// Copyright 2015 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/UberShaderPixel.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/NativeVertexFormat.h" #include "VideoCommon/PixelShaderGen.h" #include "VideoCommon/ShaderGenCommon.h" #include "VideoCommon/UberShaderCommon.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" namespace UberShader { PixelShaderUid GetPixelShaderUid() { PixelShaderUid out; pixel_ubershader_uid_data* const uid_data = out.GetUidData(); uid_data->num_texgens = xfmem.numTexGen.numTexGens; uid_data->early_depth = bpmem.UseEarlyDepthTest() && (g_ActiveConfig.bFastDepthCalc || bpmem.alpha_test.TestResult() == AlphaTestResult::Undetermined) && !(bpmem.zmode.testenable && bpmem.genMode.zfreeze); uid_data->per_pixel_depth = (bpmem.ztex2.op != ZTexOp::Disabled && bpmem.UseLateDepthTest()) || (!g_ActiveConfig.bFastDepthCalc && bpmem.zmode.testenable && !uid_data->early_depth) || (bpmem.zmode.testenable && bpmem.genMode.zfreeze); uid_data->uint_output = bpmem.blendmode.UseLogicOp(); return out; } void ClearUnusedPixelShaderUidBits(APIType ApiType, const ShaderHostConfig& host_config, PixelShaderUid* uid) { pixel_ubershader_uid_data* const uid_data = uid->GetUidData(); // OpenGL and Vulkan convert implicitly normalized color outputs to their uint representation. // Therefore, it is not necessary to use a uint output on these backends. We also disable the // uint output when logic op is not supported (i.e. driver/device does not support D3D11.1). if (ApiType != APIType::D3D || !host_config.backend_logic_op) uid_data->uint_output = 0; } ShaderCode GenPixelShader(APIType ApiType, const ShaderHostConfig& host_config, const pixel_ubershader_uid_data* uid_data) { const bool per_pixel_lighting = host_config.per_pixel_lighting; const bool msaa = host_config.msaa; const bool ssaa = host_config.ssaa; const bool stereo = host_config.stereo; const bool use_dual_source = host_config.backend_dual_source_blend; const bool use_shader_blend = !use_dual_source && host_config.backend_shader_framebuffer_fetch; const bool early_depth = uid_data->early_depth != 0; const bool per_pixel_depth = uid_data->per_pixel_depth != 0; const bool bounding_box = host_config.bounding_box; const u32 numTexgen = uid_data->num_texgens; ShaderCode out; out.Write("// Pixel UberShader for {} texgens{}{}\n", numTexgen, early_depth ? ", early-depth" : "", per_pixel_depth ? ", per-pixel depth" : ""); WritePixelShaderCommonHeader(out, ApiType, host_config, bounding_box); WriteUberShaderCommonHeader(out, ApiType, host_config); if (per_pixel_lighting) WriteLightingFunction(out); // Shader inputs/outputs in GLSL (HLSL is in main). if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { if (use_dual_source) { if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_FRAGMENT_SHADER_INDEX_DECORATION)) { out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n" "FRAGMENT_OUTPUT_LOCATION(1) out vec4 ocol1;\n"); } else { out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0) out vec4 ocol0;\n" "FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 1) out vec4 ocol1;\n"); } } else if (use_shader_blend) { // QComm's Adreno driver doesn't seem to like using the framebuffer_fetch value as an // intermediate value with multiple reads & modifications, so pull out the "real" output value // and use a temporary for calculations, then set the output value once at the end of the // shader if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_FRAGMENT_SHADER_INDEX_DECORATION)) { out.Write("FRAGMENT_OUTPUT_LOCATION(0) FRAGMENT_INOUT vec4 real_ocol0;\n"); } else { out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0) FRAGMENT_INOUT vec4 real_ocol0;\n"); } } else { out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n"); } if (per_pixel_depth) out.Write("#define depth gl_FragDepth\n"); if (host_config.backend_geometry_shaders) { out.Write("VARYING_LOCATION(0) in VertexData {{\n"); GenerateVSOutputMembers(out, ApiType, numTexgen, host_config, GetInterpolationQualifier(msaa, ssaa, true, true)); if (stereo) out.Write(" flat int layer;\n"); out.Write("}};\n\n"); } else { // Let's set up attributes u32 counter = 0; out.Write("VARYING_LOCATION({}) {} in float4 colors_0;\n", counter++, GetInterpolationQualifier(msaa, ssaa)); out.Write("VARYING_LOCATION({}) {} in float4 colors_1;\n", counter++, GetInterpolationQualifier(msaa, ssaa)); for (u32 i = 0; i < numTexgen; ++i) { out.Write("VARYING_LOCATION({}) {} in float3 tex{};\n", counter++, GetInterpolationQualifier(msaa, ssaa), i); } if (!host_config.fast_depth_calc) { out.Write("VARYING_LOCATION({}) {} in float4 clipPos;\n", counter++, GetInterpolationQualifier(msaa, ssaa)); } if (per_pixel_lighting) { out.Write("VARYING_LOCATION({}) {} in float3 Normal;\n", counter++, GetInterpolationQualifier(msaa, ssaa)); out.Write("VARYING_LOCATION({}) {} in float3 WorldPos;\n", counter++, GetInterpolationQualifier(msaa, ssaa)); } } } // Uniform index -> texture coordinates if (numTexgen > 0) { if (ApiType != APIType::D3D) { out.Write("float3 selectTexCoord(uint index) {{\n"); } else { out.Write("float3 selectTexCoord(uint index"); for (u32 i = 0; i < numTexgen; i++) out.Write(", float3 tex{}", i); out.Write(") {{\n"); } if (ApiType == APIType::D3D) { out.Write(" switch (index) {{\n"); for (u32 i = 0; i < numTexgen; i++) { out.Write(" case {}u:\n" " return tex{};\n", i, i); } out.Write(" default:\n" " return float3(0.0, 0.0, 0.0);\n" " }}\n"); } else { if (numTexgen > 4) out.Write(" if (index < 4u) {{\n"); if (numTexgen > 2) out.Write(" if (index < 2u) {{\n"); if (numTexgen > 1) out.Write(" return (index == 0u) ? tex0 : tex1;\n"); else out.Write(" return (index == 0u) ? tex0 : float3(0.0, 0.0, 0.0);\n"); if (numTexgen > 2) { out.Write(" }} else {{\n"); // >= 2 if (numTexgen > 3) out.Write(" return (index == 2u) ? tex2 : tex3;\n"); else out.Write(" return (index == 2u) ? tex2 : float3(0.0, 0.0, 0.0);\n"); out.Write(" }}\n"); } if (numTexgen > 4) { out.Write(" }} else {{\n"); // >= 4 <= 8 if (numTexgen > 6) out.Write(" if (index < 6u) {{\n"); if (numTexgen > 5) out.Write(" return (index == 4u) ? tex4 : tex5;\n"); else out.Write(" return (index == 4u) ? tex4 : float3(0.0, 0.0, 0.0);\n"); if (numTexgen > 6) { out.Write(" }} else {{\n"); // >= 6 <= 8 if (numTexgen > 7) out.Write(" return (index == 6u) ? tex6 : tex7;\n"); else out.Write(" return (index == 6u) ? tex6 : float3(0.0, 0.0, 0.0);\n"); out.Write(" }}\n"); } out.Write(" }}\n"); } } out.Write("}}\n\n"); } // ===================== // Texture Sampling // ===================== if (host_config.backend_dynamic_sampler_indexing) { // Doesn't look like DirectX supports this. Oh well the code path is here just in case it // supports this in the future. out.Write("int4 sampleTexture(uint sampler_num, float3 uv) {{\n"); if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) out.Write(" return iround(texture(samp[sampler_num], uv) * 255.0);\n"); else if (ApiType == APIType::D3D) out.Write(" return iround(Tex[sampler_num].Sample(samp[sampler_num], uv) * 255.0);\n"); out.Write("}}\n\n"); } else { out.Write("int4 sampleTexture(uint sampler_num, float3 uv) {{\n" " // This is messy, but DirectX, OpenGL 3.3 and OpenGL ES 3.0 doesn't support " "dynamic indexing of the sampler array\n" " // With any luck the shader compiler will optimise this if the hardware supports " "dynamic indexing.\n" " switch(sampler_num) {{\n"); for (int i = 0; i < 8; i++) { if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) out.Write(" case {}u: return iround(texture(samp[{}], uv) * 255.0);\n", i, i); else if (ApiType == APIType::D3D) out.Write(" case {}u: return iround(Tex[{}].Sample(samp[{}], uv) * 255.0);\n", i, i, i); } out.Write(" }}\n" "}}\n\n"); } // ====================== // Arbitrary Swizzling // ====================== out.Write("int4 Swizzle(uint s, int4 color) {{\n" " // AKA: Color Channel Swapping\n" "\n" " int4 ret;\n"); out.Write(" ret.r = color[{}];\n", BitfieldExtract<&TevKSel::swap1>("bpmem_tevksel(s * 2u)")); out.Write(" ret.g = color[{}];\n", BitfieldExtract<&TevKSel::swap2>("bpmem_tevksel(s * 2u)")); out.Write(" ret.b = color[{}];\n", BitfieldExtract<&TevKSel::swap1>("bpmem_tevksel(s * 2u + 1u)")); out.Write(" ret.a = color[{}];\n", BitfieldExtract<&TevKSel::swap2>("bpmem_tevksel(s * 2u + 1u)")); out.Write(" return ret;\n" "}}\n\n"); // ====================== // Indirect Wrapping // ====================== out.Write("int Wrap(int coord, uint mode) {{\n" " if (mode == 0u) // ITW_OFF\n" " return coord;\n" " else if (mode < 6u) // ITW_256 to ITW_16\n" " return coord & (0xfffe >> mode);\n" " else // ITW_0\n" " return 0;\n" "}}\n\n"); // ====================== // Indirect Lookup // ====================== const auto LookupIndirectTexture = [&out, stereo](std::string_view out_var_name, std::string_view in_index_name) { out.Write("{{\n" " uint iref = bpmem_iref({});\n" " if ( iref != 0u)\n" " {{\n" " uint texcoord = bitfieldExtract(iref, 0, 3);\n" " uint texmap = bitfieldExtract(iref, 8, 3);\n" " float3 uv = getTexCoord(texcoord);\n" " int2 fixedPoint_uv = int2((uv.z == 0.0 ? uv.xy : (uv.xy / uv.z)) * " I_TEXDIMS "[texcoord].zw);\n" "\n" " if (({} & 1u) == 0u)\n" " fixedPoint_uv = fixedPoint_uv >> " I_INDTEXSCALE "[{} >> 1].xy;\n" " else\n" " fixedPoint_uv = fixedPoint_uv >> " I_INDTEXSCALE "[{} >> 1].zw;\n" "\n" " {} = sampleTexture(texmap, float3(float2(fixedPoint_uv) * " I_TEXDIMS "[texmap].xy, {})).abg;\n", in_index_name, in_index_name, in_index_name, in_index_name, out_var_name, stereo ? "float(layer)" : "0.0"); out.Write(" }}\n" " else\n" " {{\n" " {} = int3(0, 0, 0);\n" " }}\n" "}}\n", out_var_name); }; // ====================== // TEV's Special Lerp // ====================== const auto WriteTevLerp = [&out](std::string_view components) { out.Write( "// TEV's Linear Interpolate, plus bias, add/subtract and scale\n" "int{0} tevLerp{0}(int{0} A, int{0} B, int{0} C, int{0} D, uint bias, bool op, bool alpha, " "uint shift) {{\n" " // Scale C from 0..255 to 0..256\n" " C += C >> 7;\n" "\n" " // Add bias to D\n" " if (bias == 1u) D += 128;\n" " else if (bias == 2u) D -= 128;\n" "\n" " int{0} lerp = (A << 8) + (B - A)*C;\n" " if (shift != 3u) {{\n" " lerp = lerp << shift;\n" " D = D << shift;\n" " }}\n" "\n" " if ((shift == 3u) == alpha)\n" " lerp = lerp + (op ? 