// Copyright 2016 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include "VideoBackends/Vulkan/ObjectCache.h"

#include <algorithm>
#include <sstream>
#include <type_traits>
#include <xxhash.h>

#include "Common/Assert.h"
#include "Common/CommonFuncs.h"
#include "Common/LinearDiskCache.h"
#include "Common/MsgHandler.h"

#include "Core/ConfigManager.h"

#include "VideoBackends/Vulkan/ShaderCompiler.h"
#include "VideoBackends/Vulkan/StreamBuffer.h"
#include "VideoBackends/Vulkan/Util.h"
#include "VideoBackends/Vulkan/VertexFormat.h"
#include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/Statistics.h"

namespace Vulkan
{
std::unique_ptr<ObjectCache> g_object_cache;

ObjectCache::ObjectCache()
{
}

ObjectCache::~ObjectCache()
{
  DestroyPipelineCache();
  DestroyShaderCaches();
  DestroySharedShaders();
  DestroySamplers();
  DestroyPipelineLayouts();
  DestroyDescriptorSetLayouts();
}

bool ObjectCache::Initialize()
{
  if (!CreateDescriptorSetLayouts())
    return false;

  if (!CreatePipelineLayouts())
    return false;

  LoadShaderCaches();
  if (!CreatePipelineCache(true))
    return false;

  if (!CreateUtilityShaderVertexFormat())
    return false;

  if (!CreateStaticSamplers())
    return false;

  if (!CompileSharedShaders())
    return false;

  m_utility_shader_vertex_buffer =
      StreamBuffer::Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, 1024 * 1024, 4 * 1024 * 1024);
  m_utility_shader_uniform_buffer =
      StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, 1024, 4 * 1024 * 1024);
  if (!m_utility_shader_vertex_buffer || !m_utility_shader_uniform_buffer)
    return false;

  return true;
}

static VkPipelineRasterizationStateCreateInfo
GetVulkanRasterizationState(const RasterizationState& state)
{
  return {
      VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,  // VkStructureType sType
      nullptr,                  // const void*                               pNext
      0,                        // VkPipelineRasterizationStateCreateFlags   flags
      state.depth_clamp,        // VkBool32                                  depthClampEnable
      VK_FALSE,                 // VkBool32                                  rasterizerDiscardEnable
      VK_POLYGON_MODE_FILL,     // VkPolygonMode                             polygonMode
      state.cull_mode,          // VkCullModeFlags                           cullMode
      VK_FRONT_FACE_CLOCKWISE,  // VkFrontFace                               frontFace
      VK_FALSE,                 // VkBool32                                  depthBiasEnable
      0.0f,                     // float                                     depthBiasConstantFactor
      0.0f,                     // float                                     depthBiasClamp
      0.0f,                     // float                                     depthBiasSlopeFactor
      1.0f                      // float                                     lineWidth
  };
}

static VkPipelineMultisampleStateCreateInfo
GetVulkanMultisampleState(const RasterizationState& rs_state)
{
  return {
      VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,  // VkStructureType sType
      nullptr,                      // const void*                              pNext
      0,                            // VkPipelineMultisampleStateCreateFlags    flags
      rs_state.samples,             // VkSampleCountFlagBits                    rasterizationSamples
      rs_state.per_sample_shading,  // VkBool32                                 sampleShadingEnable
      1.0f,                         // float                                    minSampleShading
      nullptr,                      // const VkSampleMask*                      pSampleMask;
      VK_FALSE,  // VkBool32                                 alphaToCoverageEnable
      VK_FALSE   // VkBool32                                 alphaToOneEnable
  };
}

static VkPipelineDepthStencilStateCreateInfo
GetVulkanDepthStencilState(const DepthStencilState& state)
{
  return {
      VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,  // VkStructureType sType
      nullptr,             // const void*                               pNext
      0,                   // VkPipelineDepthStencilStateCreateFlags    flags
      state.test_enable,   // VkBool32                                  depthTestEnable
      state.write_enable,  // VkBool32                                  depthWriteEnable
      state.compare_op,    // VkCompareOp                               depthCompareOp
      VK_FALSE,            // VkBool32                                  depthBoundsTestEnable
      VK_FALSE,            // VkBool32                                  stencilTestEnable
      {},                  // VkStencilOpState                          front
      {},                  // VkStencilOpState                          back
      0.0f,                // float                                     minDepthBounds
      1.0f                 // float                                     maxDepthBounds
  };
}

static VkPipelineColorBlendAttachmentState GetVulkanAttachmentBlendState(const BlendState& state)
{
  VkPipelineColorBlendAttachmentState vk_state = {
      state.blend_enable,     // VkBool32                                  blendEnable
      state.src_blend,        // VkBlendFactor                             srcColorBlendFactor
      state.dst_blend,        // VkBlendFactor                             dstColorBlendFactor
      state.blend_op,         // VkBlendOp                                 colorBlendOp
      state.src_alpha_blend,  // VkBlendFactor                             srcAlphaBlendFactor
      state.dst_alpha_blend,  // VkBlendFactor                             dstAlphaBlendFactor
      state.alpha_blend_op,   // VkBlendOp                                 alphaBlendOp
      state.write_mask        // VkColorComponentFlags                     colorWriteMask
  };

