// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #pragma once #include #include #include #include #include #include #include #include #include "Common/CommonTypes.h" #include "Common/Event.h" #include "Common/Flag.h" #include "Common/MathUtil.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/AsyncShaderCompiler.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/RenderState.h" #include "VideoCommon/VideoCommon.h" class AbstractFramebuffer; class AbstractPipeline; class AbstractShader; class AbstractTexture; class AbstractStagingTexture; class PostProcessingShaderImplementation; struct TextureConfig; struct ComputePipelineConfig; struct AbstractPipelineConfig; enum class ShaderStage; enum class EFBAccessType; enum class StagingTextureType; struct EfbPokeData { u16 x, y; u32 data; }; extern int frameCount; enum class OSDMessage : s32 { IRChanged = 1, ARToggled = 2, EFBCopyToggled = 3, FogToggled = 4, SpeedChanged = 5, XFBChanged = 6, VolumeChanged = 7, }; // Renderer really isn't a very good name for this class - it's more like "Misc". // The long term goal is to get rid of this class and replace it with others that make // more sense. class Renderer { public: Renderer(int backbuffer_width, int backbuffer_height); virtual ~Renderer(); using ClearColor = std::array; virtual bool IsHeadless() const = 0; virtual bool Initialize(); virtual void Shutdown(); virtual void SetPipeline(const AbstractPipeline* pipeline) {} virtual void SetScissorRect(const MathUtil::Rectangle& rc) {} virtual void SetTexture(u32 index, const AbstractTexture* texture) {} virtual void SetSamplerState(u32 index, const SamplerState& state) {} virtual void UnbindTexture(const AbstractTexture* texture) {} virtual void SetInterlacingMode() {} virtual void SetViewport(float x, float y, float width, float height, float near_depth, float far_depth) { } virtual void SetFullscreen(bool enable_fullscreen) {} virtual bool IsFullscreen() const { return false; } virtual void ApplyState() {} virtual void RestoreState() {} virtual void ResetAPIState() {} virtual void RestoreAPIState() {} virtual std::unique_ptr CreateTexture(const TextureConfig& config) = 0; virtual std::unique_ptr CreateStagingTexture(StagingTextureType type, const TextureConfig& config) = 0; virtual std::unique_ptr CreateFramebuffer(const AbstractTexture* color_attachment, const AbstractTexture* depth_attachment) = 0; // Framebuffer operations. virtual void SetFramebuffer(const AbstractFramebuffer* framebuffer) {} virtual void SetAndDiscardFramebuffer(const AbstractFramebuffer* framebuffer) {} virtual void SetAndClearFramebuffer(const AbstractFramebuffer* framebuffer, const ClearColor& color_value = {}, float depth_value = 0.0f) { } // Shader modules/objects. virtual std::unique_ptr CreateShaderFromSource(ShaderStage stage, const char* source, size_t length) = 0; virtual std::unique_ptr CreateShaderFromBinary(ShaderStage stage, const void* data, size_t length) = 0; virtual std::unique_ptr CreatePipeline(const AbstractPipelineConfig& config) = 0; const AbstractFramebuffer* GetCurrentFramebuffer() const { return m_current_framebuffer; } u32 GetCurrentFramebufferWidth() const { return m_current_framebuffer_width; } u32 GetCurrentFramebufferHeight() const { return m_current_framebuffer_height; } // Ideal internal resolution - multiple of the native EFB resolution int GetTargetWidth() const { return m_target_width; } int GetTargetHeight() const { return m_target_height; } // Display resolution int GetBackbufferWidth() const { return m_backbuffer_width; } int GetBackbufferHeight() const { return m_backbuffer_height; } void SetWindowSize(int width, int height); // EFB coordinate conversion functions // Use this to convert a whole native EFB rect to backbuffer coordinates virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0; const TargetRectangle& GetTargetRectangle() const { return m_target_rectangle; } float CalculateDrawAspectRatio() const; std::tuple ScaleToDisplayAspectRatio(int width, int height) const; void UpdateDrawRectangle(); // Use this to convert a single target rectangle to two stereo rectangles std::tuple ConvertStereoRectangle(const TargetRectangle& rc) const; unsigned int GetEFBScale() const; // Use this to upscale native EFB coordinates to IDEAL internal resolution int EFBToScaledX(int x) const; int EFBToScaledY(int y) const; // Floating point versions of the above - only use them if really necessary float EFBToScaledXf(float x) const; float EFBToScaledYf(float y) const; // Random utilities void SaveScreenshot(const std::string& filename, bool wait_for_completion); void DrawDebugText(); virtual void RenderText(const std::string& text, int left, int top, u32 color) = 0; virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) = 0; virtual void ReinterpretPixelData(unsigned