// Copyright 2008 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "VideoCommon/VertexLoaderManager.h" #include #include #include #include #include #include #include #include #include #include "Common/CommonTypes.h" #include "Common/EnumMap.h" #include "Common/Logging/Log.h" #include "Core/DolphinAnalytics.h" #include "Core/HW/Memmap.h" #include "Core/System.h" #include "VideoCommon/AbstractGfx.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/DataReader.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/VertexLoaderBase.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace VertexLoaderManager { // Used by zfreeze std::array position_matrix_index_cache; // 3 vertices, 4 floats each to allow SIMD overwrite alignas(sizeof(std::array)) std::array, 3> position_cache; alignas(sizeof(std::array)) std::array normal_cache; alignas(sizeof(std::array)) std::array tangent_cache; alignas(sizeof(std::array)) std::array binormal_cache; static NativeVertexFormatMap s_native_vertex_map; static NativeVertexFormat* s_current_vtx_fmt; u32 g_current_components; typedef std::unordered_map> VertexLoaderMap; static std::mutex s_vertex_loader_map_lock; static VertexLoaderMap s_vertex_loader_map; // TODO - change into array of pointers. Keep a map of all seen so far. Common::EnumMap cached_arraybases; BitSet8 g_main_vat_dirty; BitSet8 g_preprocess_vat_dirty; bool g_bases_dirty; // Main only std::array g_main_vertex_loaders; std::array g_preprocess_vertex_loaders; bool g_needs_cp_xf_consistency_check; void Init() { MarkAllDirty(); g_main_vertex_loaders.fill(nullptr); g_preprocess_vertex_loaders.fill(nullptr); SETSTAT(g_stats.num_vertex_loaders, 0); } void Clear() { std::lock_guard lk(s_vertex_loader_map_lock); s_vertex_loader_map.clear(); s_native_vertex_map.clear(); } void UpdateVertexArrayPointers() { // Anything to update? if (!g_bases_dirty) [[likely]] return; auto& system = Core::System::GetInstance(); auto& memory = system.GetMemory(); // Some games such as Burnout 2 can put invalid addresses into // the array base registers. (see issue 8591) // But the vertex arrays with invalid addresses aren't actually enabled. // Note: Only array bases 0 through 11 are used by the Vertex loaders. // 12 through 15 are used for loading data into xfmem. // We also only update the array base if the vertex description states we are going to use it. // TODO: For memory safety, we need to check the sizes returned by GetSpanForAddress if (IsIndexed(g_main_cp_state.vtx_desc.low.Position)) { cached_arraybases[CPArray::Position] = memory.GetSpanForAddress(g_main_cp_state.array_bases[CPArray::Position]).data(); } if (IsIndexed(g_main_cp_state.vtx_desc.low.Normal)) { cached_arraybases[CPArray::Normal] = memory.GetSpanForAddress(g_main_cp_state.array_bases[CPArray::Normal]).data(); } for (u8 i = 0; i < g_main_cp_state.vtx_desc.low.Color.Size(); i++) { if (IsIndexed(g_main_cp_state.vtx_desc.low.Color[i])) { cached_arraybases[CPArray::Color0 + i] = memory.GetSpanForAddress(g_main_cp_state.array_bases[CPArray::Color0 + i]).data(); } } for (u8 i = 0; i < g_main_cp_state.vtx_desc.high.TexCoord.Size(); i++) { if (IsIndexed(g_main_cp_state.vtx_desc.high.TexCoord[i])) { cached_arraybases[CPArray::TexCoord0 + i] = memory.GetSpanForAddress(g_main_cp_state.array_bases[CPArray::TexCoord0 + i]).data(); } } g_bases_dirty = false; } void MarkAllDirty() { g_bases_dirty = true; g_main_vat_dirty = BitSet8::AllTrue(8); g_preprocess_vat_dirty = BitSet8::AllTrue(8); g_needs_cp_xf_consistency_check = true; } NativeVertexFormat* GetOrCreateMatchingFormat(const PortableVertexDeclaration& decl) { auto iter = s_native_vertex_map.find(decl); if (iter == s_native_vertex_map.end()) { std::unique_ptr fmt = g_gfx->CreateNativeVertexFormat(decl); auto ipair = s_native_vertex_map.emplace(decl, std::move(fmt)); iter = ipair.first; } return iter->second.get(); } NativeVertexFormat* GetUberVertexFormat(const PortableVertexDeclaration& decl) { // The padding in the structs can cause the memcmp() in the map to create duplicates. // Avoid this by initializing the padding to zero. PortableVertexDeclaration new_decl; static_assert(std::is_trivially_copyable_v); std::memset(static_cast(&new_decl), 0, sizeof(new_decl)); new_decl.stride = decl.stride; auto MakeDummyAttribute = [](AttributeFormat& attr, ComponentFormat type, int components, bool integer) { attr.type = type; attr.components = components; attr.offset = 0; attr.enable = true; attr.integer = integer; }; auto CopyAttribute = [](AttributeFormat& attr, const AttributeFormat& src) { attr.type = src.type; attr.components = src.components; attr.offset = src.offset; attr.enable = src.enable; attr.integer = src.integer; }; if (decl.position.enable) CopyAttribute(new_decl.position, decl.position); else MakeDummyAttribute(new_decl.position, ComponentFormat::Float, 1, false); for (size_t i = 0; i < std::size(new_decl.normals); i++) { if (decl.normals[i].enable) CopyAttribute(new_decl.normals[i], decl.normals[i]); else MakeDummyAttribute(new_decl.normals[i], ComponentFormat::Float, 1, false); } for (size_t i = 0; i < std::size(new_decl.colors); i++) { if (decl.colors[i].enable) CopyAttribute(new_decl.colors[i], decl.colors[i]); else MakeDummyAttribute(new_decl.colors[i], ComponentFormat::UByte, 4, false); } for (size_t i = 0; i < std::size(new_decl.texcoords); i++) { if (decl.texcoords[i].enable) CopyAttribute(new_decl.texcoords[i], decl.texcoords[i]); else MakeDummyAttribute(new_decl.texcoords[i], ComponentFormat::Float, 1, false); } if (decl.posmtx.enable) CopyAttribute(new_decl.posmtx, decl.posmtx); else MakeDummyAttribute(new_decl.posmtx, ComponentFormat::UByte, 1, true); return GetOrCreateMatchingFormat(new_decl); } namespace detail { template VertexLoaderBase* GetOrCreateLoader(int vtx_attr_group) { constexpr CPState* state = IsPreprocess ? &g_preprocess_cp_state : &g_main_cp_state; constexpr BitSet8& attr_dirty = IsPreprocess ? g_preprocess_vat_dirty : g_main_vat_dirty; constexpr auto& vertex_loaders = IsPreprocess ? g_preprocess_vertex_loaders : g_main_vertex_loaders; VertexLoaderBase* loader; // We are not allowed to create a native vertex format on preprocessing as this is on the wrong // thread bool check_for_native_format = !IsPreprocess; VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]); std::lock_guard lk(s_vertex_loader_map_lock); VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid); if (iter != s_vertex_loader_map.end()) { loader = iter->second.get(); check_for_native_format &= !loader->m_native_vertex_format; } else { auto [it, added] = s_vertex_loader_map.try_emplace( uid, VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group])); loader = it->second.get(); INCSTAT(g_stats.num_vertex_loaders); } if (check_for_native_format) { // search for a cached native vertex format loader->m_native_vertex_format = GetOrCreateMatchingFormat(loader->m_native_vtx_decl); } vertex_loaders[vtx_attr_group] = loader; attr_dirty[vtx_attr_group] = false; return loader; } } // namespace detail static void CheckCPConfiguration(int vtx_attr_group) { // Validate that the XF input configuration matches the CP configuration u32 num_cp_colors = std::count_if( g_main_cp_state.vtx_desc.low.Color.begin(), g_main_cp_state.vtx_desc.low.Color.end(), [](auto format) { return format != VertexComponentFormat::NotPresent; }); u32 num_cp_tex_coords = std::count_if( g_main_cp_state.vtx_desc.high.TexCoord.begin(), g_main_cp_state.vtx_desc.high.TexCoord.end(), [](auto format) { return format != VertexComponentFormat::NotPresent; }); u32 num_cp_normals; if (g_main_cp_state.vtx_desc.low.Normal == VertexComponentFormat::NotPresent) num_cp_normals = 0; else if (g_main_cp_state.vtx_attr[vtx_attr_group].g0.NormalElements == NormalComponentCount::NTB) num_cp_normals = 3; else num_cp_normals = 1; std::optional num_xf_normals; switch (xfmem.invtxspec.numnormals) { case NormalCount::None: num_xf_normals = 0; break; case NormalCount::Normal: num_xf_normals = 1; break; case NormalCount::NormalTangentBinormal: case NormalCount::Invalid: // see https://bugs.dolphin-emu.org/issues/13070 num_xf_normals = 3; break; } if (num_cp_colors != xfmem.invtxspec.numcolors || num_cp_normals != num_xf_normals || num_cp_tex_coords != xfmem.invtxspec.numtextures) [[unlikely]] { PanicAlertFmt("Mismatched configuration between CP and XF stages - {}/{} colors, {}/{} " "normals, {}/{} texture coordinates. Please report on the issue tracker.\n\n" "VCD: {:08x} {:08x}\nVAT {}: {:08x} {:08x} {:08x}\nXF vertex spec: {:08x}", num_cp_colors, xfmem.invtxspec.numcolors, num_cp_normals, num_xf_normals.has_value() ? fmt::to_string(num_xf_normals.value()) : "invalid", num_cp_tex_coords, xfmem.invtxspec.numtextures, g_main_cp_state.vtx_desc.low.Hex, g_main_cp_state.vtx_desc.high.Hex, vtx_attr_group, g_main_cp_state.vtx_attr[vtx_attr_group].g0.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g1.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g2.Hex, xfmem.invtxspec.hex); // Analytics reporting so we can discover which games have this problem, that way when we // eventually simulate the behavior we have test cases for it. if (num_cp_colors != xfmem.invtxspec.numcolors) [[unlikely]] { DolphinAnalytics::Instance().ReportGameQuirk( GameQuirk::MISMATCHED_GPU_COLORS_BETWEEN_CP_AND_XF); } if (num_cp_normals != num_xf_normals) [[unlikely]] { DolphinAnalytics::Instance().ReportGameQuirk( GameQuirk::MISMATCHED_GPU_NORMALS_BETWEEN_CP_AND_XF); } if (num_cp_tex_coords != xfmem.invtxspec.numtextures) [[unlikely]] { DolphinAnalytics::Instance().ReportGameQuirk( GameQuirk::MISMATCHED_GPU_TEX_COORDS_BETWEEN_CP_AND_XF); } // Don't bail out, though; we can still render something successfully // (real hardware seems to hang in this case, though) } if (g_main_cp_state.matrix_index_a.Hex != xfmem.MatrixIndexA.Hex || g_main_cp_state.matrix_index_b.Hex != xfmem.MatrixIndexB.Hex) [[unlikely]] { WARN_LOG_FMT(VIDEO, "Mismatched matrix index configuration between CP and XF stages - " "index A: {:08x}/{:08x}, index B {:08x}/{:08x}.", g_main_cp_state.matrix_index_a.Hex, xfmem.MatrixIndexA.Hex, g_main_cp_state.matrix_index_b.Hex, xfmem.MatrixIndexB.Hex); DolphinAnalytics::Instance().ReportGameQuirk( GameQuirk::MISMATCHED_GPU_MATRIX_INDICES_BETWEEN_CP_AND_XF); } if (g_main_cp_state.vtx_attr[vtx_attr_group].g0.PosFormat >= ComponentFormat::InvalidFloat5) { WARN_LOG_FMT(VIDEO, "Invalid position format {} for VAT {} - {:08x} {:08x} {:08x}", g_main_cp_state.vtx_attr[vtx_attr_group].g0.PosFormat, vtx_attr_group, g_main_cp_state.vtx_attr[vtx_attr_group].g0.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g1.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g2.Hex); DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::INVALID_POSITION_COMPONENT_FORMAT); } if (g_main_cp_state.vtx_attr[vtx_attr_group].g0.NormalFormat >= ComponentFormat::InvalidFloat5) { WARN_LOG_FMT(VIDEO, "Invalid normal format {} for VAT {} - {:08x} {:08x} {:08x}", g_main_cp_state.vtx_attr[vtx_attr_group].g0.NormalFormat, vtx_attr_group, g_main_cp_state.vtx_attr[vtx_attr_group].g0.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g1.