  return vk_state;
}

static VkPipelineColorBlendStateCreateInfo
GetVulkanColorBlendState(const BlendState& state,
                         const VkPipelineColorBlendAttachmentState* attachments,
                         uint32_t num_attachments)
{
  VkPipelineColorBlendStateCreateInfo vk_state = {
      VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,  // VkStructureType sType
      nullptr,                  // const void*                                   pNext
      0,                        // VkPipelineColorBlendStateCreateFlags          flags
      state.logic_op_enable,    // VkBool32                                      logicOpEnable
      state.logic_op,           // VkLogicOp                                     logicOp
      num_attachments,          // uint32_t                                      attachmentCount
      attachments,              // const VkPipelineColorBlendAttachmentState*    pAttachments
      {1.0f, 1.0f, 1.0f, 1.0f}  // float                                         blendConstants[4]
  };

  return vk_state;
}

VkPipeline ObjectCache::CreatePipeline(const PipelineInfo& info)
{
  // Declare descriptors for empty vertex buffers/attributes
  static const VkPipelineVertexInputStateCreateInfo empty_vertex_input_state = {
      VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,  // VkStructureType sType
      nullptr,  // const void*                                pNext
      0,        // VkPipelineVertexInputStateCreateFlags       flags
      0,        // uint32_t                                    vertexBindingDescriptionCount
      nullptr,  // const VkVertexInputBindingDescription*      pVertexBindingDescriptions
      0,        // uint32_t                                    vertexAttributeDescriptionCount
      nullptr   // const VkVertexInputAttributeDescription*    pVertexAttributeDescriptions
  };

  // Vertex inputs
  const VkPipelineVertexInputStateCreateInfo& vertex_input_state =
      info.vertex_format ? info.vertex_format->GetVertexInputStateInfo() : empty_vertex_input_state;

  // Input assembly
  VkPipelineInputAssemblyStateCreateInfo input_assembly_state = {
      VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,  // VkStructureType sType
      nullptr,                  // const void*                                pNext
      0,                        // VkPipelineInputAssemblyStateCreateFlags    flags
      info.primitive_topology,  // VkPrimitiveTopology                        topology
      VK_TRUE                   // VkBool32                                   primitiveRestartEnable
  };

  // Shaders to stages
  VkPipelineShaderStageCreateInfo shader_stages[3];
  uint32_t num_shader_stages = 0;
  if (info.vs != VK_NULL_HANDLE)
  {
    shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                                          nullptr,
                                          0,
                                          VK_SHADER_STAGE_VERTEX_BIT,
                                          info.vs,
                                          "main"};
  }
  if (info.gs != VK_NULL_HANDLE)
  {
    shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                                          nullptr,
                                          0,
                                          VK_SHADER_STAGE_GEOMETRY_BIT,
                                          info.gs,
                                          "main"};
  }
  if (info.ps != VK_NULL_HANDLE)
  {
    shader_stages[num_shader_stages++] = {VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
                                          nullptr,
                                          0,
                                          VK_SHADER_STAGE_FRAGMENT_BIT,
                                          info.ps,
                                          "main"};
  }

  // Fill in Vulkan descriptor structs from our state structures.
  VkPipelineRasterizationStateCreateInfo rasterization_state =
      GetVulkanRasterizationState(info.rasterization_state);
  VkPipelineMultisampleStateCreateInfo multisample_state =
      GetVulkanMultisampleState(info.rasterization_state);
  VkPipelineDepthStencilStateCreateInfo depth_stencil_state =
      GetVulkanDepthStencilState(info.depth_stencil_state);
  VkPipelineColorBlendAttachmentState blend_attachment_state =
      GetVulkanAttachmentBlendState(info.blend_state);
  VkPipelineColorBlendStateCreateInfo blend_state =
      GetVulkanColorBlendState(info.blend_state, &blend_attachment_state, 1);

  // This viewport isn't used, but needs to be specified anyway.
  static const VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f};
  static const VkRect2D scissor = {{0, 0}, {1, 1}};
  static const VkPipelineViewportStateCreateInfo viewport_state = {
      VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
      nullptr,
      0,          // VkPipelineViewportStateCreateFlags    flags;
      1,          // uint32_t                              viewportCount
      &viewport,  // const VkViewport*                     pViewports
      1,          // uint32_t                              scissorCount
      &scissor    // const VkRect2D*                       pScissors
  };

  // Set viewport and scissor dynamic state so we can change it elsewhere.
  static const VkDynamicState dynamic_states[] = {VK_DYNAMIC_STATE_VIEWPORT,
                                                  VK_DYNAMIC_STATE_SCISSOR};
  static const VkPipelineDynamicStateCreateInfo dynamic_state = {
      VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, nullptr,
      0,                                            // VkPipelineDynamicStateCreateFlags    flags
      static_cast<u32>(ArraySize(dynamic_states)),  // uint32_t dynamicStateCount
      dynamic_states  // const VkDynamicState*                pDynamicStates
  };

