// Copyright (C) 2003-2009 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ // Additional copyrights go to Duddie and Tratax (c) 2004 #include "DSPInterpreter.h" #include "Common.h" #include "gdsp_memory.h" #include "gdsp_interpreter.h" #include "gdsp_condition_codes.h" #include "gdsp_registers.h" #include "gdsp_opcodes_helper.h" #include "gdsp_ext_op.h" namespace DSPInterpreter { void unknown(const UDSPInstruction& opc) { //_assert_msg_(MASTER_LOG, !g_dsp.exception_in_progress_hack, "assert while exception"); ERROR_LOG(DSPLLE, "LLE: Unrecognized opcode 0x%04x, pc 0x%04x", opc.hex, g_dsp.pc); } // test register and updates SR accordingly void tsta(int reg) { s64 acc = dsp_get_long_acc(reg); Update_SR_Register64(acc); } // Generic call implementation // CALLcc addressA // 0000 0010 1011 cccc // aaaa aaaa aaaa aaaa // Call function if condition cc has been met. Push program counter of // instruction following "call" to $st0. Set program counter to address // represented by value that follows this "call" instruction. void call(const UDSPInstruction& opc) { u16 dest = dsp_fetch_code(); if (CheckCondition(opc.hex & 0xf)) { dsp_reg_store_stack(DSP_STACK_C, g_dsp.pc); g_dsp.pc = dest; } } // Generic callr implementation // CALLRcc $R // 0001 0111 rrr1 cccc // Call functionif condition cc has been met.Push program counter of // instruction following "call" tocall stack $st0. Set program counter to // register $R. void callr(const UDSPInstruction& opc) { u16 addr; u8 reg; if (CheckCondition(opc.hex & 0xf)) { reg = (opc.hex >> 5) & 0x7; addr = dsp_op_read_reg(reg); dsp_reg_store_stack(DSP_STACK_C, g_dsp.pc); g_dsp.pc = addr; } } // Generic if implementation // IFcc // 0000 0010 0111 cccc // Execute following opcode if the condition has been met. void ifcc(const UDSPInstruction& opc) { if (!CheckCondition(opc.hex & 0xf)) { // skip the next opcode - we have to lookup its size. g_dsp.pc += opSize[dsp_peek_code()]; } } // Generic jmp implementation // Jcc addressA // 0000 0010 1001 cccc // aaaa aaaa aaaa aaaa // Jump to addressA if condition cc has been met. Set program counter to // address represented by value that follows this "jmp" instruction. void jcc(const UDSPInstruction& opc) { u16 dest = dsp_fetch_code(); if (CheckCondition(opc.hex & 0xf)) { g_dsp.pc = dest; } } // Generic jmpr implementation // JMPcc $R // 0001 0111 rrr0 cccc // Jump to address; set program counter to a value from register $R. void jmprcc(const UDSPInstruction& opc) { if (CheckCondition(opc.hex & 0xf)) { u8 reg = (opc.hex >> 5) & 0x7; g_dsp.pc = dsp_op_read_reg(reg); } } // Generic ret implementation // RETcc // 0000 0010 1101 cccc // Return from subroutine if condition cc has been met. Pops stored PC // from call stack $st0 and sets $pc to this location. void ret(const UDSPInstruction& opc) { if (CheckCondition(opc.hex & 0xf)) { g_dsp.pc = dsp_reg_load_stack(DSP_STACK_C); } } // RTI // 0000 0010 1111 1111 // Return from exception. Pops stored status register $sr from data stack // $st1 and program counter PC from call stack $st0 and sets $pc to this // location. // FIXME: is it also conditional? unknown opcodes 0x02fx void rti(const UDSPInstruction& opc) { g_dsp.r[DSP_REG_SR] = dsp_reg_load_stack(DSP_STACK_D); g_dsp.pc = dsp_reg_load_stack(DSP_STACK_C); g_dsp.exception_in_progress_hack = false; } // HALT // 0000 0000 0020 0001 // Stops execution of DSP code. Sets bit DSP_CR_HALT in register DREG_CR. void halt(const UDSPInstruction& opc) { g_dsp.cr |= 0x4; g_dsp.pc--; } // LOOP handling: Loop stack is used to control execution of repeated blocks of // instructions. Whenever there is value on stack $st2 and current PC is equal // value at $st2, then value at stack $st3 is decremented. If value is not zero // then PC is modified with calue from call stack $st0. Otherwise values from // callstack $st0 and both loop stacks $st2 and $st3 are poped and execution // continues at next opcode. // LOOP $R // 0000 0000 010r rrrr // Repeatedly execute following opcode until counter specified by value // from register $R reaches zero. Each execution decrement counter. Register // $R remains unchanged. If register $R is set to zero at the beginning of loop // then looped instruction will not get executed. void loop(const UDSPInstruction& opc) { u16 reg = opc.hex & 0x1f; u16 cnt = g_dsp.r[reg]; u16 loop_pc = g_dsp.pc; if (cnt) { dsp_reg_store_stack(0, g_dsp.pc); dsp_reg_store_stack(2, loop_pc); dsp_reg_store_stack(3, cnt); } } // LOOPI #I // 0001 0000 iiii iiii // Repeatedly execute following opcode until counter specified by // immediate value I reaches zero. Each execution decrement counter. If // immediate value I is set to zero at the beginning of loop then looped // instruction will not get executed. void loopi(const UDSPInstruction& opc) { u16 cnt = opc.hex & 0xff; u16 loop_pc = g_dsp.pc; if (cnt) { dsp_reg_store_stack(0, g_dsp.pc); dsp_reg_store_stack(2, loop_pc); dsp_reg_store_stack(3, cnt); } } // BLOOP $R, addrA // 0000 0000 011r rrrr // aaaa aaaa aaaa aaaa // Repeatedly execute block of code starting at following opcode until // counter specified by value from register $R reaches zero. Block ends at // specified address addrA inclusive, ie. opcode at addrA is the last opcode // included in loop. Counter is pushed on loop stack $st3, end of block address // is pushed on loop stack $st2 and repeat address is pushed on call stack $st0. // Up to 4 nested loops is allowed. void bloop(const UDSPInstruction& opc) { u16 