// Copyright 2018 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Common/FloatUtils.h" #include #include namespace Common { u32 ClassifyDouble(double dvalue) { const u64 ivalue = std::bit_cast(dvalue); const u64 sign = ivalue & DOUBLE_SIGN; const u64 exp = ivalue & DOUBLE_EXP; if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } const u64 mantissa = ivalue & DOUBLE_FRAC; if (mantissa) { if (exp) return PPC_FPCLASS_QNAN; // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } if (exp) { // Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } // Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } u32 ClassifyFloat(float fvalue) { const u32 ivalue = std::bit_cast(fvalue); const u32 sign = ivalue & FLOAT_SIGN; const u32 exp = ivalue & FLOAT_EXP; if (exp > FLOAT_ZERO && exp < FLOAT_EXP) { // Nice normalized number. return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN; } const u32 mantissa = ivalue & FLOAT_FRAC; if (mantissa) { if (exp) return PPC_FPCLASS_QNAN; // Quiet NAN // Denormalized number. return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD; } if (exp) { // Infinite return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF; } // Zero return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ; } const std::array frsqrte_expected = {{ {0x1a7e800, -0x568}, {0x17cb800, -0x4f3}, {0x1552800, -0x48d}, {0x130c000, -0x435}, {0x10f2000, -0x3e7}, {0x0eff000, -0x3a2}, {0x0d2e000, -0x365}, {0x0b7c000, -0x32e}, {0x09e5000, -0x2fc}, {0x0867000, -0x2d0}, {0x06ff000, -0x2a8}, {0x05ab800, -0x283}, {0x046a000, -0x261}, {0x0339800, -0x243}, {0x0218800, -0x226}, {0x0105800, -0x20b}, {0x3ffa000, -0x7a4}, {0x3c29000, -0x700}, {0x38aa000, -0x670}, {0x3572000, -0x5f2}, {0x3279000, -0x584}, {0x2fb7000, -0x524}, {0x2d26000, -0x4cc}, {0x2ac0000, -0x47e}, {0x2881000, -0x43a}, {0x2665000, -0x3fa}, {0x2468000, -0x3c2}, {0x2287000, -0x38e}, {0x20c1000, -0x35e}, {0x1f12000, -0x332}, {0x1d79000, -0x30a}, {0x1bf4000, -0x2e6}, }}; double ApproximateReciprocalSquareRoot(double val) { s64 integral = std::bit_cast(val); s64 mantissa = integral & ((1LL << 52) - 1); const s64 sign = integral & (1ULL << 63); s64 exponent = integral & (0x7FFLL << 52); // Special case 0 if (mantissa == 0 && exponent == 0) { return sign ? -std::numeric_limits::infinity() : std::numeric_limits::infinity(); } // Special case NaN-ish numbers if (exponent == (0x7FFLL << 52)) { if (mantissa == 0) { if (sign) return std::numeric_limits::quiet_NaN(); return 0.0; } return 0.0 + val; } // Negative numbers return NaN if (sign) return std::numeric_limits::quiet_NaN(); if (!exponent) { // "Normalize" denormal values do { exponent -= 1LL << 52; mantissa <<= 1; } while (!(mantissa & (1LL << 52))); mantissa &= (1LL << 52) - 1; exponent += 1LL << 52; } const s64 exponent_lsb = exponent & (1LL << 52); exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52); integral = sign | exponent; const int i = static_cast((exponent_lsb | mantissa) >> 37); const auto& entry = frsqrte_expected[i / 2048]; integral |= static_cast(entry.m_base + entry.m_dec * (i % 2048)) << 26; return std::bit_cast(integral); } const std::array fres_expected = {{ {0x7ff800, 0x3e1}, {0x783800, 0x3a7}, {0x70ea00, 0x371}, {0x6a0800, 0x340}, {0x638800, 0x313}, {0x5d6200, 0x2ea}, {0x579000, 0x2c4}, {0x520800, 0x2a0}, {0x4cc800, 0x27f}, {0x47ca00, 0x261}, {0x430800, 0x245}, {0x3e8000, 0x22a}, {0x3a2c00, 0x212}, {0x360800, 0x1fb}, {0x321400, 0x1e5}, {0x2e4a00, 0x1d1}, {0x2aa800, 0x1be}, {0x272c00, 0x1ac}, {0x23d600, 0x19b}, {0x209e00, 0x18b}, {0x1d8800, 0x17c}, {0x1a9000, 0x16e}, {0x17ae00, 0x15b}, {0x14f800, 0x15b}, {0x124400, 0x143}, {0x0fbe00, 0x143}, {0x0d3800, 0x12d}, {0x0ade00, 0x12d}, {0x088400, 0x11a}, {0x065000, 0x11a}, {0x041c00, 0x108}, {0x020c00, 0x106}, }}; // Used by fres and ps_res. double ApproximateReciprocal(double val) { s64 integral = std::bit_cast(val); const s64 mantissa = integral & ((1LL << 52) - 1); const s64 sign = integral & (1ULL << 63); s64 exponent = integral & (0x7FFLL << 52); // Special case 0 if (mantissa == 0 && exponent == 0) return std::copysign(std::numeric_limits::infinity(), val); // Special case NaN-ish numbers if (exponent == (0x7FFLL << 52)) { if (mantissa == 0) return std::copysign(0.0, val); return 0.0 + val; } // Special case small inputs if (exponent < (895LL << 52)) return std::copysign(std::numeric_limits::max(), val); // Special case large inputs if (exponent >= (1149LL << 52)) return std::copysign(0.0, val); exponent = (0x7FDLL << 52) - exponent; const int i = static_cast(mantissa >> 37); const auto& entry = fres_expected[i / 1024]; integral = sign | exponent; integral |= static_cast(entry.m_base - (entry.m_dec * (i % 1024) + 1) / 2) << 29; return std::bit_cast(integral); } } // namespace Common