  // Combine to full pipeline info structure.
  VkGraphicsPipelineCreateInfo pipeline_info = {
      VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
      nullptr,                // VkStructureType sType
      0,                      // VkPipelineCreateFlags                            flags
      num_shader_stages,      // uint32_t                                         stageCount
      shader_stages,          // const VkPipelineShaderStageCreateInfo*           pStages
      &vertex_input_state,    // const VkPipelineVertexInputStateCreateInfo*      pVertexInputState
      &input_assembly_state,  // const VkPipelineInputAssemblyStateCreateInfo* pInputAssemblyState
      nullptr,                // const VkPipelineTessellationStateCreateInfo*     pTessellationState
      &viewport_state,        // const VkPipelineViewportStateCreateInfo*         pViewportState
      &rasterization_state,  // const VkPipelineRasterizationStateCreateInfo*    pRasterizationState
      &multisample_state,    // const VkPipelineMultisampleStateCreateInfo*      pMultisampleState
      &depth_stencil_state,  // const VkPipelineDepthStencilStateCreateInfo*     pDepthStencilState
      &blend_state,          // const VkPipelineColorBlendStateCreateInfo*       pColorBlendState
      &dynamic_state,        // const VkPipelineDynamicStateCreateInfo*          pDynamicState
      info.pipeline_layout,  // VkPipelineLayout                                 layout
      info.render_pass,      // VkRenderPass                                     renderPass
      0,                     // uint32_t                                         subpass
      VK_NULL_HANDLE,        // VkPipeline                                       basePipelineHandle
      -1                     // int32_t                                          basePipelineIndex
  };

  VkPipeline pipeline;
  VkResult res = vkCreateGraphicsPipelines(g_vulkan_context->GetDevice(), m_pipeline_cache, 1,
                                           &pipeline_info, nullptr, &pipeline);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkCreateGraphicsPipelines failed: ");
    return VK_NULL_HANDLE;
  }

  return pipeline;
}

VkPipeline ObjectCache::GetPipeline(const PipelineInfo& info)
{
  return GetPipelineWithCacheResult(info).first;
}

std::pair<VkPipeline, bool> ObjectCache::GetPipelineWithCacheResult(const PipelineInfo& info)
{
  auto iter = m_pipeline_objects.find(info);
  if (iter != m_pipeline_objects.end())
    return {iter->second, true};

  VkPipeline pipeline = CreatePipeline(info);
  m_pipeline_objects.emplace(info, pipeline);
  return {pipeline, false};
}

std::string ObjectCache::GetDiskCacheFileName(const char* type)
{
  return StringFromFormat("%svulkan-%s-%s.cache", File::GetUserPath(D_SHADERCACHE_IDX).c_str(),
                          SConfig::GetInstance().m_strGameID.c_str(), type);
}

class PipelineCacheReadCallback : public LinearDiskCacheReader<u32, u8>
{
public:
  PipelineCacheReadCallback(std::vector<u8>* data) : m_data(data) {}
  void Read(const u32& key, const u8* value, u32 value_size) override
  {
    m_data->resize(value_size);
    if (value_size > 0)
      memcpy(m_data->data(), value, value_size);
  }

private:
  std::vector<u8>* m_data;
};

class PipelineCacheReadIgnoreCallback : public LinearDiskCacheReader<u32, u8>
{
public:
  void Read(const u32& key, const u8* value, u32 value_size) override {}
};

bool ObjectCache::CreatePipelineCache(bool load_from_disk)
{
  // We have to keep the pipeline cache file name around since when we save it
  // we delete the old one, by which time the game's unique ID is already cleared.
  m_pipeline_cache_filename = GetDiskCacheFileName("pipeline");

  std::vector<u8> disk_data;
  if (load_from_disk)
  {
    LinearDiskCache<u32, u8> disk_cache;
    PipelineCacheReadCallback read_callback(&disk_data);
    if (disk_cache.OpenAndRead(m_pipeline_cache_filename, read_callback) != 1)
      disk_data.clear();
  }

  if (!disk_data.empty() && !ValidatePipelineCache(disk_data.data(), disk_data.size()))
  {
    // Don't use this data. In fact, we should delete it to prevent it from being used next time.
    File::Delete(m_pipeline_cache_filename);
    disk_data.clear();
  }

  VkPipelineCacheCreateInfo info = {
      VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO,  // VkStructureType            sType
      nullptr,                                       // const void*                pNext
      0,                                             // VkPipelineCacheCreateFlags flags
      disk_data.size(),                              // size_t                     initialDataSize
      !disk_data.empty() ? disk_data.data() : nullptr,  // const void*                pInitialData
  };

  VkResult res =
      vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache);
  if (res == VK_SUCCESS)
    return true;

  // Failed to create pipeline cache, try with it empty.
  LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed, trying empty cache: ");
  info.initialDataSize = 0;
  info.pInitialData = nullptr;
  res = vkCreatePipelineCache(g_vulkan_context->GetDevice(), &info, nullptr, &m_pipeline_cache);
  if (res == VK_SUCCESS)
    return true;

  LOG_VULKAN_ERROR(res, "vkCreatePipelineCache failed: ");
  return false;
}

// Based on Vulkan 1.0 specification,
// Table 9.1. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE
// NOTE: This data is assumed to be in little-endian format.
#pragma pack(push, 4)
struct VK_PIPELINE_CACHE_HEADER
{
  u32 header_length;
  u32 header_version;
  u32 vendor_id;
  u32 device_id;
  u8 uuid[VK_UUID_SIZE];
};
#pragma pack(pop)
// TODO: Remove the #if here when GCC 5 is a minimum build requirement.
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
static_assert(std::has_trivial_copy_constructor<VK_PIPELINE_CACHE_HEADER>::value,
              "VK_PIPELINE_CACHE_HEADER must be trivially copyable");
#else
static_assert(std::is_trivially_copyable<VK_PIPELINE_CACHE_HEADER>::value,
              "VK_PIPELINE_CACHE_HEADER must be trivially copyable");
#endif

bool ObjectCache::ValidatePipelineCache(const u8* data, size_t data_length)
{
  if (data_length < sizeof(VK_PIPELINE_CACHE_HEADER))
  {
    ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header");
    return false;
  }