reg = opc.hex & 0x1f; u16 cnt = g_dsp.r[reg]; u16 loop_pc = dsp_fetch_code(); if (cnt) { dsp_reg_store_stack(0, g_dsp.pc); dsp_reg_store_stack(2, loop_pc); dsp_reg_store_stack(3, cnt); } else { g_dsp.pc = loop_pc; g_dsp.pc += opSize[dsp_peek_code()]; } } // BLOOPI #I, addrA // 0001 0001 iiii iiii // aaaa aaaa aaaa aaaa // Repeatedly execute block of code starting at following opcode until // counter specified by immediate value I reaches zero. Block ends at specified // address addrA inclusive, ie. opcode at addrA is the last opcode included in // loop. Counter is pushed on loop stack $st3, end of block address is pushed // on loop stack $st2 and repeat address is pushed on call stack $st0. Up to 4 // nested loops is allowed. void bloopi(const UDSPInstruction& opc) { u16 cnt = opc.hex & 0xff; u16 loop_pc = dsp_fetch_code(); if (cnt) { dsp_reg_store_stack(0, g_dsp.pc); dsp_reg_store_stack(2, loop_pc); dsp_reg_store_stack(3, cnt); } else { g_dsp.pc = loop_pc; g_dsp.pc += opSize[dsp_peek_code()]; } } //------------------------------------------------------------- // MRR $D, $S // 0001 11dd ddds ssss // Move value from register $S to register $D. // FIXME: Perform additional operation depending on destination register. void mrr(const UDSPInstruction& opc) { u8 sreg = opc.hex & 0x1f; u8 dreg = (opc.hex >> 5) & 0x1f; u16 val = dsp_op_read_reg(sreg); dsp_op_write_reg(dreg, val); } // LRR $D, @$S // 0001 1000 0ssd dddd // Move value from data memory pointed by addressing register $S toregister $D. // FIXME: Perform additional operation depending on destination register. void lrr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 5) & 0x3; u8 dreg = opc.hex & 0x1f; u16 val = dsp_dmem_read(g_dsp.r[sreg]); dsp_op_write_reg(dreg, val); } // LRRD $D, @$S // 0001 1000 1ssd dddd // Move value from data memory pointed by addressing register $S toregister $D. // Decrement register $S. // FIXME: Perform additional operation depending on destination register. void lrrd(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 5) & 0x3; u8 dreg = opc.hex & 0x1f; u16 val = dsp_dmem_read(g_dsp.r[sreg]); dsp_op_write_reg(dreg, val); g_dsp.r[sreg]--; } // LRRI $D, @$S // 0001 1001 0ssd dddd // Move value from data memory pointed by addressing register $S to register $D. // Increment register $S. // FIXME: Perform additional operation depending on destination register. void lrri(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 5) & 0x3; u8 dreg = opc.hex & 0x1f; u16 val = dsp_dmem_read(g_dsp.r[sreg]); dsp_op_write_reg(dreg, val); g_dsp.r[sreg]++; } // LRRN $D, @$S // 0001 1001 1ssd dddd // Move value from data memory pointed by addressing register $S to register $D. // Add indexing register $(0x4+S) to register $S. // FIXME: Perform additional operation depending on destination register. void lrrn(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 5) & 0x3; u8 dreg = opc.hex & 0x1f; u16 val = dsp_dmem_read(g_dsp.r[sreg]); dsp_op_write_reg(dreg, val); g_dsp.r[sreg] += g_dsp.r[sreg + 4]; } // SRR @$D, $S // 0001 1010 0dds ssss // Store value from source register $S to a memory location pointed by // addressing register $D. // FIXME: Perform additional operation depending on source register. void srr(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x3; u8 sreg = opc.hex & 0x1f; u16 val = dsp_op_read_reg(sreg); dsp_dmem_write(g_dsp.r[dreg], val); } // SRRD @$D, $S // 0001 1010 1dds ssss // Store value from source register $S to a memory location pointed by // addressing register $D. Decrement register $D. // FIXME: Perform additional operation depending on source register. void srrd(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x3; u8 sreg = opc.hex & 0x1f; u16 val = dsp_op_read_reg(sreg); dsp_dmem_write(g_dsp.r[dreg], val); g_dsp.r[dreg]--; } // SRRI @$D, $S // 0001 1011 0dds ssss // Store value from source register $S to a memory location pointed by // addressing register $D. Increment register $D. // FIXME: Perform additional operation depending on source register. void srri(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x3; u8 sreg = opc.hex & 0x1f; u16 val = dsp_op_read_reg(sreg); dsp_dmem_write(g_dsp.r[dreg], val); g_dsp.r[dreg]++; } // SRRN @$D, $S // 0001 1011 1dds ssss // Store value from source register $S to a memory location pointed by // addressing register $D. Add DSP_REG_IX0 register to register $D. // FIXME: Perform additional operation depending on source register. void srrn(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 5) & 0x3; u8 sreg = opc.hex & 0x1f; u16 val = dsp_op_read_reg(sreg); dsp_dmem_write(g_dsp.r[dreg], val); g_dsp.r[dreg] += g_dsp.r[DSP_REG_IX0 + dreg]; } // ILRR $acD.m, @$arS // 0000 001d 0001 00ss // Move value from instruction memory pointed by addressing register // $arS to mid accumulator register $acD.m. void ilrr(const UDSPInstruction& opc) { u16 reg = opc.hex & 0x3; u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1); g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]); } // ILRRD $acD.m, @$arS // 0000 001d 0001 01ss // Move value from instruction memory pointed by addressing register // $arS to mid accumulator register $acD.m. Decrement addressing register $arS. void ilrrd(const UDSPInstruction& opc) { u16 reg = opc.hex & 0x3; u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1); g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]); g_dsp.r[reg]--; } // ILRRI $acD.m, @$S // 0000 001d 0001 10ss // Move value from instruction memory pointed by addressing register // $arS to mid accumulator register $acD.m. Increment addressing register $arS. void ilrri(const UDSPInstruction& opc) { u16 reg = opc.hex & 0x3; u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1); g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]); g_dsp.r[reg]++; } // ILRRN $acD.m, @$arS // 0000 001d 0001 11ss // Move value from instruction memory pointed by addressing register // $arS to mid accumulator register $acD.m. Add corresponding indexing // register $ixS to addressing register $arS. void ilrrn(const UDSPInstruction& opc) { u16 reg = opc.hex & 0x3; u16 dreg = DSP_REG_ACM0 + ((opc.hex >> 8) & 1); g_dsp.r[dreg] = dsp_imem_read(g_dsp.r[reg]); g_dsp.r[reg] += g_dsp.r[DSP_REG_IX0 + reg]; } // LRI $D, #I // 0000 0000 100d dddd // iiii iiii iiii iiii // Load immediate value I to register $D. // FIXME: Perform additional operation depending on destination register. void lri(const UDSPInstruction& opc) { u8 reg = opc.hex & DSP_REG_MASK; u16 imm = dsp_fetch_code(); dsp_op_write_reg(reg, imm); } // LRIS $(0x18+D), #I // 0000 1ddd iiii iiii // Load immediate value I (8-bit sign extended) to accumulator register. // FIXME: Perform additional operation depending on destination register. void lris(const UDSPInstruction& opc) { u8 reg = ((opc.hex >> 8) & 0x7) + DSP_REG_AXL0; u16 imm = (s8)opc.hex; dsp_op_write_reg(reg, imm); } // LR $D, @M // 0000 0000 110d dddd // mmmm mmmm mmmm mmmm // Move value from data memory pointed by address M to register $D. // FIXME: Perform additional operation depending on destination register. void lr(const UDSPInstruction& opc) { u8 reg = opc.hex & DSP_REG_MASK; u16 addr = dsp_fetch_code(); u16 val = dsp_dmem_read(addr); dsp_op_write_reg(reg, val); } // SR @M, $S // 0000 0000 111s ssss // mmmm mmmm mmmm mmmm // Store value from register $S to a memory pointed by address M. // FIXME: Perform additional operation depending on destination register. void sr(const UDSPInstruction& opc) { u8 reg = opc.hex & DSP_REG_MASK; u16 addr = dsp_fetch_code(); u16 val = dsp_op_read_reg(reg); dsp_dmem_write(addr, val); } // SI @M, #I // 0001 0110 mmmm mmmm // iiii iiii iiii iiii // Store 16-bit immediate value I to a memory location pointed by address // M (M is 8-bit value sign extended). void si(const UDSPInstruction& opc) { u16 addr = (s8)opc.hex; u16 imm = dsp_fetch_code(); dsp_dmem_write(addr, imm); } // TSTAXH $axR.h // 1000 011r xxxx xxxx // Test hight part of secondary accumulator $axR.h. void tstaxh(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 8) & 0x1; s16 val = dsp_get_ax_h(reg); Update_SR_Register16(val); } // TSTAXL $axR.h // 1000 011r xxxx xxxx // Test lower part of secondary accumulator $axR.h. void tstaxl(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 8) & 0x1; s16 val = dsp_get_ax_l(reg); Update_SR_Register16(val); } // CLR $acR // 1000 r001 xxxx xxxx // Clears accumulator $acR void clr(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 11) & 0x1; dsp_set_long_acc(reg, 0); Update_SR_Register64((s64)0); // really? } // CLRL $acR.l // 1111 110r xxxx xxxx // Clears $acR.l - low 16 bits of accumulator $acR. void clrl(const UDSPInstruction& opc) { u16 reg = DSP_REG_ACL0 + ((opc.hex >> 11) & 0x1); g_dsp.r[reg] = 0; // Should this be 64bit? // nakee: it says the whole reg in duddie's doc sounds weird Update_SR_Register64((s64)reg); } // CLRP // 1000 0100 xxxx xxxx // Clears product register $prod. void clrp(const UDSPInstruction& opc) { // Magic numbers taken from duddie's doc g_dsp.r[0x14] = 0x0000; g_dsp.r[0x15] = 0xfff0; g_dsp.r[0x16] = 0x00ff; g_dsp.r[0x17] = 0x0010; } // MULC $acS.m, $axT.h // 110s t000 xxxx xxxx // Multiply mid part of accumulator register $acS.m by high part $axS.h of // secondary accumulator $axS (treat them both as signed). void mulc(const UDSPInstruction& opc) { // math new prod u8 sreg = (opc.hex >> 11) & 0x1; u8 treg = (opc.hex >> 12) & 0x1; s64 prod = dsp_get_acc_m(sreg) * dsp_get_ax_h(treg) * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MULCMVZ $acS.m, $axT.h, $acR // 110s t01r xxxx xxxx // (fixed possible bug in duddie's description, s->t) // Multiply mid part of accumulator register $acS.m by high part $axT.h of // secondary accumulator $axT (treat them both as signed). Move product // register before multiplication to accumulator $acR, set low part of // accumulator $acR.l to zero. void mulcmvz(const UDSPInstruction& opc) { s64 TempProd = dsp_get_long_prod(); // update prod u8 sreg = (opc.hex >> 12) & 0x1; u8 treg = (opc.hex >> 11) & 0x1; s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_ax_h(treg) * GetMultiplyModifier(); dsp_set_long_prod(Prod); // update acc u8 rreg = (opc.hex >> 8) & 0x1; s64 acc = TempProd & ~0xffff; // clear lower 4 bytes dsp_set_long_acc(rreg, acc); Update_SR_Register64(acc); } // MULCMV $acS.m, $axT.h, $acR // 110s t11r xxxx xxxx // Multiply mid part of accumulator register $acS.m by high part $axT.h of // secondary accumulator $axT (treat them both as signed). Move product // register before multiplication to accumulator $acR. // possible mistake in duddie's doc axT.h rather than axS.h void mulcmv(const UDSPInstruction& opc) { s64 tempProd = dsp_get_long_prod(); // update prod u8 sreg = (opc.hex >> 12) & 0x1; u8 treg = (opc.hex >> 11) & 0x1; s64 prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_ax_h(treg) * GetMultiplyModifier(); dsp_set_long_prod(prod); // update acc u8 