorithm - average all pixels in the specified blur // radius in the X or horizontal direction for ( int y = 0; y < M_IMGDATA->m_height; y++ ) { // Variables used in the blurring algorithm long sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; long pixel_idx; const unsigned char *src; unsigned char *dst; // Calculate the average of all pixels in the blur radius for the first // pixel of the row for ( int kernel_x = -blurRadius; kernel_x <= blurRadius; kernel_x++ ) { // To deal with the pixels at the start of a row so it's not // grabbing GOK values from memory at negative indices of the // image's data or grabbing from the previous row if ( kernel_x < 0 ) pixel_idx = y * M_IMGDATA->m_width; else pixel_idx = kernel_x + y * M_IMGDATA->m_width; src = src_data + pixel_idx*3; sum_r += src[0]; sum_g += src[1]; sum_b += src[2]; if ( src_alpha ) sum_a += src_alpha[pixel_idx]; } dst = dst_data + y * M_IMGDATA->m_width*3; dst[0] = (unsigned char)(sum_r / blurArea); dst[1] = (unsigned char)(sum_g / blurArea); dst[2] = (unsigned char)(sum_b / blurArea); if ( src_alpha ) dst_alpha[y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); // Now average the values of the rest of the pixels by just moving the // blur radius box along the row for ( int x = 1; x < M_IMGDATA->m_width; x++ ) { // Take care of edge pixels on the left edge by essentially // duplicating the edge pixel if ( x - blurRadius - 1 < 0 ) pixel_idx = y * M_IMGDATA->m_width; else pixel_idx = (x - blurRadius - 1) + y * M_IMGDATA->m_width; // Subtract the value of the pixel at the left side of the blur // radius box src = src_data + pixel_idx*3; sum_r -= src[0]; sum_g -= src[1]; sum_b -= src[2]; if ( src_alpha ) sum_a -= src_alpha[pixel_idx]; // Take care of edge pixels on the right edge if ( x + blurRadius > M_IMGDATA->m_width - 1 ) pixel_idx = M_IMGDATA->m_width - 1 + y * M_IMGDATA->m_width; else pixel_idx = x + blurRadius + y * M_IMGDATA->m_width; // Add the value of the pixel being added to the end of our box src = src_data + pixel_idx*3; sum_r += src[0]; sum_g += src[1]; sum_b += src[2]; if ( src_alpha ) sum_a += src_alpha[pixel_idx]; // Save off the averaged data dst = dst_data + x*3 + y*M_IMGDATA->m_width*3; dst[0] = (unsigned char)(sum_r / blurArea); dst[1] = (unsigned char)(sum_g / blurArea); dst[2] = (unsigned char)(sum_b / blurArea); if ( src_alpha ) dst_alpha[x + y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); } } return ret_image; } // Blur in the vertical direction wxImage wxImage::BlurVertical(int blurRadius) { wxImage ret_image; ret_image.Create(M_IMGDATA->m_width, M_IMGDATA->m_height, false); unsigned char* src_data = M_IMGDATA->m_data; unsigned char* dst_data = ret_image.GetData(); unsigned char* src_alpha = M_IMGDATA->m_alpha; unsigned char* dst_alpha = NULL; // Check for a mask or alpha if ( M_IMGDATA->m_hasMask ) { ret_image.SetMaskColour(M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue); } else { if ( src_alpha ) { ret_image.SetAlpha(); dst_alpha = ret_image.GetAlpha(); } } // number of pixels we average over const int blurArea = blurRadius*2 + 1; // Vertical blurring algorithm - same as horizontal but switched the // opposite direction for ( int x = 0; x < M_IMGDATA->m_width; x++ ) { // Variables used in the blurring algorithm long sum_r = 0, sum_g = 0, sum_b = 0, sum_a = 0; long pixel_idx; const unsigned char *src; unsigned char *dst; // Calculate the average of all pixels in our blur radius box for the // first pixel of the column for ( int kernel_y = -blurRadius; kernel_y <= blurRadius; kernel_y++ ) { // To deal with the pixels at the start of a column so it's not // grabbing GOK values from memory at negative indices of the // image's data or grabbing from the previous column if ( kernel_y < 0 ) pixel_idx = x; else pixel_idx = x + kernel_y * M_IMGDATA->m_width; src = src_data + pixel_idx*3; sum_r += src[0]; sum_g += src[1]; sum_b += src[2]; if ( src_alpha ) sum_a += src_alpha[pixel_idx]; } dst = dst_data + x*3; dst[0] = (unsigned char)(sum_r / blurArea); dst[1] = (unsigned char)(sum_g / blurArea); dst[2] = (unsigned char)(sum_b / blurArea); if ( src_alpha ) dst_alpha[x] = (unsigned char)(sum_a / blurArea); // Now average the values of the rest of the pixels by just moving the // box along the column from top to bottom for ( int y = 1; y < M_IMGDATA->m_height; y++ ) { // Take care of pixels that would be beyond the top edge by // duplicating the top edge pixel for the column if ( y - blurRadius - 1 < 0 ) pixel_idx = x; else pixel_idx = x + (y - blurRadius - 1) * M_IMGDATA->m_width; // Subtract the value of the pixel at the top of our blur radius box src = src_data + pixel_idx*3; sum_r -= src[0]; sum_g -= src[1]; sum_b -= src[2]; if ( src_alpha ) sum_a -= src_alpha[pixel_idx]; // Take care of the pixels that would be beyond the bottom edge of // the image similar to the top edge if ( y + blurRadius > M_IMGDATA->m_height - 1 ) pixel_idx = x + (M_IMGDATA->m_height - 1) * M_IMGDATA->m_width; else pixel_idx = x + (blurRadius + y) * M_IMGDATA->m_width; // Add the value of the pixel being added to the end of our box src = src_data + pixel_idx*3; sum_r += src[0]; sum_g += src[1]; sum_b += src[2]; if ( src_alpha ) sum_a += src_alpha[pixel_idx]; // Save off the averaged data dst = dst_data + (x + y * M_IMGDATA->m_width) * 3; dst[0] = (unsigned char)(sum_r / blurArea); dst[1] = (unsigned char)(sum_g / blurArea); dst[2] = (unsigned char)(sum_b / blurArea); if ( src_alpha ) dst_alpha[x + y * M_IMGDATA->m_width] = (unsigned char)(sum_a / blurArea); } } return ret_image; } // The new blur function wxImage wxImage::Blur(int blurRadius) { wxImage ret_image; ret_image.Create(M_IMGDATA->m_width, M_IMGDATA->m_height, false); // Blur the image in each direction ret_image = BlurHorizontal(blurRadius); ret_image = ret_image.BlurVertical(blurRadius); return ret_image; } wxImage wxImage::Rotate90( bool clockwise ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); image.Create( M_IMGDATA->m_height, M_IMGDATA->m_width, false ); unsigned char *data = image.GetData(); wxCHECK_MSG( data, image, wxT("unable to create image") ); unsigned char *source_data = M_IMGDATA->m_data; unsigned char *target_data; unsigned char *alpha_data = 0 ; unsigned char *source_alpha = 0 ; unsigned char *target_alpha = 0 ; if (M_IMGDATA->m_hasMask) { image.SetMaskColour( M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue ); } else { source_alpha = M_IMGDATA->m_alpha ; if ( source_alpha ) { image.SetAlpha() ; alpha_data = image.GetAlpha() ; } } long height = M_IMGDATA->m_height; long width = M_IMGDATA->m_width; for (long j = 0; j < height; j++) { for (long i = 0; i < width; i++) { if (clockwise) { target_data = data + (((i+1)*height) - j - 1)*3; if(source_alpha) target_alpha = alpha_data + (((i+1)*height) - j - 1); } else { target_data = data + ((height*(width-1)) + j - (i*height))*3; if(source_alpha) target_alpha = alpha_data + ((height*(width-1)) + j - (i*height)); } memcpy( target_data, source_data, 3 ); source_data += 3; if(source_alpha) { memcpy( target_alpha, source_alpha, 1 ); source_alpha += 1; } } } return image; } wxImage wxImage::Mirror( bool horizontally ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); image.Create( M_IMGDATA->m_width, M_IMGDATA->m_height, false ); unsigned char *data = image.GetData(); unsigned char *alpha = NULL; wxCHECK_MSG( data, image, wxT("unable to create image") ); if (M_IMGDATA->m_alpha != NULL) { image.SetAlpha(); alpha = image.GetAlpha(); wxCHECK_MSG( alpha, image, wxT("unable to create alpha channel") ); } if (M_IMGDATA->m_hasMask) image.SetMaskColour( M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue ); long height = M_IMGDATA->m_height; long width = M_IMGDATA->m_width; unsigned char *source_data = M_IMGDATA->m_data; unsigned char *target_data; if (horizontally) { for (long j = 0; j < height; j++) { data += width*3; target_data = data-3; for (long i = 0; i < width; i++) { memcpy( target_data, source_data, 3 ); source_data += 3; target_data -= 3; } } if (alpha != NULL) { // src_alpha starts at the first pixel and increases by 1 after each step // (a step here is the copy of the alpha value of one pixel) const unsigned char *src_alpha = M_IMGDATA->m_alpha; // dest_alpha starts just beyond the first line, decreases before each step, // and after each line is finished, increases by 2 widths (skipping the line // just copied and the line that will be copied next) unsigned char *dest_alpha = alpha + width; for (long jj = 0; jj < height; ++jj) { for (long i = 0; i < width; ++i) { *(--dest_alpha) = *(src_alpha++); // copy one pixel } dest_alpha += 2 * width; // advance beyond the end of the next line } } } else { for (long i = 0; i < height; i++) { target_data = data + 3*width*(height-1-i); memcpy( target_data, source_data, (size_t)3*width ); source_data += 3*width; } if (alpha != NULL) { // src_alpha starts at the first pixel and increases by 1 width after each step // (a step here is the copy of the alpha channel of an entire line) const unsigned char *src_alpha = M_IMGDATA->m_alpha; // dest_alpha starts just beyond the last line (beyond the whole image) // and decreases by 1 width before each step unsigned char *dest_alpha = alpha + width * height; for (long jj = 0; jj < height; ++jj) { dest_alpha -= width; memcpy( dest_alpha, src_alpha, (size_t)width ); src_alpha += width; } } } return image; } wxImage wxImage::GetSubImage( const wxRect &rect ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); wxCHECK_MSG( (rect.GetLeft()>=0) && (rect.GetTop()>=0) && (rect.GetRight()<=GetWidth()) && (rect.GetBottom()<=GetHeight()), image, wxT("invalid subimage size") ); const int subwidth = rect.GetWidth(); const int subheight = rect.GetHeight(); image.Create( subwidth, subheight, false ); const unsigned char *src_data = GetData(); const unsigned char *src_alpha = M_IMGDATA->m_alpha; unsigned char *subdata = image.GetData(); unsigned char *subalpha = NULL; wxCHECK_MSG( subdata, image, wxT("unable to create image") ); if (src_alpha != NULL) { image.SetAlpha(); subalpha = image.GetAlpha(); wxCHECK_MSG( subalpha, image, wxT("unable to create alpha channel")); } if (M_IMGDATA->m_hasMask) image.SetMaskColour( M_IMGDATA->m_maskRed, M_IMGDATA->m_maskGreen, M_IMGDATA->m_maskBlue ); const int width = GetWidth(); const int pixsoff = rect.GetLeft() + width * rect.GetTop(); src_data += 3 * pixsoff; src_alpha += pixsoff; // won't be used if was NULL, so this is ok for (long j = 0; j < subheight; ++j) { memcpy( subdata, src_data, 3 * subwidth ); subdata += 3 * subwidth; src_data += 3 * width; if (subalpha != NULL) { memcpy( subalpha, src_alpha, subwidth ); subalpha += subwidth; src_alpha += width; } } return image; } wxImage wxImage::Size( const wxSize& size, const wxPoint& pos, int r_, int g_, int b_ ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); wxCHECK_MSG( (size.GetWidth() > 0) && (size.GetHeight() > 0), image, wxT("invalid size") ); int width = GetWidth(), height = GetHeight(); image.Create(size.GetWidth(), size.GetHeight(), false); unsigned char r = (unsigned char)r_; unsigned char g = (unsigned char)g_; unsigned char b = (unsigned char)b_; if ((r_ == -1) && (g_ == -1) && (b_ == -1)) { GetOrFindMaskColour( &r, &g, &b ); image.SetMaskColour(r, g, b); } image.SetRGB(wxRect(), r, g, b); wxRect subRect(pos.x, pos.y, width, height); wxRect finalRect(0, 0, size.GetWidth(), size.GetHeight()); if (pos.x < 0) finalRect.width -= pos.x; if (pos.y < 0) finalRect.height -= pos.y; subRect.Intersect(finalRect); if (!subRect.IsEmpty()) { if ((subRect.GetWidth() == width) && (subRect.GetHeight() == height)) image.Paste(*this, pos.x, pos.y); else image.Paste(GetSubImage(subRect), pos.x, pos.y); } return image; } void wxImage::Paste( const wxImage &image, int x, int y ) { wxCHECK_RET( Ok(), wxT("invalid image") ); wxCHECK_RET( image.Ok(), wxT("invalid image") ); AllocExclusive(); int xx = 0; int yy = 0; int width = image.GetWidth(); int height = image.GetHeight(); if (x < 0) { xx = -x; width += x; } if (y < 0) { yy = -y; height += y; } if ((x+xx)+width > M_IMGDATA->m_width) width = M_IMGDATA->m_width - (x+xx); if ((y+yy)+height > M_IMGDATA->m_height) height = M_IMGDATA->m_height - (y+yy); if (width < 1) return; if (height < 1) return; if ((!HasMask() && !image.HasMask()) || (HasMask() && !image.HasMask()) || ((HasMask() && image.HasMask() && (GetMaskRed()==image.GetMaskRed()) && (GetMaskGreen()==image.GetMaskGreen()) && (GetMaskBlue()==image.GetMaskBlue())))) { width *= 3; unsigned char* source_data = image.GetData() + xx*3 + yy*3*image.GetWidth(); int source_step = image.GetWidth()*3; unsigned char* target_data = GetData() + (x+xx)*3 + (y+yy)*3*M_IMGDATA->m_width; int target_step = M_IMGDATA->m_width*3; for (int j = 0; j < height; j++) { memcpy( target_data, source_data, width ); source_data += source_step; target_data += target_step; } return; } // Copy over the alpha channel from the original image if ( image.HasAlpha() ) { if ( !HasAlpha() ) InitAlpha(); unsigned char* source_data = image.GetAlpha() + xx + yy*image.GetWidth(); int source_step = image.GetWidth(); unsigned char* target_data = GetAlpha() + (x+xx) + (y+yy)*M_IMGDATA->m_width; int target_step = M_IMGDATA->m_width; for (int j = 0; j < height; j++, source_data += source_step, target_data += target_step) { memcpy( target_data, source_data, width ); } } if (!HasMask() && image.HasMask()) { unsigned char r = image.GetMaskRed(); unsigned char g = image.GetMaskGreen(); unsigned char b = image.GetMaskBlue(); width *= 3; unsigned char* source_data = image.GetData() + xx*3 + yy*3*image.GetWidth(); int source_step = image.GetWidth()*3; unsigned char* target_data = GetData() + (x+xx)*3 + (y+yy)*3*M_IMGDATA->m_width; int target_step = M_IMGDATA->m_width*3; for (int j = 0; j < height; j++) { for (int i = 0; i < width; i+=3) { if ((source_data[i] != r) || (source_data[i+1] != g) || (source_data[i+2] != b)) { memcpy( target_data+i, source_data+i, 3 ); } } source_data += source_step; target_data += target_step; } } } void wxImage::Replace( unsigned char r1, unsigned char g1, unsigned char b1, unsigned char r2, unsigned char g2, unsigned char b2 ) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); unsigned char *data = GetData(); const int w = GetWidth(); const int h = GetHeight(); for (int j = 0; j < h; j++) for (int i = 0; i < w; i++) { if ((data[0] == r1) && (data[1] == g1) && (data[2] == b1)) { data[0] = r2; data[1] = g2; data[2] = b2; } data += 3; } } wxImage wxImage::ConvertToGreyscale( double lr, double lg, double lb ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); image.Create(M_IMGDATA->m_width, M_IMGDATA->m_height, false); unsigned char *dest = image.GetData(); wxCHECK_MSG( dest, image, wxT("unable to create image") ); unsigned char *src = M_IMGDATA->m_data; bool hasMask = M_IMGDATA->m_hasMask; unsigned char maskRed = M_IMGDATA->m_maskRed; unsigned char maskGreen = M_IMGDATA->m_maskGreen; unsigned char maskBlue = M_IMGDATA->m_maskBlue; if ( hasMask ) image.SetMaskColour(maskRed, maskGreen, maskBlue); const long size = M_IMGDATA->m_width * M_IMGDATA->m_height; for ( long i = 0; i < size; i++, src += 3, dest += 3 ) { // don't modify the mask if ( hasMask && src[0] == maskRed && src[1] == maskGreen && src[2] == maskBlue ) { memcpy(dest, src, 3); } else { // calculate the luma double luma = (src[0] * lr + src[1] * lg + src[2] * lb) + 0.5; dest[0] = dest[1] = dest[2] = wx_static_cast(unsigned char, luma); } } // copy the alpha channel, if any if (HasAlpha()) { const size_t alphaSize = GetWidth() * GetHeight(); unsigned char *alpha = (unsigned char*)malloc(alphaSize); memcpy(alpha, GetAlpha(), alphaSize); image.InitAlpha(); image.SetAlpha(alpha); } return image; } wxImage wxImage::ConvertToMono( unsigned char r, unsigned char g, unsigned char b ) const { wxImage image; wxCHECK_MSG( Ok(), image, wxT("invalid image") ); image.Create( M_IMGDATA->m_width, M_IMGDATA->m_height, false ); unsigned char *data = image.GetData(); wxCHECK_MSG( data, image, wxT("unable to create image") ); if (M_IMGDATA->m_hasMask) { if (M_IMGDATA->m_maskRed == r && M_IMGDATA->m_maskGreen == g && M_IMGDATA->m_maskBlue == b) image.SetMaskColour( 255, 255, 255 ); else image.SetMaskColour( 0, 0, 0 ); } long size = M_IMGDATA->m_height * M_IMGDATA->m_width; unsigned char *srcd = M_IMGDATA->m_data; unsigned char *tard = image.GetData(); for ( long i = 0; i < size; i++, srcd += 3, tard += 3 ) { if (srcd[0] == r && srcd[1] == g && srcd[2] == b) tard[0] = tard[1] = tard[2] = 255; else tard[0] = tard[1] = tard[2] = 0; } return image; } int wxImage::GetWidth() const { wxCHECK_MSG( Ok(), 0, wxT("invalid image") ); return M_IMGDATA->m_width; } int wxImage::GetHeight() const { wxCHECK_MSG( Ok(), 0, wxT("invalid image") ); return M_IMGDATA->m_height; } long wxImage::XYToIndex(int x, int y) const { if ( Ok() && x >= 0 && y >= 0 && x < M_IMGDATA->m_width && y < M_IMGDATA->m_height ) { return y*M_IMGDATA->m_width + x; } return -1; } void wxImage::SetRGB( int x, int y, unsigned char r, unsigned char g, unsigned char b ) { long pos = XYToIndex(x, y); wxCHECK_RET( pos != -1, wxT("invalid image coordinates") ); AllocExclusive(); pos *= 3; M_IMGDATA->m_data[ pos ] = r; M_IMGDATA->m_data[ pos+1 ] = g; M_IMGDATA->m_data[ pos+2 ] = b; } void wxImage::SetRGB( const wxRect& rect_, unsigned char r, unsigned char g, unsigned char b ) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); wxRect rect(rect_); wxRect imageRect(0, 0, GetWidth(), GetHeight()); if ( rect == wxRect() ) { rect = imageRect; } else { wxCHECK_RET( imageRect.Contains(rect.GetTopLeft()) && imageRect.Contains(rect.GetBottomRight()), wxT("invalid bounding rectangle") ); } int x1 = rect.GetLeft(), y1 = rect.GetTop(), x2 = rect.GetRight() + 1, y2 = rect.GetBottom() + 1; unsigned char *data wxDUMMY_INITIALIZE(NULL); int x, y, width = GetWidth(); for (y = y1; y < y2; y++) { data = M_IMGDATA->m_data + (y*width + x1)*3; for (x = x1; x < x2; x++) { *data++ = r; *data++ = g; *data++ = b; } } } unsigned char wxImage::GetRed( int x, int y ) const { long pos = XYToIndex(x, y); wxCHECK_MSG( pos != -1, 0, wxT("invalid image coordinates") ); pos *= 3; return M_IMGDATA->m_data[pos]; } unsigned char wxImage::GetGreen( int x, int y ) const { long pos = XYToIndex(x, y); wxCHECK_MSG( pos != -1, 0, wxT("invalid image coordinates") ); pos *= 3; return M_IMGDATA->m_data[pos+1]; } unsigned char wxImage::GetBlue( int x, int y ) const { long pos = XYToIndex(x, y); wxCHECK_MSG( pos != -1, 0, wxT("invalid image coordinates") ); pos *= 3; return M_IMGDATA->m_data[pos+2]; } bool wxImage::IsOk() const { // image of 0 width or height can't be considered ok - at least because it // causes crashes in ConvertToBitmap() if we don't catch it in time wxImageRefData *data = M_IMGDATA; return data && data->m_ok && data->m_width && data->m_height; } unsigned char *wxImage::GetData() const { wxCHECK_MSG( Ok(), (unsigned char *)NULL, wxT("invalid image") ); return M_IMGDATA->m_data; } void wxImage::SetData( unsigned char *data, bool static_data ) { wxCHECK_RET( Ok(), wxT("invalid image") ); wxImageRefData *newRefData = new wxImageRefData(); newRefData->m_width = M_IMGDATA->m_width; newRefData->m_height = M_IMGDATA->m_height; newRefData->m_data = data; newRefData->m_ok = true; newRefData->m_maskRed = M_IMGDATA->m_maskRed; newRefData->m_maskGreen = M_IMGDATA->m_maskGreen; newRefData->m_maskBlue = M_IMGDATA->m_maskBlue; newRefData->m_hasMask = M_IMGDATA->m_hasMask; newRefData->m_static = static_data; UnRef(); m_refData = newRefData; } void wxImage::SetData( unsigned char *data, int new_width, int new_height, bool static_data ) { wxImageRefData *newRefData = new wxImageRefData(); if (m_refData) { newRefData->m_width = new_width; newRefData->m_height = new_height; newRefData->m_data = data; newRefData->m_ok = true; newRefData->m_maskRed = M_IMGDATA->m_maskRed; newRefData->m_maskGreen = M_IMGDATA->m_maskGreen; newRefData->m_maskBlue = M_IMGDATA->m_maskBlue; newRefData->m_hasMask = M_IMGDATA->m_hasMask; } else { newRefData->m_width = new_width; newRefData->m_height = new_height; newRefData->m_data = data; newRefData->m_ok = true; } newRefData->m_static = static_data; UnRef(); m_refData = newRefData; } // ---------------------------------------------------------------------------- // alpha channel support // ---------------------------------------------------------------------------- void wxImage::SetAlpha(int x, int y, unsigned char alpha) { wxCHECK_RET( HasAlpha(), wxT("no alpha channel") ); long pos = XYToIndex(x, y); wxCHECK_RET( pos != -1, wxT("invalid image coordinates") ); AllocExclusive(); M_IMGDATA->m_alpha[pos] = alpha; } unsigned char wxImage::GetAlpha(int x, int y) const { wxCHECK_MSG( HasAlpha(), 0, wxT("no alpha channel") ); long pos = XYToIndex(x, y); wxCHECK_MSG( pos != -1, 0, wxT("invalid image coordinates") ); return M_IMGDATA->m_alpha[pos]; } bool wxImage::ConvertColourToAlpha(unsigned char r, unsigned char g, unsigned char b) { SetAlpha(NULL); const int w = M_IMGDATA->m_width; const int h = M_IMGDATA->m_height; unsigned char *alpha = GetAlpha(); unsigned char *data = GetData(); for ( int y = 0; y < h; y++ ) { for ( int x = 0; x < w; x++ ) { *alpha++ = *data; *data++ = r; *data++ = g; *data++ = b; } } return true; } void wxImage::SetAlpha( unsigned char *alpha, bool static_data ) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); if ( !alpha ) { alpha = (unsigned char *)malloc(M_IMGDATA->m_width*M_IMGDATA->m_height); } if( !M_IMGDATA->m_staticAlpha ) free(M_IMGDATA->m_alpha); M_IMGDATA->m_alpha = alpha; M_IMGDATA->m_staticAlpha = static_data; } unsigned char *wxImage::GetAlpha() const { wxCHECK_MSG( Ok(), (unsigned char *)NULL, wxT("invalid image") ); return M_IMGDATA->m_alpha; } void wxImage::InitAlpha() { wxCHECK_RET( !HasAlpha(), wxT("image already has an alpha channel") ); // initialize memory for alpha channel SetAlpha(); unsigned char *alpha = M_IMGDATA->m_alpha; const size_t lenAlpha = M_IMGDATA->m_width * M_IMGDATA->m_height; if ( HasMask() ) { // use the mask to initialize the alpha channel. const unsigned char * const alphaEnd = alpha + lenAlpha; const unsigned char mr = M_IMGDATA->m_maskRed; const unsigned char mg = M_IMGDATA->m_maskGreen; const unsigned char mb = M_IMGDATA->m_maskBlue; for ( unsigned char *src = M_IMGDATA->m_data; alpha < alphaEnd; src += 3, alpha++ ) { *alpha = (src[0] == mr && src[1] == mg && src[2] == mb) ? wxIMAGE_ALPHA_TRANSPARENT : wxIMAGE_ALPHA_OPAQUE; } M_IMGDATA->m_hasMask = false; } else // no mask { // make the image fully opaque memset(alpha, wxIMAGE_ALPHA_OPAQUE, lenAlpha); } } // ---------------------------------------------------------------------------- // mask support // ---------------------------------------------------------------------------- void wxImage::SetMaskColour( unsigned char r, unsigned char g, unsigned char b ) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); M_IMGDATA->m_maskRed = r; M_IMGDATA->m_maskGreen = g; M_IMGDATA->m_maskBlue = b; M_IMGDATA->m_hasMask = true; } bool wxImage::GetOrFindMaskColour( unsigned char *r, unsigned char *g, unsigned char *b ) const { wxCHECK_MSG( Ok(), false, wxT("invalid image") ); if (M_IMGDATA->m_hasMask) { if (r) *r = M_IMGDATA->m_maskRed; if (g) *g = M_IMGDATA->m_maskGreen; if (b) *b = M_IMGDATA->m_maskBlue; return true; } else { FindFirstUnusedColour(r, g, b); return false; } } unsigned char wxImage::GetMaskRed() const { wxCHECK_MSG( Ok(), 0, wxT("invalid image") ); return M_IMGDATA->m_maskRed; } unsigned char wxImage::GetMaskGreen() const { wxCHECK_MSG( Ok(), 0, wxT("invalid image") ); return M_IMGDATA->m_maskGreen; } unsigned char wxImage::GetMaskBlue() const { wxCHECK_MSG( Ok(), 0, wxT("invalid image") ); return M_IMGDATA->m_maskBlue; } void wxImage::SetMask( bool mask ) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); M_IMGDATA->m_hasMask = mask; } bool wxImage::HasMask() const { wxCHECK_MSG( Ok(), false, wxT("invalid image") ); return M_IMGDATA->m_hasMask; } bool wxImage::IsTransparent(int x, int y, unsigned char threshold) const { long pos = XYToIndex(x, y); wxCHECK_MSG( pos != -1, false, wxT("invalid image coordinates") ); // check mask if ( M_IMGDATA->m_hasMask ) { const unsigned char *p = M_IMGDATA->m_data + 3*pos; if ( p[0] == M_IMGDATA->m_maskRed && p[1] == M_IMGDATA->m_maskGreen && p[2] == M_IMGDATA->m_maskBlue ) { return true; } } // then check alpha if ( M_IMGDATA->m_alpha ) { if ( M_IMGDATA->m_alpha[pos] < threshold ) { // transparent enough return true; } } // not transparent return false; } bool wxImage::SetMaskFromImage(const wxImage& mask, unsigned char mr, unsigned char mg, unsigned char mb) { // check that the images are the same size if ( (M_IMGDATA->m_height != mask.GetHeight() ) || (M_IMGDATA->m_width != mask.GetWidth () ) ) { wxLogError( _("Image and mask have different sizes.") ); return false; } // find unused colour unsigned char r,g,b ; if (!FindFirstUnusedColour(&r, &g, &b)) { wxLogError( _("No unused colour in image being masked.") ); return false ; } AllocExclusive(); unsigned char *imgdata = GetData(); unsigned char *maskdata = mask.GetData(); const int w = GetWidth(); const int h = GetHeight(); for (int j = 0; j < h; j++) { for (int i = 0; i < w; i++) { if ((maskdata[0] == mr) && (maskdata[1] == mg) && (maskdata[2] == mb)) { imgdata[0] = r; imgdata[1] = g; imgdata[2] = b; } imgdata += 3; maskdata += 3; } } SetMaskColour(r, g, b); SetMask(true); return true; } bool wxImage::ConvertAlphaToMask(unsigned char threshold) { if (!HasAlpha()) return true; unsigned char mr, mg, mb; if (!FindFirstUnusedColour(&mr, &mg, &mb)) { wxLogError( _("No unused colour in image being masked.") ); return false; } AllocExclusive(); SetMask(true); SetMaskColour(mr, mg, mb); unsigned char *imgdata = GetData(); unsigned char *alphadata = GetAlpha(); int w = GetWidth(); int h = GetHeight(); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++, imgdata += 3, alphadata++) { if (*alphadata < threshold) { imgdata[0] = mr; imgdata[1] = mg; imgdata[2] = mb; } } } if( !M_IMGDATA->m_staticAlpha ) free(M_IMGDATA->m_alpha); M_IMGDATA->m_alpha = NULL; M_IMGDATA->m_staticAlpha = false; return true; } // ---------------------------------------------------------------------------- // Palette functions // ---------------------------------------------------------------------------- #if wxUSE_PALETTE bool wxImage::HasPalette() const { if (!Ok()) return false; return M_IMGDATA->m_palette.Ok(); } const wxPalette& wxImage::GetPalette() const { wxCHECK_MSG( Ok(), wxNullPalette, wxT("invalid image") ); return M_IMGDATA->m_palette; } void wxImage::SetPalette(const wxPalette& palette) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); M_IMGDATA->m_palette = palette; } #endif // wxUSE_PALETTE // ---------------------------------------------------------------------------- // Option functions (arbitrary name/value mapping) // ---------------------------------------------------------------------------- void wxImage::SetOption(const wxString& name, const wxString& value) { wxCHECK_RET( Ok(), wxT("invalid image") ); AllocExclusive(); int idx = M_IMGDATA->m_optionNames.Index(name, false); if (idx == wxNOT_FOUND) { M_IMGDATA->m_optionNames.Add(name); M_IMGDATA->m_optionValues.Add(value); } else { M_IMGDATA->m_optionNames[idx] = name; M_IMGDATA->m_optionValues[idx] = value; } } void wxImage::SetOption(const wxString& name, int value) { wxString valStr; valStr.Printf(wxT("%d"), value); SetOption(name, valStr); } wxString wxImage::GetOption(const wxString& name) const { wxCHECK_MSG( Ok(), wxEmptyString, wxT("invalid image") ); int idx = M_IMGDATA->m_optionNames.Index(name, false); if (idx == wxNOT_FOUND) return wxEmptyString; else return M_IMGDATA->m_optionValues[idx]; } int wxImage::GetOptionInt(const wxString& name) const { return wxAtoi(GetOption(name)); } bool wxImage::HasOption(const wxString& name) const { wxCHECK_MSG( Ok(), false, wxT("invalid image") ); return (M_IMGDATA->m_optionNames.Index(name, false) != wxNOT_FOUND); } // ---------------------------------------------------------------------------- // image I/O // ---------------------------------------------------------------------------- bool wxImage::LoadFile( const wxString& WXUNUSED_UNLESS_STREAMS(filename), long WXUNUSED_UNLESS_STREAMS(type), int WXUNUSED_UNLESS_STREAMS(index) ) { #if HAS_FILE_STREAMS if (wxFileExists(filename)) { wxImageFileInputStream stream(filename); wxBufferedInputStream bstream( stream ); return LoadFile(bstream, type, index); } else { wxLogError( _("Can't load image from file '%s': file does not exist."), filename.c_str() ); return false; } #else // !HAS_FILE_STREAMS return false; #endif // HAS_FILE_STREAMS } bool wxImage::LoadFile( const wxString& WXUNUSED_UNLESS_STREAMS(filename), const wxString& WXUNUSED_UNLESS_STREAMS(mimetype), int WXUNUSED_UNLESS_STREAMS(index) ) { #if HAS_FILE_STREAMS if (wxFileExists(filename)) { wxImageFileInputStream stream(filename); wxBufferedInputStream bstream( stream ); return LoadFile(bstream, mimetype, index); } else { wxLogError( _("Can't load image from file '%s': file does not exist."), filename.c_str() ); return false; } #else // !HAS_FILE_STREAMS return false; #endif // HAS_FILE_STREAMS } bool wxImage::SaveFile( const wxString& filename ) const { wxString ext = filename.AfterLast('.').Lower(); wxImageHandler * pHandler = FindHandler(ext, -1); if (pHandler) { return SaveFile(filename, pHandler->GetType()); } wxLogError(_("Can't save image to file '%s': unknown extension."), filename.c_str()); return false; } bool wxImage::SaveFile( const wxString& WXUNUSED_UNLESS_STREAMS(filename), int WXUNUSED_UNLESS_STREAMS(type) ) const { #if HAS_FILE_STREAMS wxCHECK_MSG( Ok(), false, wxT("invalid image") ); ((wxImage*)this)->SetOption(wxIMAGE_OPTION_FILENAME, filename); wxImageFileOutputStream stream(filename); if ( stream.IsOk() ) { wxBufferedOutputStream bstream( stream ); return SaveFile(bstream, type); } #endif // HAS_FILE_STREAMS return false; } bool wxImage::SaveFile( const wxString& WXUNUSED_UNLESS_STREAMS(filename), const wxString& WXUNUSED_UNLESS_STREAMS(mimetype) ) const { #if HAS_FILE_STREAMS wxCHECK_MSG( Ok(), false, wxT("invalid image") ); ((wxImage*)this)->SetOption(wxIMAGE_OPTION_FILENAME, filename); wxImageFileOutputStream stream(filename); if ( stream.IsOk() ) { wxBufferedOutputStream bstream( stream ); return SaveFile(bstream, mimetype); } #endif // HAS_FILE_STREAMS return false; } bool wxImage::CanRead( const wxString& WXUNUSED_UNLESS_STREAMS(name) ) { #if HAS_FILE_STREAMS wxImageFileInputStream stream(name); return CanRead(stream); #else return false; #endif } int wxImage::GetImageCount( const wxString& WXUNUSED_UNLESS_STREAMS(name), long WXUNUSED_UNLESS_STREAMS(type) ) { #if HAS_FILE_STREAMS wxImageFileInputStream stream(name); if (stream.Ok()) return GetImageCount(stream, type); #endif return 0; } #if wxUSE_STREAMS bool wxImage::CanRead( wxInputStream &stream ) { const wxList& list = GetHandlers(); for ( wxList::compatibility_iterator node = list.GetFirst(); node; node = node->GetNext() ) { wxImageHandler *handler=(wxImageHandler*)node->GetData(); if (handler->CanRead( stream )) return true; } return false; } int wxImage::GetImageCount( wxInputStream &stream, long type ) { wxImageHandler *handler; if ( type == wxBITMAP_TYPE_ANY ) { wxList &list=GetHandlers(); for (wxList::compatibility_iterator node = list.GetFirst(); node; node = node->GetNext()) { handler=(wxImageHandler*)node->GetData(); if ( handler->CanRead(stream) ) return handler->GetImageCount(stream); } wxLogWarning(_("No handler found for image type.")); return 0; } handler = FindHandler(type); if ( !handler ) { wxLogWarning(_("No image handler for type %ld defined."), type); return false; } if ( handler->CanRead(stream) ) { return handler->GetImageCount(stream); } else { wxLogError(_("Image file is not of type %ld."), type); return 0; } } bool wxImage::LoadFile( wxInputStream& stream, long type, int index ) { UnRef(); m_refData = new wxImageRefData; wxImageHandler *handler; if ( type == wxBITMAP_TYPE_ANY ) { wxList &list=GetHandlers(); for ( wxList::compatibility_iterator node = list.GetFirst(); node; node = node->GetNext() ) { handler=(wxImageHandler*)node->GetData(); if ( handler->CanRead(stream) ) return handler->LoadFile(this, stream, true/*verbose*/, index); } wxLogWarning( _("No handler found for image type.") ); return false; } handler = FindHandler(type); if (handler == 0) { wxLogWarning( _("No image handler for type %ld defined."), type ); return false; } if (stream.IsSeekable() && !handler->CanRead(stream)) { wxLogError(_("Image file is not of type %ld."), type); return false; } else return handler->LoadFile(this, stream, true/*verbose*/, index); } bool wxImage::LoadFile( wxInputStream& stream, const wxString& mimetype, int index ) { UnRef(); m_refData = new wxImageRefData; wxImageHandler *handler = FindHandlerMime(mimetype); if (handler == 0) { wxLogWarning( _("No image handler for type %s defined."), mimetype.GetData() ); return false; } if (stream.IsSeekable() && !handler->CanRead(stream)) { wxLogError(_("Image file is not of type %s."), (const wxChar*) mimetype); return false; } else return handler->LoadFile( this, stream, true/*verbose*/, index ); } bool wxImage::SaveFile( wxOutputStream& stream, int type ) const { wxCHECK_MSG( Ok(), false, wxT("invalid image") ); wxImageHandler *handler = FindHandler(type); if ( !handler ) { wxLogWarning( _("No image handler for type %d defined."), type ); return false; } return handler->SaveFile( (wxImage*)this, stream ); } bool wxImage::SaveFile( wxOutputStream& stream, const wxString& mimetype ) const { wxCHECK_MSG( Ok(), false, wxT("invalid image") ); wxImageHandler *handler = FindHandlerMime(mimetype); if ( !handler ) { wxLogWarning( _("No image handler for type %s defined."), mimetype.GetData() ); return false; } return handler->SaveFile( (wxImage*)this, stream ); } #endif // wxUSE_STREAMS // ---------------------------------------------------------------------------- // image I/O handlers // ---------------------------------------------------------------------------- void wxImage::AddHandler( wxImageHandler *handler ) { // Check for an existing handler of the type being added. if (FindHandler( handler->GetType() ) == 0) { sm_handlers.Append( handler ); } else { // This is not documented behaviour, merely the simplest 'fix' // for preventing duplicate additions. If someone ever has // a good reason to add and remove duplicate handlers (and they // may) we should probably refcount the duplicates. // also an issue in InsertHandler below. wxLogDebug( _T("Adding duplicate image handler for '%s'"), handler->GetName().c_str() ); delete handler; } } void wxImage::InsertHandler( wxImageHandler *handler ) { // Check for an existing handler of the type being added. if (FindHandler( handler->GetType() ) == 0) { sm_handlers.Insert( handler ); } else { // see AddHandler for additional comments. wxLogDebug( _T("Inserting duplicate image handler for '%s'"), handler->GetName().c_str() ); delete handler; } } bool wxImage::RemoveHandler( const wxString& name ) { wxImageHandler *handler = FindHandler(name); if (handler) { sm_handlers.DeleteObject(handler); delete handler; return true; } else return false; } wxImageHandler *wxImage::FindHandler( const wxString& name ) { wxList::compatibility_iterator node = sm_handlers.GetFirst(); while (node) { wxImageHandler *handler = (wxImageHandler*)node->GetData(); if (handler->GetName().Cmp(name) == 0) return handler; node = node->GetNext(); } return 0; } wxImageHandler *wxImage::FindHandler( const wxString& extension, long bitmapType ) { wxList::compatibility_iterator node = sm_handlers.GetFirst(); while (node) { wxImageHandler *handler = (wxImageHandler*)node->GetData(); if ( (handler->GetExtension().Cmp(extension) == 0) && (bitmapType == -1 || handler->GetType() == bitmapType) ) return handler; node = node->GetNext(); } return 0; } wxImageHandler *wxImage::FindHandler( long bitmapType ) { wxList::compatibility_iterator node = sm_handlers.GetFirst(); while (node) { wxImageHandler *handler = (wxImageHandler *)node->GetData(); if (handler->GetType() == bitmapType) return handler; node = node->GetNext(); } return 0; } wxImageHandler *wxImage::FindHandlerMime( const wxString& mimetype ) { wxList::compatibility_iterator node = sm_handlers.GetFirst(); while (node) { wxImageHandler *handler = (wxImageHandler *)node->GetData(); if (handler->GetMimeType().IsSameAs(mimetype, false)) return handler; node = node->GetNext(); } return 0; } void wxImage::InitStandardHandlers() { #if wxUSE_STREAMS AddHandler(new wxBMPHandler); #endif // wxUSE_STREAMS } void wxImage::CleanUpHandlers() { wxList::compatibility_iterator node = sm_handlers.GetFirst(); while (node) { wxImageHandler *handler = (wxImageHandler *)node->GetData(); wxList::compatibility_iterator next = node->GetNext(); delete handler; node = next; } sm_handlers.Clear(); } wxString wxImage::GetImageExtWildcard() { wxString fmts; wxList& Handlers = wxImage::GetHandlers(); wxList::compatibility_iterator Node = Handlers.GetFirst(); while ( Node ) { wxImageHandler* Handler = (wxImageHandler*)Node->GetData(); fmts += wxT("*.") + Handler->GetExtension(); Node = Node->GetNext(); if ( Node ) fmts += wxT(";"); } return wxT("(") + fmts + wxT(")|") + fmts; } wxImage::HSVValue wxImage::RGBtoHSV(const RGBValue& rgb) { const double red = rgb.red / 255.0, green = rgb.green / 255.0, blue = rgb.blue / 255.0; // find the min and max intensity (and remember which one was it for the // latter) double minimumRGB = red; if ( green < minimumRGB ) minimumRGB = green; if ( blue < minimumRGB ) minimumRGB = blue; enum { RED, GREEN, BLUE } chMax = RED; double maximumRGB = red; if ( green > maximumRGB ) { chMax = GREEN; maximumRGB = green; } if ( blue > maximumRGB ) { chMax = BLUE; maximumRGB = blue; } const double value = maximumRGB; double hue = 0.0, saturation; const double deltaRGB = maximumRGB - minimumRGB; if ( wxIsNullDouble(deltaRGB) ) { // Gray has no color hue = 0.0; saturation = 0.0; } else { switch ( chMax ) { case RED: hue = (green - blue) / deltaRGB; break; case GREEN: hue = 2.0 + (blue - red) / deltaRGB; break; case BLUE: hue = 4.0 + (red - green) / deltaRGB; break; default: wxFAIL_MSG(wxT("hue not specified")); break; } hue /= 6.0; if ( hue < 0.0 ) hue += 1.0; saturation = deltaRGB / maximumRGB; } return HSVValue(hue, saturation, value); } wxImage::RGBValue wxImage::HSVtoRGB(const HSVValue& hsv) { double red, green, blue; if ( wxIsNullDouble(hsv.saturation) ) { // Grey red = hsv.value; green = hsv.value; blue = hsv.value; } else // not grey { double hue = hsv.hue * 6.0; // sector 0 to 5 int i = (int)floor(hue); double f = hue - i; // fractional part of h double p = hsv.value * (1.0 - hsv.saturation); switch (i) { case 0: red = hsv.value; green = hsv.value * (1.0 - hsv.saturation * (1.0 - f)); blue = p; break; case 1: red = hsv.value * (1.0 - hsv.saturation * f); green = hsv.value; blue = p; break; case 2: red = p; green = hsv.value; blue = hsv.value * (1.0 - hsv.saturation * (1.0 - f)); break; case 3: red = p; green = hsv.value * (1.0 - hsv.saturation * f); blue = hsv.value; break; case 4: red = hsv.value * (1.0 - hsv.saturation * (1.0 - f)); green = p; blue = hsv.value; break; default: // case 5: red = hsv.value; green = p; blue = hsv.value * (1.0 - hsv.saturation * f); break; } } return RGBValue((unsigned char)(red * 255.0), (unsigned char)(green * 255.0), (unsigned char)(blue * 255.0)); } /* * Rotates the hue of each pixel of the image. angle is a double in the range * -1.0..1.0 where -1.0 is -360 degrees and 1.0 is 360 degrees */ void wxImage::RotateHue(double angle) { AllocExclusive(); unsigned char *srcBytePtr; unsigned char *dstBytePtr; unsigned long count; wxImage::HSVValue hsv; wxImage::RGBValue rgb; wxASSERT (angle >= -1.0 && angle <= 1.0); count = M_IMGDATA->m_width * M_IMGDATA->m_height; if ( count > 0 && !wxIsNullDouble(angle) ) { srcBytePtr = M_IMGDATA->m_data; dstBytePtr = srcBytePtr; do { rgb.red = *srcBytePtr++; rgb.green = *srcBytePtr++; rgb.blue = *srcBytePtr++; hsv = RGBtoHSV(rgb); hsv.hue = hsv.hue + angle; if (hsv.hue > 1.0) hsv.hue = hsv.hue - 1.0; else if (hsv.hue < 0.0) hsv.hue = hsv.hue + 1.0; rgb = HSVtoRGB(hsv); *dstBytePtr++ = rgb.red; *dstBytePtr++ = rgb.green; *dstBytePtr++ = rgb.blue; } while (--count != 0); } } //----------------------------------------------------------------------------- // wxImageHandler //----------------------------------------------------------------------------- IMPLEMENT_ABSTRACT_CLASS(wxImageHandler,wxObject) #if wxUSE_STREAMS bool wxImageHandler::LoadFile( wxImage *WXUNUSED(image), wxInputStream& WXUNUSED(stream), bool WXUNUSED(verbose), int WXUNUSED(index) ) { return false; } bool wxImageHandler::SaveFile( wxImage *WXUNUSED(image), wxOutputStream& WXUNUSED(stream), bool WXUNUSED(verbose) ) { return false; } int wxImageHandler::GetImageCount( wxInputStream& WXUNUSED(stream) ) { return 1; } bool wxImageHandler::CanRead( const wxString& name ) { if (wxFileExists(name)) { wxImageFileInputStream stream(name); return CanRead(stream); } wxLogError( _("Can't check image format of file '%s': file does not exist."), name.c_str() ); return false; } bool wxImageHandler::CallDoCanRead(wxInputStream& stream) { wxFileOffset posOld = stream.TellI(); if ( posOld == wxInvalidOffset ) { // can't test unseekable stream return false; } bool ok = DoCanRead(stream); // restore the old position to be able to test other formats and so on if ( stream.SeekI(posOld) == wxInvalidOffset ) { wxLogDebug(_T("Failed to rewind the stream in wxImageHandler!")); // reading would fail anyhow as we're not at the right position return false; } return ok; } #endif // wxUSE_STREAMS // ---------------------------------------------------------------------------- // image histogram stuff // ---------------------------------------------------------------------------- bool wxImageHistogram::FindFirstUnusedColour(unsigned char *r, unsigned char *g, unsigned char *b, unsigned char r2, unsigned char b2, unsigned char g2) const { unsigned long key = MakeKey(r2, g2, b2); while ( find(key) != end() ) { // color already used r2++; if ( r2 >= 255 ) { r2 = 0; g2++; if ( g2 >= 255 ) { g2 = 0; b2++; if ( b2 >= 255 ) { wxLogError(_("No unused colour in image.") ); return false; } } } key = MakeKey(r2, g2, b2); } if ( r ) *r = r2; if ( g ) *g = g2; if ( b ) *b = b2; return true; } bool wxImage::FindFirstUnusedColour(unsigned char *r, unsigned char *g, unsigned char *b, unsigned char r2, unsigned char b2, unsigned char g2) const { wxImageHistogram histogram; ComputeHistogram(histogram); return histogram.FindFirstUnusedColour(r, g, b, r2, g2, b2); } // GRG, Dic/99 // Counts and returns the number of different colours. Optionally stops // when it exceeds 'stopafter' different colours. This is useful, for // example, to see if the image can be saved as 8-bit (256 colour or // less, in this case it would be invoked as CountColours(256)). Default // value for stopafter is -1 (don't care). // unsigned long wxImage::CountColours( unsigned long stopafter ) const { wxHashTable h; wxObject dummy; unsigned char r, g, b; unsigned char *p; unsigned long size, nentries, key; p = GetData(); size = GetWidth() * GetHeight(); nentries = 0; for (unsigned long j = 0; (j < size) && (nentries <= stopafter) ; j++) { r = *(p++); g = *(p++); b = *(p++); key = wxImageHistogram::MakeKey(r, g, b); if (h.Get(key) == NULL) { h.Put(key, &dummy); nentries++; } } return nentries; } unsigned long wxImage::ComputeHistogram( wxImageHistogram &h ) const { unsigned char *p = GetData(); unsigned long nentries = 0; h.clear(); const unsigned long size = GetWidth() * GetHeight(); unsigned char r, g, b; for ( unsigned long n = 0; n < size; n++ ) { r = *p++; g = *p++; b = *p++; wxImageHistogramEntry& entry = h[wxImageHistogram::MakeKey(r, g, b)]; if ( entry.value++ == 0 ) entry.index = nentries++; } return nentries; } /* * Rotation code by Carlos Moreno */ static const double wxROTATE_EPSILON = 1e-10; // Auxiliary function to rotate a point (x,y) with respect to point p0 // make it inline and use a straight return to facilitate optimization // also, the function receives the sine and cosine of the angle to avoid // repeating the time-consuming calls to these functions -- sin/cos can // be computed and stored in the calling function. static inline wxRealPoint wxRotatePoint(const wxRealPoint& p, double cos_angle, double sin_angle, const wxRealPoint& p0) { return wxRealPoint(p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle, p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle); } static inline wxRealPoint wxRotatePoint(double x, double y, double cos_angle, double sin_angle, const wxRealPoint & p0) { return wxRotatePoint (wxRealPoint(x,y), cos_angle, sin_angle, p0); } wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool interpolating, wxPoint * offset_after_rotation) const { int i; angle = -angle; // screen coordinates are a mirror image of "real" coordinates bool has_alpha = HasAlpha(); const int w = GetWidth(), h = GetHeight(); // Create pointer-based array to accelerate access to wxImage's data unsigned char ** data = new unsigned char * [h]; data[0] = GetData(); for (i = 1; i < h; i++) data[i] = data[i - 1] + (3 * w); // Same for alpha channel unsigned char ** alpha = NULL; if (has_alpha) { alpha = new unsigned char * [h]; alpha[0] = GetAlpha(); for (i = 1; i < h; i++) alpha[i] = alpha[i - 1] + w; } // precompute coefficients for rotation