  VK_PIPELINE_CACHE_HEADER header;
  std::memcpy(&header, data, sizeof(header));
  if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER))
  {
    ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header length");
    return false;
  }

  if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
  {
    ERROR_LOG(VIDEO, "Pipeline cache failed validation: Invalid header version");
    return false;
  }

  if (header.vendor_id != g_vulkan_context->GetDeviceProperties().vendorID)
  {
    ERROR_LOG(VIDEO,
              "Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)",
              header.vendor_id, g_vulkan_context->GetDeviceProperties().vendorID);
    return false;
  }

  if (header.device_id != g_vulkan_context->GetDeviceProperties().deviceID)
  {
    ERROR_LOG(VIDEO,
              "Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)",
              header.device_id, g_vulkan_context->GetDeviceProperties().deviceID);
    return false;
  }

  if (std::memcmp(header.uuid, g_vulkan_context->GetDeviceProperties().pipelineCacheUUID,
                  VK_UUID_SIZE) != 0)
  {
    ERROR_LOG(VIDEO, "Pipeline cache failed validation: Incorrect UUID");
    return false;
  }

  return true;
}

void ObjectCache::DestroyPipelineCache()
{
  for (const auto& it : m_pipeline_objects)
  {
    if (it.second != VK_NULL_HANDLE)
      vkDestroyPipeline(g_vulkan_context->GetDevice(), it.second, nullptr);
  }
  m_pipeline_objects.clear();

  vkDestroyPipelineCache(g_vulkan_context->GetDevice(), m_pipeline_cache, nullptr);
  m_pipeline_cache = VK_NULL_HANDLE;
}

void ObjectCache::SavePipelineCache()
{
  size_t data_size;
  VkResult res =
      vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size, nullptr);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: ");
    return;
  }

  std::vector<u8> data(data_size);
  res = vkGetPipelineCacheData(g_vulkan_context->GetDevice(), m_pipeline_cache, &data_size,
                               data.data());
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData failed: ");
    return;
  }

  // Delete the old cache and re-create.
  File::Delete(m_pipeline_cache_filename);

  // We write a single key of 1, with the entire pipeline cache data.
  // Not ideal, but our disk cache class does not support just writing a single blob
  // of data without specifying a key.
  LinearDiskCache<u32, u8> disk_cache;
  PipelineCacheReadIgnoreCallback callback;
  disk_cache.OpenAndRead(m_pipeline_cache_filename, callback);
  disk_cache.Append(1, data.data(), static_cast<u32>(data.size()));
  disk_cache.Close();
}

// Cache inserter that is called back when reading from the file
template <typename Uid>
struct ShaderCacheReader : public LinearDiskCacheReader<Uid, u32>
{
  ShaderCacheReader(std::map<Uid, VkShaderModule>& shader_map) : m_shader_map(shader_map) {}
  void Read(const Uid& key, const u32* value, u32 value_size) override
  {
    // We don't insert null modules into the shader map since creation could succeed later on.
    // e.g. we're generating bad code, but fix this in a later version, and for some reason
    // the cache is not invalidated.
    VkShaderModule module = Util::CreateShaderModule(value, value_size);
    if (module == VK_NULL_HANDLE)
      return;

    m_shader_map.emplace(key, module);
  }

  std::map<Uid, VkShaderModule>& m_shader_map;
};

void ObjectCache::LoadShaderCaches()
{
  ShaderCacheReader<VertexShaderUid> vs_reader(m_vs_cache.shader_map);
  m_vs_cache.disk_cache.OpenAndRead(GetDiskCacheFileName("vs"), vs_reader);
  SETSTAT(stats.numVertexShadersCreated, static_cast<int>(m_vs_cache.shader_map.size()));
  SETSTAT(stats.numVertexShadersAlive, static_cast<int>(m_vs_cache.shader_map.size()));

  ShaderCacheReader<PixelShaderUid> ps_reader(m_ps_cache.shader_map);
  m_ps_cache.disk_cache.OpenAndRead(GetDiskCacheFileName("ps"), ps_reader);
  SETSTAT(stats.numPixelShadersCreated, static_cast<int>(m_ps_cache.shader_map.size()));
  SETSTAT(stats.numPixelShadersAlive, static_cast<int>(m_ps_cache.shader_map.size()));

  if (g_vulkan_context->SupportsGeometryShaders())
  {
    ShaderCacheReader<GeometryShaderUid> gs_reader(m_gs_cache.shader_map);
    m_gs_cache.disk_cache.OpenAndRead(GetDiskCacheFileName("gs"), gs_reader);
  }
}

template <typename T>
static void DestroyShaderCache(T& cache)
{
  cache.disk_cache.Close();
  for (const auto& it : cache.shader_map)
  {
    if (it.second != VK_NULL_HANDLE)
      vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second, nullptr);
  }
  cache.shader_map.clear();
}

void ObjectCache::DestroyShaderCaches()
{
  DestroyShaderCache(m_vs_cache);
  DestroyShaderCache(m_ps_cache);

  if (g_vulkan_context->SupportsGeometryShaders())
    DestroyShaderCache(m_gs_cache);
}