rreg = (opc.hex >> 8) & 0x1; dsp_set_long_acc(rreg, tempProd); Update_SR_Register64(tempProd); } // CMPAR $acS axR.h // 1100 0001 xxxx xxxx // Compares accumulator $acS with accumulator axR.h. // Not described by Duddie's doc - at least not as a separate instruction. void cmpar(const UDSPInstruction& opc) { u8 rreg = ((opc.hex >> 12) & 0x1) + DSP_REG_AXH0; u8 sreg = (opc.hex >> 11) & 0x1; // we compare s64 rr = (s16)g_dsp.r[rreg]; rr <<= 16; s64 sr = dsp_get_long_acc(sreg); Update_SR_Register64(sr - rr); } // CMP // 1000 0010 xxxx xxxx // Compares accumulator $ac0 with accumulator $ac1. void cmp(const UDSPInstruction& opc) { s64 acc0 = dsp_get_long_acc(0); s64 acc1 = dsp_get_long_acc(1); Update_SR_Register64(acc0 - acc1); } // TST // 1011 r001 xxxx xxxx // Test accumulator %acR. void tst(const UDSPInstruction& opc) { tsta((opc.hex >> 11) & 0x1); } // ADDAXL $acD, $axS.l // 0111 00sd xxxx xxxx // Adds secondary accumulator $axS.l to accumulator register $acD. void addaxl(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg); s64 acx = dsp_get_ax_l(sreg); acc += acx; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // ADDARN $arD, $ixS // 0000 0000 0001 ssdd // Adds indexing register $ixS to an addressing register $arD. void addarn(const UDSPInstruction& opc) { u8 dreg = opc.hex & 0x3; u8 sreg = (opc.hex >> 2) & 0x3; g_dsp.r[dreg] += (s16)g_dsp.r[DSP_REG_IX0 + sreg]; } // MULCAC $acS.m, $axT.h, $acR // 110s t10r xxxx xxxx // Multiply mid part of accumulator register $acS.m by high part $axS.h of // secondary accumulator $axS (treat them both as signed). Add product // register before multiplication to accumulator $acR. void mulcac(const UDSPInstruction& opc) { s64 TempProd = dsp_get_long_prod(); // update prod u8 sreg = (opc.hex >> 12) & 0x1; u8 treg = (opc.hex >> 11) & 0x1; s64 Prod = (s64)dsp_get_acc_m(sreg) * (s64)dsp_get_ax_h(treg) * GetMultiplyModifier(); dsp_set_long_prod(Prod); // update acc u8 rreg = (opc.hex >> 8) & 0x1; s64 acc = TempProd + dsp_get_long_acc(rreg); dsp_set_long_acc(rreg, acc); Update_SR_Register64(acc); } // MOVR $acD, $axS.R // 0110 0srd xxxx xxxx // Moves register $axS.R (sign extended) to middle accumulator $acD.hm. // Sets $acD.l to 0. void movr(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0; s64 acc = (s16)g_dsp.r[sreg]; acc <<= 16; acc &= ~0xffff; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // MOVAX $acD, $axS // 0110 10sd xxxx xxxx // Moves secondary accumulator $axS to accumulator $axD. void movax(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; u8 sreg = (opc.hex >> 9) & 0x1; s64 acx = dsp_get_long_acx(sreg); dsp_set_long_acc(dreg, acx); Update_SR_Register64(acx); } // XORR $acD.m, $axS.h // 0011 00sd xxxx xxxx // Logic XOR (exclusive or) middle part of accumulator $acD.m with // high part of secondary accumulator $axS.h. void xorr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; g_dsp.r[0x1e + dreg] ^= g_dsp.r[0x1a + sreg]; tsta(dreg); } // ANDR $acD.m, $axS.h // 0011 01sd xxxx xxxx // Logic AND middle part of accumulator $acD.m with high part of // secondary accumulator $axS.h. void andr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; g_dsp.r[0x1e + dreg] &= g_dsp.r[0x1a + sreg]; tsta(dreg); } // ORR $acD.m, $axS.h // 0011 10sd xxxx xxxx // Logic OR middle part of accumulator $acD.m with high part of // secondary accumulator $axS.h. void orr(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 dreg = (opc.hex >> 8) & 0x1; g_dsp.r[0x1e + dreg] |= g_dsp.r[0x1a + sreg]; tsta(dreg); } // ANDC $acD.m, $ac(1-D).m // 0011 110d xxxx xxxx // Logic AND middle part of accumulator $acD.m with middle part of // accumulator $ax(1-D).m.s void andc(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; u16 ac1 = dsp_get_acc_m(D); u16 ac2 = dsp_get_acc_m(1 - D); dsp_set_long_acc(D, ac1 & ac2); if ((ac1 & ac2) == 0) { g_dsp.r[DSP_REG_SR] |= 0x20; // 0x40? } else { g_dsp.r[DSP_REG_SR] &= ~0x20; // 0x40? } Update_SR_Register64(dsp_get_long_acc(D)); } void orc(const UDSPInstruction& opc) { ERROR_LOG(DSPLLE, "orc not implemented"); } void orf(const UDSPInstruction& opc) { ERROR_LOG(DSPLLE, "orf not implemented"); } //------------------------------------------------------------- void nx(const UDSPInstruction& opc) { // This opcode is supposed to do nothing - it's used if you want to use // an opcode extension but not do anything. At least according to duddie. } // Hermes switched andf and andcf, so check to make sure they are still correct // ANDCF $acD.m, #I // 0000 001r 1100 0000 // iiii iiii iiii iiii // Set logic zero (LZ) flag in status register $sr if result of logic AND of // accumulator mid part $acD.m with immediate value I is equal zero. void andfc(const UDSPInstruction& opc) { u8 reg = (opc.hex >> 8) & 0x1; u16 imm = dsp_fetch_code(); u16 val = dsp_get_acc_m(reg); if ((val & imm) == imm) { g_dsp.r[DSP_REG_SR] |= 0x40; } else { g_dsp.r[DSP_REG_SR] &= ~0x40; } } // Hermes switched andf and andcf, so check to make sure they are still correct // ANDF $acD.m, #I // 0000 001r 1010 0000 // iiii iiii iiii iiii // Set logic zero (LZ) flag in status register $sr if result of logical AND // operation of accumulator mid part $acD.m with immediate value I is equal // immediate value I. void andf(const UDSPInstruction& opc) { u8 reg; u16 imm; u16 val; reg = 0x1e + ((opc.hex >> 8) & 0x1); imm = dsp_fetch_code(); val = g_dsp.r[reg]; if ((val & imm) == 0) { g_dsp.r[DSP_REG_SR] |= 0x40; } else { g_dsp.r[DSP_REG_SR] &= ~0x40; } } // CMPI $amD, #I // 0000 001r 1000 0000 // iiii iiii iiii iiii // Compares mid accumulator $acD.hm ($amD) with sign extended immediate value I. // Although flags are being set regarding whole accumulator register. void cmpi(const UDSPInstruction& opc) { int reg = (opc.hex >> 8) & 0x1; // Immediate is considered to be at M level in the 40-bit accumulator. s64 imm = (s64)(s16)dsp_fetch_code() << 16; s64 val = dsp_get_long_acc(reg); s64 res = val - imm; Update_SR_Register64(res); } // XORI $acD.m, #I // 0000 001r 0010 0000 // iiii iiii iiii iiii // Logic exclusive or (XOR) of accumulator mid part $acD.m with // immediate value I. void xori(const UDSPInstruction& opc) { u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1); u16 imm = dsp_fetch_code(); g_dsp.r[reg] ^= imm; Update_SR_Register16((s16)g_dsp.r[reg]); } // ANDI $acD.m, #I // 0000 001r 0100 0000 // iiii iiii iiii iiii // Logic AND of accumulator mid part $acD.m with immediate value I. void andi(const UDSPInstruction& opc) { u8 reg = DSP_REG_ACM0 + ((opc.hex >> 8) & 0x1); u16 imm = dsp_fetch_code(); g_dsp.r[reg] &= imm; Update_SR_Register16((s16)g_dsp.r[reg]); } // F|RES: i am not sure if this shouldnt be the whole ACC // ORI $acD.m, #I // 0000 001r 0110 0000 // iiii iiii iiii iiii // Logic OR of accumulator mid part $acD.m with immediate value I. void ori(const UDSPInstruction& opc) { u8 reg = 0x1e + ((opc.hex >> 8) & 0x1); u16 imm = dsp_fetch_code(); g_dsp.r[reg] |= imm; Update_SR_Register16((s16)g_dsp.r[reg]); } //------------------------------------------------------------- // ADD $acD, $ac(1-D) // 0100 110d xxxx xxxx // Adds accumulator $ac(1-D) to accumulator register $acD. void add(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc0 = dsp_get_long_acc(0); s64 acc1 = dsp_get_long_acc(1); s64 res = acc0 + acc1; dsp_set_long_acc(areg, res); Update_SR_Register64(res); } //------------------------------------------------------------- // ADDP $acD // 0100 111d xxxx xxxx // Adds product register to accumulator register. void addp(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg); acc += dsp_get_long_prod(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // SUBP $acD // 0101 111d xxxx xxxx // Subtracts product register from accumulator register. void subp(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg); acc -= dsp_get_long_prod(); dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // CMPIS $acD, #I // 0000 011d iiii iiii // Compares accumulator with short immediate. Comaprison is executed // by subtracting short immediate (8bit sign extended) from mid accumulator // $acD.hm and computing flags based on whole accumulator $acD. void cmpis(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(areg); s64 val = (s8)opc.hex; val <<= 16; s64 res = acc - val; Update_SR_Register64(res); } // ADDPAXZ $acD, $axS // 1111 10sd xxxx xxxx // Adds secondary accumulator $axS to product register and stores result // in accumulator register. Low 16-bits of $acD ($acD.l) are set to 0. void addpaxz(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; u8 sreg = (opc.hex >> 9) & 0x1; s64 prod = dsp_get_long_prod() & ~0x0ffff; s64 ax_h = dsp_get_long_acx(sreg); s64 acc = (prod + ax_h) & ~0x0ffff; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // MOVPZ $acD // 1111 111d xxxx xxxx // Moves multiply product from $prod register to accumulator $acD // register and sets $acD.l to 0 void movpz(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x01; // overwrite acc and clear low part s64 prod = dsp_get_long_prod(); s64 acc = prod & ~0xffff; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // DECM $acsD // 0111 100d xxxx xxxx // Decrement 24-bit mid-accumulator $acsD. void decm(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x01; s64 sub = 0x10000; s64 acc = dsp_get_long_acc(dreg); acc -= sub; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // DEC $acD // 0111 101d xxxx xxxx // Decrement accumulator $acD. void dec(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x01; s64 acc = dsp_get_long_acc(dreg) - 1; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // INCM $acsD // 0111 010d xxxx xxxx // Increment 24-bit mid-accumulator $acsD. void incm(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 sub = 0x10000; s64 acc = dsp_get_long_acc(dreg); acc += sub; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // INC $acD // 0111 011d xxxx xxxx // Increment accumulator $acD. void inc(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(dreg) + 1; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // NEG $acD // 0111 110d xxxx xxxx // Negate accumulator $acD. void neg(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(areg); acc = 0 - acc; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // MOVNP $acD // 0111 111d xxxx xxxx // Moves negative of multiply product from $prod register to accumulator // $acD register. void movnp(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 prod = dsp_get_long_prod(); s64 acc = -prod; dsp_set_long_acc(dreg, acc); Update_SR_Register64(acc); } // MOV $acD, $ac(1-D) // 0110 110d xxxx xxxx // Moves accumulator $ax(1-D) to accumulator $axD. void mov(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; u64 acc = dsp_get_long_acc(1 - D); dsp_set_long_acc(D, acc); Update_SR_Register64(acc); } // ADDAX $acD, $axS // 0100 10sd xxxx xxxx // Adds secondary accumulator $axS to accumulator register $acD. void addax(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = (opc.hex >> 9) & 0x1; s64 ax = dsp_get_long_acx(sreg); s64 acc = dsp_get_long_acc(areg); acc += ax; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // ADDR $acD, $(DSP_REG_AXL0+S) // 0100 0ssd xxxx xxxx // Adds register $(DSP_REG_AXL0+S) to accumulator $acD register. void addr(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0; s64 ax = (s16)g_dsp.r[sreg]; ax <<= 16; s64 acc = dsp_get_long_acc(areg); acc += ax; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // SUBR $acD, $(DSP_REG_AXL0+S) // 0101 0ssd xxxx xxxx // Subtracts register $(DSP_REG_AXL0+S) from accumulator $acD register. void subr(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 9) & 0x3) + DSP_REG_AXL0; s64 ax = (s16)g_dsp.r[sreg]; ax <<= 16; s64 acc = dsp_get_long_acc(areg); acc -= ax; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // SUBAX $acD, $axS // 0101 10sd xxxx xxxx // Subtracts secondary accumulator $axS from accumulator register $acD. void subax(const UDSPInstruction& opc) { int regD = (opc.hex >> 8) & 0x1; int regS = (opc.hex >> 9) & 0x1; s64 acc = dsp_get_long_acc(regD) - dsp_get_long_acx(regS); dsp_set_long_acc(regD, acc); Update_SR_Register64(acc); } // ADDIS $acD, #I // 0000 010d iiii iiii // Adds short immediate (8-bit sign extended) to mid accumulator $acD.hm. void addis(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 Imm = (s8)opc.hex; Imm <<= 16; s64 acc = dsp_get_long_acc(areg); acc += Imm; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // ADDI $amR, #I // 0000 001r 0000 0000 // iiii iiii iiii iiii // Adds immediate (16-bit sign extended) to mid accumulator $acD.hm. void addi(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 sub = (s16)dsp_fetch_code(); sub <<= 16; s64 acc = dsp_get_long_acc(areg); acc += sub; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // LSL16 $acR // 1111 000r xxxx xxxx // Logically shifts left accumulator $acR by 16. void lsl16(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; s64 acc = dsp_get_long_acc(areg); acc <<= 16; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // MADD $axS.l, $axS.h // 1111 001s xxxx xxxx // Multiply low part $axS.l of secondary accumulator $axS by high part // $axS.h of secondary accumulator $axS (treat them both as signed) and add // result to product register. void madd(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 8) & 0x1; s64 prod = dsp_get_long_prod(); prod += (s64)dsp_get_ax_l(sreg) * (s64)dsp_get_ax_h(sreg) * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MSUB $axS.l, $axS.h // 1111 011s xxxx xxxx // Multiply low part $axS.l of secondary accumulator $axS by high part // $axS.h of secondary accumulator $axS (treat them both as signed) and // subtract result from product register. void msub(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 8) & 0x1; s64 prod = dsp_get_long_prod(); prod -= (s64)dsp_get_ax_l(sreg) * (s64)dsp_get_ax_h(sreg) * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // LSR16 $acR // 1111 010r xxxx xxxx // Logically shifts right accumulator $acR by 16. void lsr16(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 8) & 0x1; u64 acc = dsp_get_long_acc(areg); acc >>= 16; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // ASR16 $acR // 1001 r001 xxxx xxxx // Arithmetically shifts right accumulator $acR by 16. void asr16(const UDSPInstruction& opc) { u8 areg = (opc.hex >> 11) & 0x1; s64 acc = dsp_get_long_acc(areg); acc >>= 16; dsp_set_long_acc(areg, acc); Update_SR_Register64(acc); } // LSL $acR, #I // 0001 010r 00ii iiii // Logically shifts left accumulator $acR by number specified by value I. void lsl(const UDSPInstruction& opc) { u16 shift = opc.ushift; u64 acc = dsp_get_long_acc(opc.areg); acc <<= shift; dsp_set_long_acc(opc.areg, acc); Update_SR_Register64(acc); } // LSR $acR, #I // 0001 010r 01ii iiii // Logically shifts left accumulator $acR by number specified by value // calculated by negating sign extended bits 0-6. void lsr(const UDSPInstruction& opc) { u16 shift = -opc.ushift; u64 acc = dsp_get_long_acc(opc.areg); // Lop off the extraneous sign extension our 64-bit fake accum causes acc &= 0x000000FFFFFFFFFFULL; acc >>= shift; dsp_set_long_acc(opc.areg, (s64)acc); Update_SR_Register64(acc); } // ASL $acR, #I // 0001 010r 10ii iiii // Logically shifts left accumulator $acR by number specified by value I. void asl(const UDSPInstruction& opc) { u16 shift = opc.ushift; // arithmetic shift u64 acc = dsp_get_long_acc(opc.areg); acc <<= shift; dsp_set_long_acc(opc.areg, acc); Update_SR_Register64(acc); } // ASR $acR, #I // 0001 010r 11ii iiii // Arithmetically shifts right accumulator $acR by number specified by // value calculated by negating sign extended bits 0-6. void asr(const UDSPInstruction& opc) { u16 shift = -opc.ushift; // arithmetic shift s64 acc = dsp_get_long_acc(opc.areg); acc >>= shift; dsp_set_long_acc(opc.areg, acc); Update_SR_Register64(acc); } //------------------------------------------------------------- // hcs give me this code!! // DAR $arD // 0000 0000 0000 01dd // Decrement address register $arD. // More docs needed - the operation is really odd! void dar(const UDSPInstruction& opc) { int reg = opc.hex & 0x3; int temp = g_dsp.r[reg] + g_dsp.r[DSP_REG_R08]; if (temp <= 0x7ff) // ??? g_dsp.r[reg] = temp; else g_dsp.r[reg]--; } // hcs give me this code!! // IAR $arD // 0000 0000 0000 10dd // Increment address register $arD. // More docs needed - the operation is really odd! void iar(const