int convtype) = 0; void RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight, float Gamma = 1.0f); virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0; virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) = 0; virtual u16 BBoxRead(int index) = 0; virtual void BBoxWrite(int index, u16 value) = 0; // Finish up the current frame, print some stats void Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, u64 ticks); virtual void SwapImpl(AbstractTexture* texture, const EFBRectangle& rc, u64 ticks) = 0; PEControl::PixelFormat GetPrevPixelFormat() const { return m_prev_efb_format; } void StorePixelFormat(PEControl::PixelFormat new_format) { m_prev_efb_format = new_format; } PostProcessingShaderImplementation* GetPostProcessor() const { return m_post_processor.get(); } // Final surface changing // This is called when the surface is resized (WX) or the window changes (Android). void ChangeSurface(void* new_surface_handle); void ResizeSurface(); bool UseVertexDepthRange() const; virtual std::unique_ptr CreateAsyncShaderCompiler(); // Drawing utility shaders. virtual void DrawUtilityPipeline(const void* uniforms, u32 uniforms_size, const void* vertices, u32 vertex_stride, u32 num_vertices) { } virtual void DispatchComputeShader(const AbstractShader* shader, const void* uniforms, u32 uniforms_size, u32 groups_x, u32 groups_y, u32 groups_z) { } void ShowOSDMessage(OSDMessage message); protected: std::tuple CalculateTargetScale(int x, int y) const; bool CalculateTargetSize(); bool CheckForHostConfigChanges(); void CheckFifoRecording(); void RecordVideoMemory(); // TODO: Remove the width/height parameters once we make the EFB an abstract framebuffer. const AbstractFramebuffer* m_current_framebuffer = nullptr; u32 m_current_framebuffer_width = 1; u32 m_current_framebuffer_height = 1; Common::Flag m_screenshot_request; Common::Event m_screenshot_completed; std::mutex m_screenshot_lock; std::string m_screenshot_name; bool m_aspect_wide = false; // The framebuffer size int m_target_width = 0; int m_target_height = 0; // Backbuffer (window) size and render area int m_backbuffer_width = 0; int m_backbuffer_height = 0; TargetRectangle m_target_rectangle = {}; FPSCounter m_fps_counter; std::unique_ptr m_post_processor; void* m_new_surface_handle = nullptr; Common::Flag m_surface_changed; Common::Flag m_surface_resized; std::mutex m_swap_mutex; u32 m_last_host_config_bits = 0; u32 m_last_efb_multisamples = 1; private: void RunFrameDumps(); std::tuple CalculateOutputDimensions(int width, int height); PEControl::PixelFormat m_prev_efb_format = PEControl::INVALID_FMT; unsigned int m_efb_scale = 1; // These will be set on the first call to SetWindowSize. int m_last_window_request_width = 0; int m_last_window_request_height = 0; // frame dumping std::thread m_frame_dump_thread; Common::Event m_frame_dump_start; Common::Event m_frame_dump_done; Common::Flag m_frame_dump_thread_running; u32 m_frame_dump_image_counter = 0; bool m_frame_dump_frame_running = false; struct FrameDumpConfig { const u8* data; int width; int height; int stride; AVIDump::Frame state; } m_frame_dump_config; // Texture used for screenshot/frame dumping std::unique_ptr m_frame_dump_render_texture; std::array, 2> m_frame_dump_readback_textures; AVIDump::Frame m_last_frame_state; bool m_last_frame_exported = false; // Tracking of XFB textures so we don't render duplicate frames. AbstractTexture* m_last_xfb_texture = nullptr; u64 m_last_xfb_id = std::numeric_limits::max(); u64 m_last_xfb_ticks = 0; EFBRectangle m_last_xfb_region; // Note: Only used for auto-ir u32 m_last_xfb_width = MAX_XFB_WIDTH; u32 m_last_xfb_height = MAX_XFB_HEIGHT; s32 m_osd_message = 0; s32 m_osd_time = 0; // NOTE: The methods below are called on the framedumping thread. bool StartFrameDumpToAVI(const FrameDumpConfig& config); void DumpFrameToAVI(const FrameDumpConfig& config); void StopFrameDumpToAVI(); std::string GetFrameDumpNextImageFileName() const; bool StartFrameDumpToImage(const FrameDumpConfig& config); void DumpFrameToImage(const FrameDumpConfig& config); void ShutdownFrameDumping(); bool IsFrameDumping(); // Asynchronously encodes the current staging texture to the frame dump. void DumpCurrentFrame(); // Fills the frame dump render texture with the current XFB texture. void RenderFrameDump(); // Queues the current frame for readback, which will be written to AVI next frame. void QueueFrameDumpReadback(); // Asynchronously encodes the specified pointer of frame data to the frame dump. void DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state); // Ensures all rendered frames are queued for encoding. void FlushFrameDump(); // Ensures all encoded frames have been written to the output file. void FinishFrameData(); }; extern std::unique_ptr g_renderer;