VkShaderModule ObjectCache::GetVertexShaderForUid(const VertexShaderUid& uid)
{
  auto it = m_vs_cache.shader_map.find(uid);
  if (it != m_vs_cache.shader_map.end())
    return it->second;

  // Not in the cache, so compile the shader.
  ShaderCompiler::SPIRVCodeVector spv;
  VkShaderModule module = VK_NULL_HANDLE;
  ShaderCode source_code = GenerateVertexShaderCode(APIType::Vulkan, uid.GetUidData());
  if (ShaderCompiler::CompileVertexShader(&spv, source_code.GetBuffer().c_str(),
                                          source_code.GetBuffer().length()))
  {
    module = Util::CreateShaderModule(spv.data(), spv.size());

    // Append to shader cache if it created successfully.
    if (module != VK_NULL_HANDLE)
    {
      m_vs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
      INCSTAT(stats.numVertexShadersCreated);
      INCSTAT(stats.numVertexShadersAlive);
    }
  }

  // We still insert null entries to prevent further compilation attempts.
  m_vs_cache.shader_map.emplace(uid, module);
  return module;
}

VkShaderModule ObjectCache::GetGeometryShaderForUid(const GeometryShaderUid& uid)
{
  _assert_(g_vulkan_context->SupportsGeometryShaders());
  auto it = m_gs_cache.shader_map.find(uid);
  if (it != m_gs_cache.shader_map.end())
    return it->second;

  // Not in the cache, so compile the shader.
  ShaderCompiler::SPIRVCodeVector spv;
  VkShaderModule module = VK_NULL_HANDLE;
  ShaderCode source_code = GenerateGeometryShaderCode(APIType::Vulkan, uid.GetUidData());
  if (ShaderCompiler::CompileGeometryShader(&spv, source_code.GetBuffer().c_str(),
                                            source_code.GetBuffer().length()))
  {
    module = Util::CreateShaderModule(spv.data(), spv.size());

    // Append to shader cache if it created successfully.
    if (module != VK_NULL_HANDLE)
      m_gs_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
  }

  // We still insert null entries to prevent further compilation attempts.
  m_gs_cache.shader_map.emplace(uid, module);
  return module;
}

VkShaderModule ObjectCache::GetPixelShaderForUid(const PixelShaderUid& uid)
{
  auto it = m_ps_cache.shader_map.find(uid);
  if (it != m_ps_cache.shader_map.end())
    return it->second;

  // Not in the cache, so compile the shader.
  ShaderCompiler::SPIRVCodeVector spv;
  VkShaderModule module = VK_NULL_HANDLE;
  ShaderCode source_code = GeneratePixelShaderCode(APIType::Vulkan, uid.GetUidData());
  if (ShaderCompiler::CompileFragmentShader(&spv, source_code.GetBuffer().c_str(),
                                            source_code.GetBuffer().length()))
  {
    module = Util::CreateShaderModule(spv.data(), spv.size());

    // Append to shader cache if it created successfully.
    if (module != VK_NULL_HANDLE)
    {
      m_ps_cache.disk_cache.Append(uid, spv.data(), static_cast<u32>(spv.size()));
      INCSTAT(stats.numPixelShadersCreated);
      INCSTAT(stats.numPixelShadersAlive);
    }
  }

  // We still insert null entries to prevent further compilation attempts.
  m_ps_cache.shader_map.emplace(uid, module);
  return module;
}

void ObjectCache::ClearSamplerCache()
{
  for (const auto& it : m_sampler_cache)
  {
    if (it.second != VK_NULL_HANDLE)
      vkDestroySampler(g_vulkan_context->GetDevice(), it.second, nullptr);
  }
  m_sampler_cache.clear();
}

void ObjectCache::DestroySamplers()
{
  ClearSamplerCache();

  if (m_point_sampler != VK_NULL_HANDLE)
  {
    vkDestroySampler(g_vulkan_context->GetDevice(), m_point_sampler, nullptr);
    m_point_sampler = VK_NULL_HANDLE;
  }

  if (m_linear_sampler != VK_NULL_HANDLE)
  {
    vkDestroySampler(g_vulkan_context->GetDevice(), m_linear_sampler, nullptr);
    m_linear_sampler = VK_NULL_HANDLE;
  }
}

void ObjectCache::RecompileSharedShaders()
{
  DestroySharedShaders();
  if (!CompileSharedShaders())
    PanicAlert("Failed to recompile shared shaders.");
}

bool ObjectCache::CreateDescriptorSetLayouts()
{
  static const VkDescriptorSetLayoutBinding ubo_set_bindings[] = {
      {UBO_DESCRIPTOR_SET_BINDING_PS, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1,
       VK_SHADER_STAGE_FRAGMENT_BIT},
      {UBO_DESCRIPTOR_SET_BINDING_VS, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1,
       VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT},
      {UBO_DESCRIPTOR_SET_BINDING_GS, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1,
       VK_SHADER_STAGE_GEOMETRY_BIT}};