UDSPInstruction& opc) { int reg = opc.hex & 0x3; int temp = g_dsp.r[reg] + g_dsp.r[DSP_REG_R08]; if (temp <= 0x7ff) // ??? g_dsp.r[reg] = temp; else g_dsp.r[reg]++; } //------------------------------------------------------------- // SBCLR #I // 0001 0011 0000 0iii // bit of status register $sr. Bit number is calculated by adding 6 to // immediate value I. void sbclr(const UDSPInstruction& opc) { u8 bit = (opc.hex & 0xff) + 6; g_dsp.r[DSP_REG_SR] &= ~(1 << bit); } // SBSET #I // 0001 0010 0000 0iiii // Set bit of status register $sr. Bit number is calculated by adding 6 to // immediate value I. void sbset(const UDSPInstruction& opc) { u8 bit = (opc.hex & 0xff) + 6; g_dsp.r[DSP_REG_SR] |= (1 << bit); } // FIXME inside // This seem to be a bunch of bit setters, possibly flippig bits in SR. // These bits may have effects on the operation of the multiplier or // accumulators. // Hermes' demo sets the following defaults, hence that's the most important // mode to explore for the moment: // SET40 // CLR15 // M0 // Gonna be fun to explore all 8 possible combinations .. ugh. void srbith(const UDSPInstruction& opc) { switch ((opc.hex >> 8) & 0xf) { // M0 seems to be the default. M2 is used in functions in Zelda // and then reset with M0 at the end. Like the other bits here, it's // done around loops with lots of multiplications. case 0xa: // M2 //ERROR_LOG(DSPLLE, "M2"); break; // FIXME: Both of these appear in the beginning of the Wind Waker case 0xb: // M0 //ERROR_LOG(DSPLLE, "M0"); break; // 15-bit precision? clamping? no idea :( // CLR15 seems to be the default. case 0xc: // CLR15 //ERROR_LOG(DSPLLE, "CLR15"); break; case 0xd: // SET15 //ERROR_LOG(DSPLLE, "SET15"); break; // 40-bit precision? clamping? no idea :( // 40 seems to be the default. case 0xe: // SET40 (really, clear SR's 0x4000?) something about "set 40-bit operation"? g_dsp.r[DSP_REG_SR] &= ~(1 << 14); //ERROR_LOG(DSPLLE, "SET40"); break; case 0xf: // SET16 (really, set SR's 0x4000?) something about "set 16-bit operation"? // that doesnt happen on a real console << what does this comment mean? g_dsp.r[DSP_REG_SR] |= (1 << 14); //ERROR_LOG(DSPLLE, "SET16"); break; default: break; } } //------------------------------------------------------------- // MOVP $acD // 0110 111d xxxx xxxx // Moves multiply product from $prod register to accumulator $acD register. void movp(const UDSPInstruction& opc) { u8 dreg = (opc.hex >> 8) & 0x1; s64 prod = dsp_get_long_prod(); dsp_set_long_acc(dreg, prod); Update_SR_Register64(prod); } // MUL $axS.l, $axS.h // 1001 s000 xxxx xxxx // Multiply low part $axS.l of secondary accumulator $axS by high part // $axS.h of secondary accumulator $axS (treat them both as signed). void mul(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 11) & 0x1; s64 prod = (s64)dsp_get_ax_h(sreg) * (s64)dsp_get_ax_l(sreg) * GetMultiplyModifier(); dsp_set_long_prod(prod); // FIXME: no update in duddie's docs Update_SR_Register64(prod); } // MULAC $axS.l, $axS.h, $acR // 1001 s10r xxxx xxxx // Add product register to accumulator register $acR. Multiply low part // $axS.l of secondary accumulator $axS by high part $axS.h of secondary // accumulator $axS (treat them both as signed). void mulac(const UDSPInstruction& opc) { // add old prod to acc u8 rreg = (opc.hex >> 8) & 0x1; s64 acR = dsp_get_long_acc(rreg) + dsp_get_long_prod(); dsp_set_long_acc(rreg, acR); // calculate new prod u8 sreg = (opc.hex >> 11) & 0x1; s64 prod = dsp_get_ax_l(sreg) * dsp_get_ax_h(sreg) * GetMultiplyModifier(); dsp_set_long_prod(prod); // FIXME: no update in duddie's docs Update_SR_Register64(prod); } // MULMV $axS.l, $axS.h, $acR // 1001 s11r xxxx xxxx // Move product register to accumulator register $acR. Multiply low part // $axS.l of secondary accumulator $axS by high part $axS.h of secondary // accumulator $axS (treat them both as signed). void mulmv(const UDSPInstruction& opc) { u8 rreg = (opc.hex >> 8) & 0x1; u8 sreg = ((opc.hex >> 11) & 0x1); s64 prod = dsp_get_long_prod(); s64 acc = prod; dsp_set_long_acc(rreg, acc); s64 val1 = (s16)g_dsp.r[sreg + DSP_REG_AXL0]; s64 val2 = (s16)g_dsp.r[sreg + DSP_REG_AXH0]; prod = val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MULMVZ $axS.l, $axS.h, $acR // 1001 s01r xxxx xxxx // Move product register to accumulator register $acR and clear low part // of accumulator register $acR.l. Multiply low part $axS.l of secondary // accumulator $axS by high part $axS.h of secondary accumulator $axS (treat // them both as signed). void mulmvz(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 11) & 0x1; u8 rreg = (opc.hex >> 8) & 0x1; // overwrite acc and clear low part s64 prod = dsp_get_long_prod(); s64 acc = prod & ~0xffff; dsp_set_long_acc(rreg, acc); // math prod prod = (s64)g_dsp.r[DSP_REG_AXL0 + sreg] * (s64)g_dsp.r[DSP_REG_AXH0 + sreg] * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MULX $ax0.S, $ax1.T // 101s t000 xxxx xxxx // Multiply one part $ax0 by one part $ax1 (treat them both as signed). // Part is selected by S and T bits. Zero selects low part, one selects high part. void mulx(const UDSPInstruction& opc) { u8 sreg = ((opc.hex >> 12) & 0x1); u8 treg = ((opc.hex >> 11) & 0x1); s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0); s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1); s64 prod = val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MULXAC $ax0.S, $ax1.T, $acR // 101s t01r xxxx xxxx // Add product register to accumulator register $acR. Multiply