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g2.Hex); DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::INVALID_NORMAL_COMPONENT_FORMAT); } for (size_t i = 0; i < 8; i++) { if (g_main_cp_state.vtx_attr[vtx_attr_group].GetTexFormat(i) >= ComponentFormat::InvalidFloat5) { WARN_LOG_FMT(VIDEO, "Invalid texture coordinate {} format {} for VAT {} - {:08x} {:08x} {:08x}", i, g_main_cp_state.vtx_attr[vtx_attr_group].GetTexFormat(i), vtx_attr_group, g_main_cp_state.vtx_attr[vtx_attr_group].g0.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g1.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g2.Hex); DolphinAnalytics::Instance().ReportGameQuirk( GameQuirk::INVALID_TEXTURE_COORDINATE_COMPONENT_FORMAT); } } for (size_t i = 0; i < 2; i++) { if (g_main_cp_state.vtx_attr[vtx_attr_group].GetColorFormat(i) > ColorFormat::RGBA8888) { WARN_LOG_FMT(VIDEO, "Invalid color {} format {} for VAT {} - {:08x} {:08x} {:08x}", i, g_main_cp_state.vtx_attr[vtx_attr_group].GetColorFormat(i), vtx_attr_group, g_main_cp_state.vtx_attr[vtx_attr_group].g0.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g1.Hex, g_main_cp_state.vtx_attr[vtx_attr_group].g2.Hex); DolphinAnalytics::Instance().ReportGameQuirk(GameQuirk::INVALID_COLOR_COMPONENT_FORMAT); } } } template int RunVertices(int vtx_attr_group, OpcodeDecoder::Primitive primitive, int count, const u8* src) { if (count == 0) [[unlikely]] return 0; ASSERT(count > 0); VertexLoaderBase* loader = RefreshLoader(vtx_attr_group); int size = count * loader->m_vertex_size; if constexpr (!IsPreprocess) { // Doing early return for the opposite case would be cleaner // but triggers a false unreachable code warning in MSVC debug builds. if (g_needs_cp_xf_consistency_check) [[unlikely]] { CheckCPConfiguration(vtx_attr_group); g_needs_cp_xf_consistency_check = false; } // If the native vertex format changed, force a flush. if (loader->m_native_vertex_format != s_current_vtx_fmt || loader->m_native_components != g_current_components) [[unlikely]] { g_vertex_manager->Flush(); s_current_vtx_fmt = loader->m_native_vertex_format; g_current_components = loader->m_native_components; auto& system = Core::System::GetInstance(); auto& vertex_shader_manager = system.GetVertexShaderManager(); vertex_shader_manager.SetVertexFormat(loader->m_native_components, loader->m_native_vertex_format->GetVertexDeclaration()); } // CPUCull's performance increase comes from encoding fewer GPU commands, not sending less data // Therefore it's only useful to check if culling could remove a flush const bool can_cpu_cull = g_ActiveConfig.bCPUCull && primitive < OpcodeDecoder::Primitive::GX_DRAW_LINES && !g_vertex_manager->HasSendableVertices(); // if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads. // They still need to go through vertex loading, because we need to calculate a zfreeze // reference slope. const bool cullall = (bpmem.genMode.cullmode == CullMode::All && primitive < OpcodeDecoder::Primitive::GX_DRAW_LINES); const int stride = loader->m_native_vtx_decl.stride; DataReader dst = g_vertex_manager->PrepareForAdditionalData(primitive, count, stride, cullall || can_cpu_cull); count = loader->RunVertices(src, dst.GetPointer(), count); if (can_cpu_cull && !cullall) { if (!g_vertex_manager->AreAllVerticesCulled(loader, primitive, dst.GetPointer(), count)) { DataReader new_dst = g_vertex_manager->DisableCullAll(stride); memmove(new_dst.GetPointer(), dst.GetPointer(), count * stride); } } g_vertex_manager->AddIndices(primitive, count); g_vertex_manager->FlushData(count, loader->m_native_vtx_decl.stride); ADDSTAT(g_stats.this_frame.num_prims, count); INCSTAT(g_stats.this_frame.num_primitive_joins); } return size; } template int RunVertices(int vtx_attr_group, OpcodeDecoder::Primitive primitive, int count, const u8* src); template int RunVertices(int vtx_attr_group, OpcodeDecoder::Primitive primitive, int count, const u8* src); NativeVertexFormat* GetCurrentVertexFormat() { return s_current_vtx_fmt; } } // namespace VertexLoaderManager