  // Annoying these have to be split, apparently we can't partially update an array without the
  // validation layers throwing a warning.
  static const VkDescriptorSetLayoutBinding sampler_set_bindings[] = {
      {0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {1, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {2, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {3, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {4, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {5, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {6, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
      {7, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}};

  static const VkDescriptorSetLayoutBinding ssbo_set_bindings[] = {
      {0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT}};

  static const VkDescriptorSetLayoutBinding texel_buffer_set_bindings[] = {
      {0, VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 1, VK_SHADER_STAGE_FRAGMENT_BIT},
  };

  static const VkDescriptorSetLayoutCreateInfo create_infos[NUM_DESCRIPTOR_SET_LAYOUTS] = {
      {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(ubo_set_bindings)), ubo_set_bindings},
      {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(sampler_set_bindings)), sampler_set_bindings},
      {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(ssbo_set_bindings)), ssbo_set_bindings},
      {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(texel_buffer_set_bindings)), texel_buffer_set_bindings}};

  for (size_t i = 0; i < NUM_DESCRIPTOR_SET_LAYOUTS; i++)
  {
    VkResult res = vkCreateDescriptorSetLayout(g_vulkan_context->GetDevice(), &create_infos[i],
                                               nullptr, &m_descriptor_set_layouts[i]);
    if (res != VK_SUCCESS)
    {
      LOG_VULKAN_ERROR(res, "vkCreateDescriptorSetLayout failed: ");
      return false;
    }
  }

  return true;
}

void ObjectCache::DestroyDescriptorSetLayouts()
{
  for (VkDescriptorSetLayout layout : m_descriptor_set_layouts)
  {
    if (layout != VK_NULL_HANDLE)
      vkDestroyDescriptorSetLayout(g_vulkan_context->GetDevice(), layout, nullptr);
  }
}

bool ObjectCache::CreatePipelineLayouts()
{
  VkResult res;

  // Descriptor sets for each pipeline layout
  VkDescriptorSetLayout standard_sets[] = {
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_UNIFORM_BUFFERS],
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_PIXEL_SHADER_SAMPLERS]};
  VkDescriptorSetLayout bbox_sets[] = {
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_UNIFORM_BUFFERS],
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_PIXEL_SHADER_SAMPLERS],
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_SHADER_STORAGE_BUFFERS]};
  VkDescriptorSetLayout texture_conversion_sets[] = {
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_UNIFORM_BUFFERS],
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_PIXEL_SHADER_SAMPLERS],
      m_descriptor_set_layouts[DESCRIPTOR_SET_LAYOUT_TEXEL_BUFFERS]};
  VkPushConstantRange push_constant_range = {
      VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, PUSH_CONSTANT_BUFFER_SIZE};

  // Info for each pipeline layout
  VkPipelineLayoutCreateInfo pipeline_layout_info[NUM_PIPELINE_LAYOUTS] = {
      // Standard
      {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(standard_sets)), standard_sets, 0, nullptr},

      // BBox
      {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(bbox_sets)), bbox_sets, 0, nullptr},

      // Push Constant
      {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(standard_sets)), standard_sets, 1, &push_constant_range},

      // Texture Conversion
      {VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0,
       static_cast<u32>(ArraySize(texture_conversion_sets)), texture_conversion_sets, 1,
       &push_constant_range}};

  for (size_t i = 0; i < NUM_PIPELINE_LAYOUTS; i++)
  {
    if ((res = vkCreatePipelineLayout(g_vulkan_context->GetDevice(), &pipeline_layout_info[i],
                                      nullptr, &m_pipeline_layouts[i])) != VK_SUCCESS)
    {
      LOG_VULKAN_ERROR(res, "vkCreatePipelineLayout failed: ");
      return false;
    }
  }

  return true;
}

void ObjectCache::DestroyPipelineLayouts()
{
  for (VkPipelineLayout layout : m_pipeline_layouts)
  {
    if (layout != VK_NULL_HANDLE)
      vkDestroyPipelineLayout(g_vulkan_context->GetDevice(), layout, nullptr);
  }
}

bool ObjectCache::CreateUtilityShaderVertexFormat()
{
  PortableVertexDeclaration vtx_decl = {};
  vtx_decl.position.enable = true;
  vtx_decl.position.type = VAR_FLOAT;
  vtx_decl.position.components = 4;
  vtx_decl.position.integer = false;
  vtx_decl.position.offset = offsetof(UtilityShaderVertex, Position);
  vtx_decl.texcoords[0].enable = true;
  vtx_decl.texcoords[0].type = VAR_FLOAT;
  vtx_decl.texcoords[0].components = 4;
  vtx_decl.texcoords[0].integer = false;
  vtx_decl.texcoords[0].offset = offsetof(UtilityShaderVertex, TexCoord);
  vtx_decl.colors[0].enable = true;
  vtx_decl.colors[0].type = VAR_UNSIGNED_BYTE;
  vtx_decl.colors[0].components = 4;
  vtx_decl.colors[0].integer = false;
  vtx_decl.colors[0].offset = offsetof(UtilityShaderVertex, Color);
  vtx_decl.stride = sizeof(UtilityShaderVertex);

  m_utility_shader_vertex_format = std::make_unique<VertexFormat>(vtx_decl);
  return true;
}