formula // (sine and cosine of the angle) const double cos_angle = cos(angle); const double sin_angle = sin(angle); // Create new Image to store the result // First, find rectangle that covers the rotated image; to do that, // rotate the four corners const wxRealPoint p0(centre_of_rotation.x, centre_of_rotation.y); wxRealPoint p1 = wxRotatePoint (0, 0, cos_angle, sin_angle, p0); wxRealPoint p2 = wxRotatePoint (0, h, cos_angle, sin_angle, p0); wxRealPoint p3 = wxRotatePoint (w, 0, cos_angle, sin_angle, p0); wxRealPoint p4 = wxRotatePoint (w, h, cos_angle, sin_angle, p0); int x1a = (int) floor (wxMin (wxMin(p1.x, p2.x), wxMin(p3.x, p4.x))); int y1a = (int) floor (wxMin (wxMin(p1.y, p2.y), wxMin(p3.y, p4.y))); int x2a = (int) ceil (wxMax (wxMax(p1.x, p2.x), wxMax(p3.x, p4.x))); int y2a = (int) ceil (wxMax (wxMax(p1.y, p2.y), wxMax(p3.y, p4.y))); // Create rotated image wxImage rotated (x2a - x1a + 1, y2a - y1a + 1, false); // With alpha channel if (has_alpha) rotated.SetAlpha(); if (offset_after_rotation != NULL) { *offset_after_rotation = wxPoint (x1a, y1a); } // GRG: The rotated (destination) image is always accessed // sequentially, so there is no need for a pointer-based // array here (and in fact it would be slower). // unsigned char * dst = rotated.GetData(); unsigned char * alpha_dst = NULL; if (has_alpha) alpha_dst = rotated.GetAlpha(); // GRG: if the original image has a mask, use its RGB values // as the blank pixel, else, fall back to default (black). // unsigned char blank_r = 0; unsigned char blank_g = 0; unsigned char blank_b = 0; if (HasMask()) { blank_r = GetMaskRed(); blank_g = GetMaskGreen(); blank_b = GetMaskBlue(); rotated.SetMaskColour( blank_r, blank_g, blank_b ); } // Now, for each point of the rotated image, find where it came from, by // performing an inverse rotation (a rotation of -angle) and getting the // pixel at those coordinates const int rH = rotated.GetHeight(); const int rW = rotated.GetWidth(); // GRG: I've taken the (interpolating) test out of the loops, so that // it is done only once, instead of repeating it for each pixel. if (interpolating) { for (int y = 0; y < rH; y++) { for (int x = 0; x < rW; x++) { wxRealPoint src = wxRotatePoint (x + x1a, y + y1a, cos_angle, -sin_angle, p0); if (-0.25 < src.x && src.x < w - 0.75 && -0.25 < src.y && src.y < h - 0.75) { // interpolate using the 4 enclosing grid-points. Those // points can be obtained using floor and ceiling of the // exact coordinates of the point int x1, y1, x2, y2; if (0 < src.x && src.x < w - 1) { x1 = wxRound(floor(src.x)); x2 = wxRound(ceil(src.x)); } else // else means that x is near one of the borders (0 or width-1) { x1 = x2 = wxRound (src.x); } if (0 < src.y && src.y < h - 1) { y1 = wxRound(floor(src.y)); y2 = wxRound(ceil(src.y)); } else { y1 = y2 = wxRound (src.y); } // get four points and the distances (square of the distance, // for efficiency reasons) for the interpolation formula // GRG: Do not calculate the points until they are // really needed -- this way we can calculate // just one, instead of four, if d1, d2, d3 // or d4 are < wxROTATE_EPSILON const double d1 = (src.x - x1) * (src.x - x1) + (src.y - y1) * (src.y - y1); const double d2 = (src.x - x2) * (src.x - x2) + (src.y - y1) * (src.y - y1); const double d3 = (src.x - x2) * (src.x - x2) + (src.y - y2) * (src.y - y2); const double d4 = (src.x - x1) * (src.x - x1) + (src.y - y2) * (src.y - y2); // Now interpolate as a weighted average of the four surrounding // points, where the weights are the distances to each of those points // If the point is exactly at one point of the grid of the source // image, then don't interpolate -- just assign the pixel // d1,d2,d3,d4 are positive -- no need for abs() if (d1 < wxROTATE_EPSILON) { unsigned char *p = data[y1] + (3 * x1); *(dst++) = *(p++); *(dst++) = *(p++); *(dst++) = *p; if (has_alpha) *(alpha_dst++) = *(alpha[y1] + x1); } else if (d2 < wxROTATE_EPSILON) { unsigned char *p = data[y1] + (3 * x2); *(dst++) = *(p++); *(dst++) = *(p++); *(dst++) = *p; if (has_alpha) *(alpha_dst++) = *(alpha[y1] + x2); } else if (d3 < wxROTATE_EPSILON) { unsigned char *p = data[y2] + (3 * x2); *(dst++) = *(p++); *(dst++) = *(p++); *(dst++) = *p; if (has_alpha) *(alpha_dst++) = *(alpha[y2] + x2); } else if (d4 < wxROTATE_EPSILON) { unsigned char *p = data[y2] + (3 * x1); *(dst++) = *(p++); *(dst++) = *(p++); *(dst++) = *p; if (has_alpha) *(alpha_dst++) = *(alpha[y2] + x1); } else { // weights for the weighted average are proportional to the inverse of the distance unsigned char *v1 = data[y1] + (3 * x1); unsigned char *v2 = data[y1] + (3 * x2); unsigned char *v3 = data[y2] + (3 * x2); unsigned char *v4 = data[y2] + (3 * x1); const double w1 = 1/d1, w2 = 1/d2, w3 = 1/d3, w4 = 1/d4; // GRG: Unrolled. *(dst++) = (unsigned char) ( (w1 * *(v1++) + w2 * *(v2++) + w3 * *(v3++) + w4 * *(v4++)) / (w1 + w2 + w3 + w4) ); *(dst++) = (unsigned char) ( (w1 * *(v1++) + w2 * *(v2++) + w3 * *(v3++) + w4 * *(v4++)) / (w1 + w2 + w3 + w4) ); *(dst++) = (unsigned char) ( (w1 * *v1 + w2 * *v2 + w3 * *v3 + w4 * *v4) / (w1 + w2 + w3 + w4) ); if (has_alpha) { v1 = alpha[y1] + (x1); v2 = alpha[y1] + (x2); v3 = alpha[y2] + (x2); v4 = alpha[y2] + (x1); *(alpha_dst++) = (unsigned char) ( (w1 * *v1 + w2 * *v2 + w3 * *v3 + w4 * *v4) / (w1 + w2 + w3 + w4) ); } } } else { *(dst++) = blank_r; *(dst++) = blank_g; *(dst++) = blank_b; if (has_alpha) *(alpha_dst++) = 0; } } } } else // not interpolating { for (int y = 0; y < rH; y++) { for (int x = 0; x < rW; x++) { wxRealPoint src = wxRotatePoint (x + x1a, y + y1a, cos_angle, -sin_angle, p0); const int xs = wxRound (src.x); // wxRound rounds to the const int ys = wxRound (src.y); // closest integer if (0 <= xs && xs < w && 0 <= ys && ys < h) { unsigned char *p = data[ys] + (3 * xs); *(dst++) = *(p++); *(dst++) = *(p++); *(dst++) = *p; if (has_alpha) *(alpha_dst++) = *(alpha[ys] + (xs)); } else { *(dst++) = blank_r; *(dst++) = blank_g; *(dst++) = blank_b; if (has_alpha) *(alpha_dst++) = 255; } } } } delete [] data; if (has_alpha) delete [] alpha; return rotated; } // A module to allow wxImage initialization/cleanup // without calling these functions from app.cpp or from // the user's application. class wxImageModule: public wxModule { DECLARE_DYNAMIC_CLASS(wxImageModule) public: wxImageModule() {} bool OnInit() { wxImage::InitStandardHandlers(); return true; } void OnExit() { wxImage::CleanUpHandlers(); } }; IMPLEMENT_DYNAMIC_CLASS(wxImageModule, wxModule) #endif // wxUSE_IMAGE