one part // $ax0 by one part $ax1 (treat them both as signed). Part is selected by S and // T bits. Zero selects low part, one selects high part. void mulxac(const UDSPInstruction& opc) { // add old prod to acc u8 rreg = (opc.hex >> 8) & 0x1; s64 acR = dsp_get_long_acc(rreg) + dsp_get_long_prod(); dsp_set_long_acc(rreg, acR); // math new prod u8 sreg = (opc.hex >> 12) & 0x1; u8 treg = (opc.hex >> 11) & 0x1; s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0); s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1); s64 prod = val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MULXMV $ax0.S, $ax1.T, $acR // 101s t11r xxxx xxxx // Move product register to accumulator register $acR. Multiply one part // $ax0 by one part $ax1 (treat them both as signed). Part is selected by S and // T bits. Zero selects low part, one selects high part. void mulxmv(const UDSPInstruction& opc) { // add old prod to acc u8 rreg = ((opc.hex >> 8) & 0x1); s64 acR = dsp_get_long_prod(); dsp_set_long_acc(rreg, acR); // math new prod u8 sreg = (opc.hex >> 12) & 0x1; u8 treg = (opc.hex >> 11) & 0x1; s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0); s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1); s64 prod = val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MULXMV $ax0.S, $ax1.T, $acR // 101s t01r xxxx xxxx // Move product register to accumulator register $acR and clear low part // of accumulator register $acR.l. Multiply one part $ax0 by one part $ax1 (treat // them both as signed). Part is selected by S and T bits. Zero selects low part, // one selects high part. void mulxmvz(const UDSPInstruction& opc) { // overwrite acc and clear low part u8 rreg = (opc.hex >> 8) & 0x1; s64 prod = dsp_get_long_prod(); s64 acc = prod & ~0xffff; dsp_set_long_acc(rreg, acc); // math prod u8 sreg = (opc.hex >> 12) & 0x1; u8 treg = (opc.hex >> 11) & 0x1; s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0); s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1); prod = val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // SUB $acD, $ac(1-D) // 0101 110d xxxx xxxx // Subtracts accumulator $ac(1-D) from accumulator register $acD. void sub(const UDSPInstruction& opc) { u8 D = (opc.hex >> 8) & 0x1; s64 acc1 = dsp_get_long_acc(D); s64 acc2 = dsp_get_long_acc(1 - D); acc1 -= acc2; dsp_set_long_acc(D, acc1); Update_SR_Register64(acc1); } //------------------------------------------------------------- // // --- Table E // //------------------------------------------------------------- // MADDX ax0.S ax1.T // 1110 00st xxxx xxxx // Multiply one part of secondary accumulator $ax0 (selected by S) by // one part of secondary accumulator $ax1 (selected by T) (treat them both as // signed) and add result to product register. void maddx(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 treg = (opc.hex >> 8) & 0x1; s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0); s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1); s64 prod = dsp_get_long_prod(); prod += val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MSUBX $(0x18+S*2), $(0x19+T*2) // 1110 01st xxxx xxxx // Multiply one part of secondary accumulator $ax0 (selected by S) by // one part of secondary accumulator $ax1 (selected by T) (treat them both as // signed) and subtract result from product register. void msubx(const UDSPInstruction& opc) { u8 sreg = (opc.hex >> 9) & 0x1; u8 treg = (opc.hex >> 8) & 0x1; s64 val1 = (sreg == 0) ? dsp_get_ax_l(0) : dsp_get_ax_h(0); s64 val2 = (treg == 0) ? dsp_get_ax_l(1) : dsp_get_ax_h(1); s64 prod = dsp_get_long_prod(); prod -= val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MADDC $acS.m, $axT.h // 1110 10st xxxx xxxx // Multiply middle part of accumulator $acS.m by high part of secondary // accumulator $axT.h (treat them both as signed) and add result to product // register. void maddc(const UDSPInstruction& opc) { u32 sreg = (opc.hex >> 9) & 0x1; u32 treg = (opc.hex >> 8) & 0x1; s64 val1 = dsp_get_acc_m(sreg); s64 val2 = dsp_get_ax_h(treg); s64 prod = dsp_get_long_prod(); prod += val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // MSUBC $acS.m, $axT.h // 1110 11st xxxx xxxx // Multiply middle part of accumulator $acS.m by high part of secondary // accumulator $axT.h (treat them both as signed) and subtract result from // product register. void msubc(const UDSPInstruction& opc) { u32 sreg = (opc.hex >> 9) & 0x1; u32 treg = (opc.hex >> 8) & 0x1; s64 val1 = dsp_get_acc_m(sreg); s64 val2 = dsp_get_ax_h(treg); s64 prod = dsp_get_long_prod(); prod -= val1 * val2 * GetMultiplyModifier(); dsp_set_long_prod(prod); Update_SR_Register64(prod); } // SRS @M, $(0x18+S) // 0010 1sss mmmm mmmm // Store value from register $(0x18+S) to a memory pointed by address M. // (8-bit sign extended). // FIXME: Perform additional operation depending on destination register. // Note: pc+=2 in duddie's doc seems wrong void srs(const UDSPInstruction& opc) { u8 reg = ((opc.hex >> 8) & 0x7) + 0x18; u16 addr = (u16)(s16)(s8)opc.hex; dsp_dmem_write(addr, g_dsp.r[reg]); } // LRS $(0x18+D), @M // 0010 0ddd mmmm mmmm // Move value from data memory pointed by address M (8-bit sign // extended) to register $(0x18+D). // FIXME: Perform additional operation depending on destination register. // Note: pc+=2 in duddie's doc seems wrong void lrs(const UDSPInstruction& opc) { u8 reg = ((opc.hex >> 8) & 0x7) + 0x18; u16 addr = (u16)(s16)(s8)opc.hex; g_dsp.r[reg] = dsp_dmem_read(addr); } } // namespace