bool ObjectCache::CreateStaticSamplers()
{
  VkSamplerCreateInfo create_info = {
      VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,    // VkStructureType         sType
      nullptr,                                  // const void*             pNext
      0,                                        // VkSamplerCreateFlags    flags
      VK_FILTER_NEAREST,                        // VkFilter                magFilter
      VK_FILTER_NEAREST,                        // VkFilter                minFilter
      VK_SAMPLER_MIPMAP_MODE_NEAREST,           // VkSamplerMipmapMode     mipmapMode
      VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,  // VkSamplerAddressMode    addressModeU
      VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,  // VkSamplerAddressMode    addressModeV
      VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,    // VkSamplerAddressMode    addressModeW
      0.0f,                                     // float                   mipLodBias
      VK_FALSE,                                 // VkBool32                anisotropyEnable
      1.0f,                                     // float                   maxAnisotropy
      VK_FALSE,                                 // VkBool32                compareEnable
      VK_COMPARE_OP_ALWAYS,                     // VkCompareOp             compareOp
      std::numeric_limits<float>::min(),        // float                   minLod
      std::numeric_limits<float>::max(),        // float                   maxLod
      VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,  // VkBorderColor           borderColor
      VK_FALSE                                  // VkBool32                unnormalizedCoordinates
  };

  VkResult res =
      vkCreateSampler(g_vulkan_context->GetDevice(), &create_info, nullptr, &m_point_sampler);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkCreateSampler failed: ");
    return false;
  }

  // Most fields are shared across point<->linear samplers, so only change those necessary.
  create_info.minFilter = VK_FILTER_LINEAR;
  create_info.magFilter = VK_FILTER_LINEAR;
  create_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
  res = vkCreateSampler(g_vulkan_context->GetDevice(), &create_info, nullptr, &m_linear_sampler);
  if (res != VK_SUCCESS)
  {
    LOG_VULKAN_ERROR(res, "vkCreateSampler failed: ");
    return false;
  }

  return true;
}

VkSampler ObjectCache::GetSampler(const SamplerState& info)
{
  auto iter = m_sampler_cache.find(info);
  if (iter != m_sampler_cache.end())
    return iter->second;

  VkSamplerCreateInfo create_info = {
      VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,      // VkStructureType         sType
      nullptr,                                    // const void*             pNext
      0,                                          // VkSamplerCreateFlags    flags
      info.mag_filter,                            // VkFilter                magFilter
      info.min_filter,                            // VkFilter                minFilter
      info.mipmap_mode,                           // VkSamplerMipmapMode     mipmapMode
      info.wrap_u,                                // VkSamplerAddressMode    addressModeU
      info.wrap_v,                                // VkSamplerAddressMode    addressModeV
      VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,      // VkSamplerAddressMode    addressModeW
      static_cast<float>(info.lod_bias / 32.0f),  // float                   mipLodBias
      VK_FALSE,                                   // VkBool32                anisotropyEnable
      0.0f,                                       // float                   maxAnisotropy
      VK_FALSE,                                   // VkBool32                compareEnable
      VK_COMPARE_OP_ALWAYS,                       // VkCompareOp             compareOp
      static_cast<float>(info.min_lod / 16.0f),   // float                   minLod
      static_cast<float>(info.max_lod / 16.0f),   // float                   maxLod
      VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,    // VkBorderColor           borderColor
      VK_FALSE                                    // VkBool32                unnormalizedCoordinates
  };

  // Can we use anisotropic filtering with this sampler?
  if (info.enable_anisotropic_filtering && g_vulkan_context->SupportsAnisotropicFiltering())
  {
    // Cap anisotropy to device limits.
    create_info.anisotropyEnable = VK_TRUE;
    create_info.maxAnisotropy = std::min(static_cast<float>(1 << g_ActiveConfig.iMaxAnisotropy),
                                         g_vulkan_context->GetMaxSamplerAnisotropy());
  }

  VkSampler sampler = VK_NULL_HANDLE;
  VkResult res = vkCreateSampler(g_vulkan_context->GetDevice(), &create_info, nullptr, &sampler);
  if (res != VK_SUCCESS)
    LOG_VULKAN_ERROR(res, "vkCreateSampler failed: ");

  // Store it even if it failed
  m_sampler_cache.emplace(info, sampler);
  return sampler;
}

std::string ObjectCache::GetUtilityShaderHeader() const
{
  std::stringstream ss;
  if (g_ActiveConfig.iMultisamples > 1)
  {
    ss << "#define MSAA_ENABLED 1" << std::endl;
    ss << "#define MSAA_SAMPLES " << g_ActiveConfig.iMultisamples << std::endl;
    if (g_ActiveConfig.bSSAA)
      ss << "#define SSAA_ENABLED 1" << std::endl;
  }

  u32 efb_layers = (g_ActiveConfig.iStereoMode != STEREO_OFF) ? 2 : 1;
  ss << "#define EFB_LAYERS " << efb_layers << std::endl;

  return ss.str();
}

// Comparison operators for PipelineInfos
// Since these all boil down to POD types, we can just memcmp the entire thing for speed
// The is_trivially_copyable check fails on MSVC due to BitField.
// TODO: Can we work around this any way?
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5 && !defined(_MSC_VER)
static_assert(std::has_trivial_copy_constructor<PipelineInfo>::value,
              "PipelineInfo is trivially copyable");
#elif !defined(_MSC_VER)
static_assert(std::is_trivially_copyable<PipelineInfo>::value,
              "PipelineInfo is trivially copyable");
#endif

std::size_t PipelineInfoHash::operator()(const PipelineInfo& key) const
{
  return static_cast<std::size_t>(XXH64(&key, sizeof(key), 0));
}

bool operator==(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
  return std::memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
}