127 : 128);\n" "\n" " int{0} result = lerp >> 8;\n" "\n" " // Add/Subtract D\n" " if (op) // Subtract\n" " result = D - result;\n" " else // Add\n" " result = D + result;\n" "\n" " // Most of the Shift was moved inside the lerp for improved precision\n" " // But we still do the divide by 2 here\n" " if (shift == 3u)\n" " result = result >> 1;\n" " return result;\n" "}}\n\n", components); }; WriteTevLerp(""); // int WriteTevLerp("3"); // int3 // ======================= // TEV's Color Compare // ======================= out.Write( "// Implements operations 0-5 of TEV's compare mode,\n" "// which are common to both color and alpha channels\n" "bool tevCompare(uint op, int3 color_A, int3 color_B) {{\n" " switch (op) {{\n" " case 0u: // TevCompareMode::R8, TevComparison::GT\n" " return (color_A.r > color_B.r);\n" " case 1u: // TevCompareMode::R8, TevComparison::EQ\n" " return (color_A.r == color_B.r);\n" " case 2u: // TevCompareMode::GR16, TevComparison::GT\n" " int A_16 = (color_A.r | (color_A.g << 8));\n" " int B_16 = (color_B.r | (color_B.g << 8));\n" " return A_16 > B_16;\n" " case 3u: // TevCompareMode::GR16, TevComparison::EQ\n" " return (color_A.r == color_B.r && color_A.g == color_B.g);\n" " case 4u: // TevCompareMode::BGR24, TevComparison::GT\n" " int A_24 = (color_A.r | (color_A.g << 8) | (color_A.b << 16));\n" " int B_24 = (color_B.r | (color_B.g << 8) | (color_B.b << 16));\n" " return A_24 > B_24;\n" " case 5u: // TevCompareMode::BGR24, TevComparison::EQ\n" " return (color_A.r == color_B.r && color_A.g == color_B.g && color_A.b == color_B.b);\n" " default:\n" " return false;\n" " }}\n" "}}\n\n"); // ================= // Input Selects // ================= out.Write("struct State {{\n" " int4 Reg[4];\n" " int4 TexColor;\n" " int AlphaBump;\n" "}};\n" "struct StageState {{\n" " uint stage;\n" " uint order;\n" " uint cc;\n" " uint ac;\n" "}};\n" "\n" "int4 getRasColor(State s, StageState ss, float4 colors_0, float4 colors_1);\n" "int4 getKonstColor(State s, StageState ss);\n" "\n"); // The switch statements in these functions appear to get transformed into an if..else chain // on NVIDIA's OpenGL/Vulkan drivers, resulting in lower performance than the D3D counterparts. // Transforming the switch into a binary tree of ifs can increase performance by up to 20%. if (ApiType == APIType::D3D) { out.Write("// Helper function for Alpha Test\n" "bool alphaCompare(int a, int b, uint compare) {{\n" " switch (compare) {{\n" " case 0u: // NEVER\n" " return false;\n" " case 1u: // LESS\n" " return a < b;\n" " case 2u: // EQUAL\n" " return a == b;\n" " case 3u: // LEQUAL\n" " return a <= b;\n" " case 4u: // GREATER\n" " return a > b;\n" " case 5u: // NEQUAL;\n" " return a != b;\n" " case 6u: // GEQUAL\n" " return a >= b;\n" " case 7u: // ALWAYS\n" " return true;\n" " }}\n" "}}\n" "\n" "int3 selectColorInput(State s, StageState ss, float4 colors_0, float4 colors_1, " "uint index) {{\n" " switch (index) {{\n" " case 0u: // prev.rgb\n" " return s.Reg[0].rgb;\n" " case 1u: // prev.aaa\n" " return s.Reg[0].aaa;\n" " case 2u: // c0.rgb\n" " return s.Reg[1].rgb;\n" " case 3u: // c0.aaa\n" " return s.Reg[1].aaa;\n" " case 4u: // c1.rgb\n" " return s.Reg[2].rgb;\n" " case 5u: // c1.aaa\n" " return s.Reg[2].aaa;\n" " case 6u: // c2.rgb\n" " return s.Reg[3].rgb;\n" " case 7u: // c2.aaa\n" " return s.Reg[3].aaa;\n" " case 8u:\n" " return s.TexColor.rgb;\n" " case 9u:\n" " return s.TexColor.aaa;\n" " case 10u:\n" " return getRasColor(s, ss, colors_0, colors_1).rgb;\n" " case 11u:\n" " return getRasColor(s, ss, colors_0, colors_1).aaa;\n" " case 12u: // One\n" " return int3(255, 255, 255);\n" " case 13u: // Half\n" " return int3(128, 128, 128);\n" " case 14u:\n" " return getKonstColor(s, ss).rgb;\n" " case 15u: // Zero\n" " return int3(0, 0, 0);\n" " }}\n" "}}\n" "\n" "int selectAlphaInput(State s, StageState ss, float4 colors_0, float4 colors_1, " "uint index) {{\n" " switch (index) {{\n" " case 0u: // prev.a\n" " return s.Reg[0].a;\n" " case 1u: // c0.a\n" " return s.Reg[1].a;\n" " case 2u: // c1.a\n" " return s.Reg[2].a;\n" " case 3u: // c2.a\n" " return s.Reg[3].a;\n" " case 4u:\n" " return s.TexColor.a;\n" " case 5u:\n" " return getRasColor(s, ss, colors_0, colors_1).a;\n" " case 6u:\n" " return getKonstColor(s, ss).a;\n" " case 7u: // Zero\n" " return 0;\n" " }}\n" "}}\n" "\n" "int4 getTevReg(in State s, uint index) {{\n" " switch (index) {{\n" " case 0u: // prev\n" " return s.Reg[0];\n" " case 1u: // c0\n" " return s.Reg[1];\n" " case 2u: // c1\n" " return s.Reg[2];\n" " case 3u: // c2\n" " return s.Reg[3];\n" " default: // prev\n" " return s.Reg[0];\n" " }}\n" "}}\n" "\n" "void setRegColor(inout State s, uint index, int3 color) {{\n" " switch (index) {{\n" " case 0u: // prev\n" " s.Reg[0].rgb = color;\n" " break;\n" " case 1u: // c0\n" " s.Reg[1].rgb = color;\n" " break;\n" " case 2u: // c1\n" " s.Reg[2].rgb = color;\n" " break;\n" " case 3u: // c2\n" " s.Reg[3].rgb = color;\n" " break;\n" " }}\n" "}}\n" "\n" "void setRegAlpha(inout State s, uint index, int alpha) {{\n" " switch (index) {{\n" " case 0u: // prev\n" " s.Reg[0].a = alpha;\n" " break;\n" " case 1u: // c0\n" " s.Reg[1].a = alpha;\n" " break;\n" " case 2u: // c1\n" " s.Reg[2].a = alpha;\n" " break;\n" " case 3u: // c2\n" " s.Reg[3].a = alpha;\n" " break;\n" " }}\n" "}}\n" "\n"); } else { out.Write( "// Helper function for Alpha Test\n" "bool alphaCompare(int a, int b, uint compare) {{\n" " if (compare < 4u) {{\n" " if (compare < 2u) {{\n" " return (compare == 0u) ? (false) : (a < b);\n" " }} else {{\n" " return (compare == 2u) ? (a == b) : (a <= b);\n" " }}\n" " }} else {{\n" " if (compare < 6u) {{\n" " return (compare == 4u) ? (a > b) : (a != b);\n" " }} else {{\n" " return (compare == 6u) ? (a >= b) : (true);\n" " }}\n" " }}\n" "}}\n" "\n" "int3 selectColorInput(State s, StageState ss, float4 colors_0, float4 colors_1, " "uint index) {{\n" " if (index < 8u) {{\n" " if (index < 4u) {{\n" " if (index < 2u) {{\n" " return (index == 0u) ? s.Reg[0].rgb : s.Reg[0].aaa;\n" " }} else {{\n" " return (index == 2u) ? s.Reg[1].rgb : s.Reg[1].aaa;\n" " }}\n" " }} else {{\n" " if (index < 6u) {{\n" " return (index == 4u) ? s.Reg[2].rgb : s.Reg[2].aaa;\n" " }} else {{\n" " return (index == 6u) ? s.Reg[3].rgb : s.Reg[3].aaa;\n" " }}\n" " }}\n" " }} else {{\n" " if (index < 12u) {{\n" " if (index < 10u) {{\n" " return (index == 8u) ? s.TexColor.rgb : s.TexColor.aaa;\n" " }} else {{\n" " int4 ras = getRasColor(s, ss, colors_0, colors_1);\n" " return (index == 10u) ? ras.rgb : ras.aaa;\n" " }}\n" " }} else {{\n" " if (index < 14u) {{\n" " return (index == 12u) ? int3(255, 255, 255) : int3(128, 128, 128);\n" " }} else {{\n" " return (index == 14u) ? getKonstColor(s, ss).rgb : int3(0, 0, 0);\n" " }}\n" " }}\n" " }}\n" "}}\n" "\n" "int selectAlphaInput(State s, StageState ss, float4 colors_0, float4 colors_1, " "uint index) {{\n" " if (index < 4u) {{\n" " if (index < 2u) {{\n" " return (index == 0u) ? s.Reg[0].a : s.Reg[1].a;\n" " }} else {{\n" " return (index == 2u) ? s.Reg[2].a : s.Reg[3].a;\n" " }}\n" " }} else {{\n" " if (index < 6u) {{\n" " return (index == 4u) ? s.TexColor.a : getRasColor(s, ss, colors_0, colors_1).a;\n" " }} else {{\n" " return (index == 6u) ? getKonstColor(s, ss).a : 0;\n" " }}\n" " }}\n" "}}\n" "\n" "int4 getTevReg(in State s, uint index) {{\n" " if (index < 2u) {{\n" " if (index == 0u) {{\n" " return s.Reg[0];\n" " }} else {{\n" " return s.Reg[1];\n" " }}\n" " }} else {{\n" " if (index == 2u) {{\n" " return s.Reg[2];\n" " }} else {{\n" " return s.Reg[3];\n" " }}\n" " }}\n" "}}\n" "\n" "void setRegColor(inout State s, uint index, int3 color) {{\n" " if (index < 2u) {{\n" " if (index == 0u) {{\n" " s.Reg[0].rgb = color;\n" " }} else {{\n" " s.Reg[1].rgb = color;\n" " }}\n" " }} else {{\n" " if (index == 2u) {{\n" " s.Reg[2].rgb = color;\n" " }} else {{\n" " s.Reg[3].rgb = color;\n" " }}\n" " }}\n" "}}\n" "\n" "void setRegAlpha(inout State s, uint index, int alpha) {{\n" " if (index < 2u) {{\n" " if (index == 0u) {{\n" " s.Reg[0].a = alpha;\n" " }} else {{\n" " s.Reg[1].a = alpha;\n" " }}\n" " }} else {{\n" " if (index == 2u) {{\n" " s.Reg[2].a = alpha;\n" " }} else {{\n" " s.Reg[3].a = alpha;\n" " }}\n" " }}\n" "}}\n" "\n"); } // Since the texture coodinate variables aren't global, we need to pass // them to the select function in D3D. if (numTexgen > 0) { if (ApiType != APIType::D3D) { out.Write("#define getTexCoord(index) selectTexCoord((index))\n\n"); } else { out.Write("#define getTexCoord(index) selectTexCoord((index)"); for (u32 i = 0; i < numTexgen; i++) out.Write(", tex{}", i); out.Write(")\n\n"); } } if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { if (early_depth && host_config.backend_early_z) out.Write("FORCE_EARLY_Z;\n"); out.Write("void main()\n{{\n"); out.Write(" float4 rawpos = gl_FragCoord;\n"); if (use_shader_blend) { // Store off a copy of the initial fb value for blending out.Write(" float4 initial_ocol0 = FB_FETCH_VALUE;\n" " float4 ocol0;\n" " float4 ocol1;\n"); } } else // D3D { if (early_depth && host_config.backend_early_z) out.Write("[earlydepthstencil]\n"); out.Write("void main(\n"); if (uid_data->uint_output) { out.Write(" out uint4 ocol0 : SV_Target,\n"); } else { out.Write(" out float4 ocol0 : SV_Target0,\n" " out float4 ocol1 : SV_Target1,\n"); } if (per_pixel_depth) out.Write(" out float depth : SV_Depth,\n"); out.Write(" in float4 rawpos : SV_Position,\n"); out.Write(" in {} float4 colors_0 : COLOR0,\n", GetInterpolationQualifier(msaa, ssaa)); out.Write(" in {} float4 colors_1 : COLOR1", GetInterpolationQualifier(msaa, ssaa)); // compute window position if needed because binding semantic WPOS is not widely supported for (u32 i = 0; i < numTexgen; ++i) { out.Write(",\n in {} float3 tex{} : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa), i, i); } if (!host_config.fast_depth_calc) { out.Write("\n,\n in {} float4 clipPos : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa), numTexgen); } if (per_pixel_lighting) { out.Write(",\n in {} float3 Normal : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa), numTexgen + 1); out.Write(",\n in {} float3 WorldPos : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa), numTexgen + 2); } out.Write(",\n in float clipDist0 : SV_ClipDistance0\n" ",\n in float clipDist1 : SV_ClipDistance1\n"); if (stereo) out.Write(",\n in uint layer : SV_RenderTargetArrayIndex\n"); out.Write("\n ) {{\n"); } out.Write(" int3 tevcoord = int3(0, 0, 0);\n" " State s;\n" " s.TexColor = int4(0, 0, 0, 0);\n" " s.AlphaBump = 0;\n" "\n"); for (int i = 0; i < 4; i++) out.Write(" s.Reg[{}] = " I_COLORS "[{}];\n", i, i); const char* color_input_prefix = ""; if (per_pixel_lighting) { out.Write(" float4 lit_colors_0 = colors_0;\n" " float4 lit_colors_1 = colors_1;\n" " float3 lit_normal = normalize(Normal.xyz);\n" " float3 lit_pos = WorldPos.xyz;\n"); WriteVertexLighting(out, ApiType, "lit_pos", "lit_normal", "colors_0", "colors_1", "lit_colors_0", "lit_colors_1"); color_input_prefix = "lit_"; } out.Write(" uint