bool operator!=(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
  return !operator==(lhs, rhs);
}

bool operator<(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
  return std::memcmp(&lhs, &rhs, sizeof(lhs)) < 0;
}

bool operator>(const PipelineInfo& lhs, const PipelineInfo& rhs)
{
  return std::memcmp(&lhs, &rhs, sizeof(lhs)) > 0;
}

bool operator==(const SamplerState& lhs, const SamplerState& rhs)
{
  return lhs.bits == rhs.bits;
}

bool operator!=(const SamplerState& lhs, const SamplerState& rhs)
{
  return !operator==(lhs, rhs);
}

bool operator>(const SamplerState& lhs, const SamplerState& rhs)
{
  return lhs.bits > rhs.bits;
}

bool operator<(const SamplerState& lhs, const SamplerState& rhs)
{
  return lhs.bits < rhs.bits;
}

bool ObjectCache::CompileSharedShaders()
{
  static const char PASSTHROUGH_VERTEX_SHADER_SOURCE[] = R"(
    layout(location = 0) in vec4 ipos;
    layout(location = 5) in vec4 icol0;
    layout(location = 8) in vec3 itex0;

    layout(location = 0) out vec3 uv0;
    layout(location = 1) out vec4 col0;

    void main()
    {
      gl_Position = ipos;
      uv0 = itex0;
      col0 = icol0;
    }
  )";

  static const char PASSTHROUGH_GEOMETRY_SHADER_SOURCE[] = R"(
    layout(triangles) in;
    layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;

    layout(location = 0) in vec3 in_uv0[];
    layout(location = 1) in vec4 in_col0[];

    layout(location = 0) out vec3 out_uv0;
    layout(location = 1) out vec4 out_col0;

    void main()
    {
      for (int j = 0; j < EFB_LAYERS; j++)
      {
        for (int i = 0; i < 3; i++)
        {
          gl_Layer = j;
          gl_Position = gl_in[i].gl_Position;
          out_uv0 = vec3(in_uv0[i].xy, float(j));
          out_col0 = in_col0[i];
          EmitVertex();
        }
        EndPrimitive();
      }
    }
  )";

  static const char SCREEN_QUAD_VERTEX_SHADER_SOURCE[] = R"(
    layout(location = 0) out vec3 uv0;

    void main()
    {
        /*
         * id   &1    &2   clamp(*2-1)
         * 0    0,0   0,0  -1,-1      TL
         * 1    1,0   1,0  1,-1       TR
         * 2    0,2   0,1  -1,1       BL
         * 3    1,2   1,1  1,1        BR
         */
        vec2 rawpos = vec2(float(gl_VertexID & 1), clamp(float(gl_VertexID & 2), 0.0f, 1.0f));
        gl_Position = vec4(rawpos * 2.0f - 1.0f, 0.0f, 1.0f);
        uv0 = vec3(rawpos, 0.0f);
    }
  )";

  static const char SCREEN_QUAD_GEOMETRY_SHADER_SOURCE[] = R"(
    layout(triangles) in;
    layout(triangle_strip, max_vertices = EFB_LAYERS * 3) out;

    layout(location = 0) in vec3 in_uv0[];

    layout(location = 0) out vec3 out_uv0;

    void main()
    {
      for (int j = 0; j < EFB_LAYERS; j++)
      {
        for (int i = 0; i < 3; i++)
        {
          gl_Layer = j;
          gl_Position = gl_in[i].gl_Position;
          out_uv0 = vec3(in_uv0[i].xy, float(j));
          EmitVertex();
        }
        EndPrimitive();
      }
    }
  )";

  std::string header = GetUtilityShaderHeader();

  m_screen_quad_vertex_shader =
      Util::CompileAndCreateVertexShader(header + SCREEN_QUAD_VERTEX_SHADER_SOURCE);
  m_passthrough_vertex_shader =
      Util::CompileAndCreateVertexShader(header + PASSTHROUGH_VERTEX_SHADER_SOURCE);
  if (m_screen_quad_vertex_shader == VK_NULL_HANDLE ||
      m_passthrough_vertex_shader == VK_NULL_HANDLE)
  {
    return false;
  }

  if (g_ActiveConfig.iStereoMode != STEREO_OFF && g_vulkan_context->SupportsGeometryShaders())
  {
    m_screen_quad_geometry_shader =
        Util::CompileAndCreateGeometryShader(header + SCREEN_QUAD_GEOMETRY_SHADER_SOURCE);
    m_passthrough_geometry_shader =
        Util::CompileAndCreateGeometryShader(header + PASSTHROUGH_GEOMETRY_SHADER_SOURCE);
    if (m_screen_quad_geometry_shader == VK_NULL_HANDLE ||
        m_passthrough_geometry_shader == VK_NULL_HANDLE)
    {
      return false;
    }
  }

  return true;
}

void ObjectCache::DestroySharedShaders()
{
  auto DestroyShader = [this](VkShaderModule& shader) {
    if (shader != VK_NULL_HANDLE)
    {
      vkDestroyShaderModule(g_vulkan_context->GetDevice(), shader, nullptr);
      shader = VK_NULL_HANDLE;
    }
  };

  DestroyShader(m_screen_quad_vertex_shader);
  DestroyShader(m_passthrough_vertex_shader);
  DestroyShader(m_screen_quad_geometry_shader);
  DestroyShader(m_passthrough_geometry_shader);
}
}