num_stages = {};\n\n", BitfieldExtract<&GenMode::numtevstages>("bpmem_genmode")); out.Write(" // Main tev loop\n"); if (ApiType == APIType::D3D) { // Tell DirectX we don't want this loop unrolled (it crashes if it tries to) out.Write(" [loop]\n"); } out.Write(" for(uint stage = 0u; stage <= num_stages; stage++)\n" " {{\n" " StageState ss;\n" " ss.stage = stage;\n" " ss.cc = bpmem_combiners(stage).x;\n" " ss.ac = bpmem_combiners(stage).y;\n" " ss.order = bpmem_tevorder(stage>>1);\n" " if ((stage & 1u) == 1u)\n" " ss.order = ss.order >> {};\n\n", int(TwoTevStageOrders().enable1.StartBit() - TwoTevStageOrders().enable0.StartBit())); // Disable texturing when there are no texgens (for now) if (numTexgen != 0) { out.Write(" uint tex_coord = {};\n", BitfieldExtract<&TwoTevStageOrders::texcoord0>("ss.order")); out.Write(" float3 uv = getTexCoord(tex_coord);\n" " int2 fixedPoint_uv = int2((uv.z == 0.0 ? uv.xy : (uv.xy / uv.z)) * " I_TEXDIMS "[tex_coord].zw);\n" "\n" " bool texture_enabled = (ss.order & {}u) != 0u;\n", 1 << TwoTevStageOrders().enable0.StartBit()); out.Write("\n" " // Indirect textures\n" " uint tevind = bpmem_tevind(stage);\n" " if (tevind != 0u)\n" " {{\n" " uint bs = {};\n", BitfieldExtract<&TevStageIndirect::bs>("tevind")); out.Write(" uint fmt = {};\n", BitfieldExtract<&TevStageIndirect::fmt>("tevind")); out.Write(" uint bias = {};\n", BitfieldExtract<&TevStageIndirect::bias>("tevind")); out.Write(" uint bt = {};\n", BitfieldExtract<&TevStageIndirect::bt>("tevind")); out.Write(" uint matrix_index = {};\n", BitfieldExtract<&TevStageIndirect::matrix_index>("tevind")); out.Write(" uint matrix_id = {};\n", BitfieldExtract<&TevStageIndirect::matrix_id>("tevind")); out.Write("\n"); out.Write(" int3 indcoord;\n"); LookupIndirectTexture("indcoord", "bt"); out.Write(" if (bs != 0u)\n" " s.AlphaBump = indcoord[bs - 1u];\n" " switch(fmt)\n" " {{\n" " case {:s}:\n", IndTexFormat::ITF_8); out.Write(" indcoord.x = indcoord.x + ((bias & 1u) != 0u ? -128 : 0);\n" " indcoord.y = indcoord.y + ((bias & 2u) != 0u ? -128 : 0);\n" " indcoord.z = indcoord.z + ((bias & 4u) != 0u ? -128 : 0);\n" " s.AlphaBump = s.AlphaBump & 0xf8;\n" " break;\n" " case {:s}:\n", IndTexFormat::ITF_5); out.Write(" indcoord.x = (indcoord.x & 0x1f) + ((bias & 1u) != 0u ? 1 : 0);\n" " indcoord.y = (indcoord.y & 0x1f) + ((bias & 2u) != 0u ? 1 : 0);\n" " indcoord.z = (indcoord.z & 0x1f) + ((bias & 4u) != 0u ? 1 : 0);\n" " s.AlphaBump = s.AlphaBump & 0xe0;\n" " break;\n" " case {:s}:\n", IndTexFormat::ITF_4); out.Write(" indcoord.x = (indcoord.x & 0x0f) + ((bias & 1u) != 0u ? 1 : 0);\n" " indcoord.y = (indcoord.y & 0x0f) + ((bias & 2u) != 0u ? 1 : 0);\n" " indcoord.z = (indcoord.z & 0x0f) + ((bias & 4u) != 0u ? 1 : 0);\n" " s.AlphaBump = s.AlphaBump & 0xf0;\n" " break;\n" " case {:s}:\n", IndTexFormat::ITF_3); out.Write(" indcoord.x = (indcoord.x & 0x07) + ((bias & 1u) != 0u ? 1 : 0);\n" " indcoord.y = (indcoord.y & 0x07) + ((bias & 2u) != 0u ? 1 : 0);\n" " indcoord.z = (indcoord.z & 0x07) + ((bias & 4u) != 0u ? 1 : 0);\n" " s.AlphaBump = s.AlphaBump & 0xf8;\n" " break;\n" " }}\n" "\n" " // Matrix multiply\n" " int2 indtevtrans = int2(0, 0);\n" " if (matrix_index != 0u)\n" " {{\n" " uint mtxidx = 2u * (matrix_index - 1u);\n" " int shift = " I_INDTEXMTX "[mtxidx].w;\n" "\n" " switch (matrix_id)\n" " {{\n" " case 0u: // 3x2 S0.10 matrix\n" " indtevtrans = int2(idot(" I_INDTEXMTX "[mtxidx].xyz, indcoord), idot(" I_INDTEXMTX "[mtxidx + 1u].xyz, indcoord)) >> 3;\n" " break;\n" " case 1u: // S matrix, S17.7 format\n" " indtevtrans = (fixedPoint_uv * indcoord.xx) >> 8;\n" " break;\n" " case 2u: // T matrix, S17.7 format\n" " indtevtrans = (fixedPoint_uv * indcoord.yy) >> 8;\n" " break;\n" " }}\n" "\n" " if (shift >= 0)\n" " indtevtrans = indtevtrans >> shift;\n" " else\n" " indtevtrans = indtevtrans << ((-shift) & 31);\n" " }}\n" "\n" " // Wrapping\n" " uint sw = {};\n", BitfieldExtract<&TevStageIndirect::sw>("tevind")); out.Write(" uint tw = {}; \n", BitfieldExtract<&TevStageIndirect::tw>("tevind")); out.Write( " int2 wrapped_coord = int2(Wrap(fixedPoint_uv.x, sw), Wrap(fixedPoint_uv.y, tw));\n" "\n" " if ((tevind & {}u) != 0u) // add previous tevcoord\n", 1 << TevStageIndirect().fb_addprev.StartBit()); out.Write(" tevcoord.xy += wrapped_coord + indtevtrans;\n" " else\n" " tevcoord.xy = wrapped_coord + indtevtrans;\n" "\n" " // Emulate s24 overflows\n" " tevcoord.xy = (tevcoord.xy << 8) >> 8;\n" " }}\n" " else if (texture_enabled)\n" " {{\n" " tevcoord.xy = fixedPoint_uv;\n" " }}\n" "\n" " // Sample texture for stage\n" " if (texture_enabled) {{\n" " uint sampler_num = {};\n", BitfieldExtract<&TwoTevStageOrders::texmap0>("ss.order")); out.Write("\n" " float2 uv = (float2(tevcoord.xy)) * " I_TEXDIMS "[sampler_num].xy;\n"); out.Write(" int4 color = sampleTexture(sampler_num, float3(uv, {}));\n", stereo ? "float(layer)" : "0.0"); out.Write(" uint swap = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::tswap>("ss.ac")); out.Write(" s.TexColor = Swizzle(swap, color);\n"); out.Write(" }} else {{\n" " // Texture is disabled\n" " s.TexColor = int4(255, 255, 255, 255);\n" " }}\n" "\n"); } out.Write(" // This is the Meat of TEV\n" " {{\n" " // Color Combiner\n"); out.Write(" uint color_a = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::a>("ss.cc")); out.Write(" uint color_b = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::b>("ss.cc")); out.Write(" uint color_c = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::c>("ss.cc")); out.Write(" uint color_d = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::d>("ss.cc")); out.Write(" uint color_bias = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::bias>("ss.cc")); out.Write(" bool color_op = bool({});\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::op>("ss.cc")); out.Write(" bool color_clamp = bool({});\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::clamp>("ss.cc")); out.Write(" uint color_shift = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::scale>("ss.cc")); out.Write(" uint color_dest = {};\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::dest>("ss.cc")); out.Write( " uint color_compare_op = color_shift << 1 | uint(color_op);\n" "\n" " int3 color_A = selectColorInput(s, ss, {0}colors_0, {0}colors_1, color_a) & " "int3(255, 255, 255);\n" " int3 color_B = selectColorInput(s, ss, {0}colors_0, {0}colors_1, color_b) & " "int3(255, 255, 255);\n" " int3 color_C = selectColorInput(s, ss, {0}colors_0, {0}colors_1, color_c) & " "int3(255, 255, 255);\n" " int3 color_D = selectColorInput(s, ss, {0}colors_0, {0}colors_1, color_d); // 10 " "bits + sign\n" "\n", // TODO: do we need to sign extend? color_input_prefix); out.Write( " int3 color;\n" " if (color_bias != 3u) {{ // Normal mode\n" " color = tevLerp3(color_A, color_B, color_C, color_D, color_bias, color_op, false, " "color_shift);\n" " }} else {{ // Compare mode\n" " // op 6 and 7 do a select per color channel\n" " if (color_compare_op == 6u) {{\n" " // TevCompareMode::RGB8, TevComparison::GT\n" " color.r = (color_A.r > color_B.r) ? color_C.r : 0;\n" " color.g = (color_A.g > color_B.g) ? color_C.g : 0;\n" " color.b = (color_A.b > color_B.b) ? color_C.b : 0;\n" " }} else if (color_compare_op == 7u) {{\n" " // TevCompareMode::RGB8, TevComparison::EQ\n" " color.r = (color_A.r == color_B.r) ? color_C.r : 0;\n" " color.g = (color_A.g == color_B.g) ? color_C.g : 0;\n" " color.b = (color_A.b == color_B.b) ? color_C.b : 0;\n" " }} else {{\n" " // The remaining ops do one compare which selects all 3 channels\n" " color = tevCompare(color_compare_op, color_A, color_B) ? color_C : int3(0, 0, " "0);\n" " }}\n" " color = color_D + color;\n" " }}\n" "\n" " // Clamp result\n" " if (color_clamp)\n" " color = clamp(color, 0, 255);\n" " else\n" " color = clamp(color, -1024, 1023);\n" "\n" " // Write result to the correct input register of the next stage\n" " setRegColor(s, color_dest, color);\n" "\n"); // Alpha combiner out.Write(" // Alpha Combiner\n"); out.Write(" uint alpha_a = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::a>("ss.ac")); out.Write(" uint alpha_b = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::b>("ss.ac")); out.Write(" uint alpha_c = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::c>("ss.ac")); out.Write(" uint alpha_d = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::d>("ss.ac")); out.Write(" uint alpha_bias = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::bias>("ss.ac")); out.Write(" bool alpha_op = bool({});\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::op>("ss.ac")); out.Write(" bool alpha_clamp = bool({});\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::clamp>("ss.ac")); out.Write(" uint alpha_shift = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::scale>("ss.ac")); out.Write(" uint alpha_dest = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::dest>("ss.ac")); out.Write( " uint alpha_compare_op = alpha_shift << 1 | uint(alpha_op);\n" "\n" " int alpha_A;\n" " int alpha_B;\n" " if (alpha_bias != 3u || alpha_compare_op > 5u) {{\n" " // Small optimisation here: alpha_A and alpha_B are unused by compare ops 0-5\n" " alpha_A = selectAlphaInput(s, ss, {0}colors_0, {0}colors_1, alpha_a) & 255;\n" " alpha_B = selectAlphaInput(s, ss, {0}colors_0, {0}colors_1, alpha_b) & 255;\n" " }};\n" " int alpha_C = selectAlphaInput(s, ss, {0}colors_0, {0}colors_1, alpha_c) & 255;\n" " int alpha_D = selectAlphaInput(s, ss, {0}colors_0, {0}colors_1, alpha_d); // 10 bits " "+ sign\n" "\n", // TODO: do we need to sign extend? color_input_prefix); out.Write("\n" " int alpha;\n" " if (alpha_bias != 3u) {{ // Normal mode\n" " alpha = tevLerp(alpha_A, alpha_B, alpha_C, alpha_D, alpha_bias, alpha_op, " "true, alpha_shift);\n" " }} else {{ // Compare mode\n" " if (alpha_compare_op == 6u) {{\n" " // TevCompareMode::A8, TevComparison::GT\n" " alpha = (alpha_A > alpha_B) ? alpha_C : 0;\n" " }} else if (alpha_compare_op == 7u) {{\n" " // TevCompareMode::A8, TevComparison::EQ\n" " alpha = (alpha_A == alpha_B) ? alpha_C : 0;\n" " }} else {{\n" " // All remaining alpha compare ops actually compare the color channels\n" " alpha = tevCompare(alpha_compare_op, color_A, color_B) ? alpha_C : 0;\n" " }}\n" " alpha = alpha_D + alpha;\n" " }}\n" "\n" " // Clamp result\n" " if (alpha_clamp)\n" " alpha = clamp(alpha, 0, 255);\n" " else\n" " alpha = clamp(alpha, -1024, 1023);\n" "\n" " // Write result to the correct input register of the next stage\n" " setRegAlpha(s, alpha_dest, alpha);\n" " }}\n"); out.Write(" }} // Main TEV loop\n" "\n"); // Select the output color and alpha registers from the last stage. out.Write(" int4 TevResult;\n"); out.Write( " TevResult.xyz = getTevReg(s, {}).xyz;\n", BitfieldExtract<&TevStageCombiner::ColorCombiner::dest>("bpmem_combiners(num_stages).x")); out.Write( " TevResult.w = getTevReg(s, {}).w;\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::dest>("bpmem_combiners(num_stages).y")); out.Write(" TevResult &= 255;\n\n"); if (host_config.fast_depth_calc) { if (!host_config.backend_reversed_depth_range) out.Write(" int zCoord = int((1.0 - rawpos.z) * 16777216.0);\n"); else out.Write(" int zCoord = int(rawpos.z * 16777216.0);\n"); out.Write(" zCoord = clamp(zCoord, 0, 0xFFFFFF);\n" "\n"); } else { out.Write("\tint zCoord = " I_ZBIAS "[1].x + int((clipPos.z / clipPos.w) * float(" I_ZBIAS "[1].y));\n"); } // =========== // ZFreeze // =========== if (per_pixel_depth) { // Zfreeze forces early depth off out.Write(" // ZFreeze\n" " if ((bpmem_genmode & {}u) != 0u) {{\n", 1 << GenMode().zfreeze.StartBit()); out.Write(" float2 screenpos = rawpos.xy * " I_EFBSCALE ".xy;\n"); if (ApiType == APIType::OpenGL) { out.Write(" // OpenGL has reversed vertical screenspace coordinates\n" " screenpos.y = 528.0 - screenpos.y;\n"); } out.Write(" zCoord = int(" I_ZSLOPE ".z + " I_ZSLOPE ".x * screenpos.x + " I_ZSLOPE ".y * screenpos.y);\n" " }}\n" "\n"); } // ================= // Depth Texture // ================= out.Write(" // Depth Texture\n" " int early_zCoord = zCoord;\n" " if (bpmem_ztex_op != 0u) {{\n" " int ztex = int(" I_ZBIAS "[1].w); // fixed bias\n" "\n" " // Whatever texture was in our last stage, it's now our depth texture\n" " ztex += idot(s.TexColor.xyzw, " I_ZBIAS "[0].xyzw);\n" " ztex += (bpmem_ztex_op == 1u) ? zCoord : 0;\n" " zCoord = ztex & 0xFFFFFF;\n" " }}\n" "\n"); if (per_pixel_depth) { out.Write(" // If early depth is enabled, write to zbuffer before depth textures\n" " // If early depth isn't enabled, we write to the zbuffer here\n" " int zbuffer_zCoord = bpmem_late_ztest ? zCoord : early_zCoord;\n"); if (!host_config.backend_reversed_depth_range) out.Write(" depth = 1.0 - float(zbuffer_zCoord) / 16777216.0;\n"); else out.Write(" depth = float(zbuffer_zCoord) / 16777216.0;\n"); } out.Write(" // Alpha Test\n" " if (bpmem_alphaTest != 0u) {{\n" " bool comp0 = alphaCompare(TevResult.a, " I_ALPHA ".r, {});\n", BitfieldExtract<&AlphaTest::comp0>("bpmem_alphaTest")); out.Write(" bool comp1 = alphaCompare(TevResult.a, " I_ALPHA ".g, {});\n", BitfieldExtract<&AlphaTest::comp1>("bpmem_alphaTest")); out.Write("\n" " // These if statements are written weirdly to work around intel and Qualcomm " "bugs with handling booleans.\n" " switch ({}) {{\n", BitfieldExtract<&AlphaTest::logic>("bpmem_alphaTest")); out.Write(" case 0u: // AND\n" " if (comp0 && comp1) break; else discard; break;\n" " case 1u: // OR\n" " if (comp0 || comp1) break; else discard; break;\n" " case 2u: // XOR\n" " if (comp0 != comp1) break; else discard; break;\n" " case 3u: // XNOR\n" " if (comp0 == comp1) break; else discard; break;\n" " }}\n" " }}\n" "\n"); // ========= // Dithering // ========= out.Write(" if (bpmem_dither) {{\n" " // Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering\n" " // Here the matrix is encoded into the two factor constants\n" " int2 dither = int2(rawpos.xy) & 1;\n" " TevResult.rgb = (TevResult.rgb - (TevResult.rgb >> 6)) + abs(dither.y * 3 - " "dither.x * 2);\n" " }}\n\n"); // ========= // Fog // ========= // FIXME: Fog is implemented the same as ShaderGen, but ShaderGen's fog is all hacks. // Should be fixed point, and should not make guesses about Range-Based adjustments. out.Write(" // Fog\n" " uint fog_function = {};\n", BitfieldExtract<&FogParam3::fsel>("bpmem_fogParam3")); out.Write(" if (fog_function != {:s}) {{\n", FogType::Off); out.Write(" // TODO: This all needs to be converted from float to fixed point\n" " float ze;\n" " if ({} == 0u) {{\n", BitfieldExtract<&FogParam3::proj>("bpmem_fogParam3")); out.Write(" // perspective\n" " // ze = A/(B - (Zs >> B_SHF)\n" " ze = (" I_FOGF ".x * 16777216.0) / float(" I_FOGI ".y - (zCoord >> " I_FOGI ".w));\n" " }} else {{\n" " // orthographic\n" " // ze = a*Zs (here, no B_SHF)\n" " ze = " I_FOGF ".z * float(zCoord) / 16777216.0;\n" " }}\n" "\n" " if (bool({})) {{\n", BitfieldExtract<&FogRangeParams::RangeBase::Enabled>("bpmem_fogRangeBase")); out.Write(" // x_adjust = sqrt((x-center)^2 + k^2)/k\n" " // ze *= x_adjust\n" " float offset = (2.0 * (rawpos.x / " I_FOGF ".w)) - 1.0 - " I_FOGF ".z;\n" " float floatindex = clamp(9.0 - abs(offset) * 9.0, 0.0, 9.0);\n" " uint indexlower = uint(floatindex);\n" " uint indexupper = indexlower + 1u;\n" " float klower = " I_FOGRANGE "[indexlower >> 2u][indexlower & 3u];\n" " float kupper = " I_FOGRANGE "[indexupper >> 2u][indexupper & 3u];\n" " float k = lerp(klower, kupper, frac(floatindex));\n" " float x_adjust = sqrt(offset * offset + k * k) / k;\n" " ze *= x_adjust;\n" " }}\n" "\n" " float fog = clamp(ze - " I_FOGF ".y, 0.0, 1.0);\n" "\n"); out.Write(" if (fog_function >= {:s}) {{\n", FogType::Exp); out.Write(" switch (fog_function) {{\n" " case {:s}:\n" " fog = 1.0 - exp2(-8.0 * fog);\n" " break;\n", FogType::Exp); out.Write(" case {:s}:\n" " fog = 1.0 - exp2(-8.0 * fog * fog);\n" " break;\n", FogType::ExpSq); out.Write(" case {:s}:\n" " fog = exp2(-8.0 * (1.0 - fog));\n" " break;\n", FogType::BackwardsExp); out.Write(" case {:s}:\n" " fog = 1.0 - fog;\n" " fog = exp2(-8.0 * fog * fog);\n" " break;\n", FogType::BackwardsExpSq); out.Write(" }}\n" " }}\n" "\n" " int ifog = iround(fog * 256.0);\n" " TevResult.rgb = (TevResult.rgb * (256 - ifog) + " I_FOGCOLOR ".rgb * ifog) >> 8;\n" " }}\n" "\n"); // D3D requires that the shader outputs be uint when writing to a uint render target for logic op. if (ApiType == APIType::D3D && uid_data->uint_output) { out.Write(" if (bpmem_rgba6_format)\n" " ocol0 = uint4(TevResult & 0xFC);\n" " else\n" " ocol0 = uint4(TevResult);\n" "\n"); } else { out.Write(" if (bpmem_rgba6_format)\n" " ocol0.rgb = float3(TevResult.rgb >> 2) / 63.0;\n" " else\n" " ocol0.rgb = float3(TevResult.rgb) / 255.0;\n" "\n" " if (bpmem_dstalpha != 0u)\n"); out.Write(" ocol0.a = float({} >> 2) / 63.0;\n", BitfieldExtract<&ConstantAlpha::alpha>("bpmem_dstalpha")); out.Write(" else\n" " ocol0.a = float(TevResult.a >> 2) / 63.0;\n" " \n"); if (use_dual_source || use_shader_blend) { out.Write(" // Dest alpha override (dual source blending)\n" " // Colors will be blended against the alpha from ocol1 and\n" " // the alpha from ocol0 will be written to the framebuffer.\n" " ocol1 = float4(0.0, 0.0, 0.0, float(TevResult.a) / 255.0);\n"); } } if (bounding_box) { out.Write(" if (bpmem_bounding_box) {{\n" " UpdateBoundingBox(rawpos.xy);\n" " }}\n"); } if (use_shader_blend) { static constexpr std::array blendSrcFactor{{ "float3(0,0,0);", // ZERO "float3(1,1,1);", // ONE "initial_ocol0.rgb;", // DSTCLR "float3(1,1,1) - initial_ocol0.rgb;", // INVDSTCLR "ocol1.aaa;", // SRCALPHA "float3(1,1,1) - ocol1.aaa;", // INVSRCALPHA "initial_ocol0.aaa;", // DSTALPHA "float3(1,1,1) - initial_ocol0.aaa;", // INVDSTALPHA }}; static constexpr std::array blendSrcFactorAlpha{{ "0.0;", // ZERO "1.0;", // ONE "initial_ocol0.a;", // DSTCLR "1.0 - initial_ocol0.a;", // INVDSTCLR "ocol1.a;", // SRCALPHA "1.0 - ocol1.a;", // INVSRCALPHA "initial_ocol0.a;", // DSTALPHA "1.0 - initial_ocol0.a;", // INVDSTALPHA }}; static constexpr std::array blendDstFactor{{ "float3(0,0,0);", // ZERO "float3(1,1,1);", // ONE "ocol0.rgb;", // SRCCLR "float3(1,1,1) - ocol0.rgb;", // INVSRCCLR "ocol1.aaa;", // SRCALHA "float3(1,1,1) - ocol1.aaa;", // INVSRCALPHA "initial_ocol0.aaa;", // DSTALPHA "float3(1,1,1) - initial_ocol0.aaa;", // INVDSTALPHA }}; static constexpr std::array blendDstFactorAlpha{{ "0.0;", // ZERO "1.0;", // ONE "ocol0.a;", // SRCCLR "1.0 - ocol0.a;", // INVSRCCLR "ocol1.a;", // SRCALPHA "1.0 - ocol1.a;", // INVSRCALPHA "initial_ocol0.a;", // DSTALPHA "1.0 - initial_ocol0.a;", // INVDSTALPHA }}; out.Write(" if (blend_enable) {{\n" " float4 blend_src;\n" " switch (blend_src_factor) {{\n"); for (size_t i = 0; i < blendSrcFactor.size(); i++) { out.Write(" case {}u: blend_src.rgb = {}; break;\n", i, blendSrcFactor[i]); } out.Write(" }}\n" " switch (blend_src_factor_alpha) {{\n"); for (size_t i = 0; i < blendSrcFactorAlpha.size(); i++) { out.Write(" case {}u: blend_src.a = {}; break;\n", i, blendSrcFactorAlpha[i]); } out.Write(" }}\n" " float4 blend_dst;\n" " switch (blend_dst_factor) {{\n"); for (size_t i = 0; i < blendDstFactor.size(); i++) { out.Write(" case {}u: blend_dst.rgb = {}; break;\n", i, blendDstFactor[i]); } out.Write(" }}\n" " switch (blend_dst_factor_alpha) {{\n"); for (size_t i = 0; i < blendDstFactorAlpha.size(); i++) { out.Write(" case {}u: blend_dst.a = {}; break;\n", i, blendDstFactorAlpha[i]); } out.Write( " }}\n" " float4 blend_result;\n" " if (blend_subtract)\n" " blend_result.rgb = initial_ocol0.rgb * blend_dst.rgb - ocol0.rgb * blend_src.rgb;\n" " else\n" " blend_result.rgb = initial_ocol0.rgb * blend_dst.rgb + ocol0.rgb * " "blend_src.rgb;\n"); out.Write(" if (blend_subtract_alpha)\n" " blend_result.a = initial_ocol0.a * blend_dst.a - ocol0.a * blend_src.a;\n" " else\n" " blend_result.a = initial_ocol0.a * blend_dst.a + ocol0.a * blend_src.a;\n"); out.Write(" real_ocol0 = blend_result;\n"); out.Write(" }} else {{\n" " real_ocol0 = ocol0;\n" " }}\n"); } out.Write("}}\n" "\n" "int4 getRasColor(State s, StageState ss, float4 colors_0, float4 colors_1) {{\n" " // Select Ras for stage\n" " uint ras = {};\n", BitfieldExtract<&TwoTevStageOrders::colorchan0>("ss.order")); out.Write(" if (ras < 2u) {{ // Lighting Channel 0 or 1\n" " int4 color = iround(((ras == 0u) ? colors_0 : colors_1) * 255.0);\n" " uint swap = {};\n", BitfieldExtract<&TevStageCombiner::AlphaCombiner::rswap>("ss.ac")); out.Write(" return Swizzle(swap, color);\n"); out.Write(" }} else if (ras == 5u) {{ // Alpha Bumb\n" " return int4(s.AlphaBump, s.AlphaBump, s.AlphaBump, s.AlphaBump);\n" " }} else if (ras == 6u) {{ // Normalzied Alpha Bump\n" " int normalized = s.AlphaBump | s.AlphaBump >> 5;\n" " return int4(normalized, normalized, normalized, normalized);\n" " }} else {{\n" " return int4(0, 0, 0, 0);\n" " }}\n" "}}\n" "\n" "int4 getKonstColor(State s, StageState ss) {{\n" " // Select Konst for stage\n" " // TODO: a switch case might be better here than an dynamically" " // indexed uniform lookup\n" " uint tevksel = bpmem_tevksel(ss.stage>>1);\n" " if ((ss.stage & 1u) == 0u)\n" " return int4(konstLookup[{}].rgb, konstLookup[{}].a);\n", BitfieldExtract<&TevKSel::kcsel0>("tevksel"), BitfieldExtract<&TevKSel::kasel0>("tevksel")); out.Write(" else\n" " return int4(konstLookup[{}].rgb, konstLookup[{}].a);\n", BitfieldExtract<&TevKSel::kcsel1>("tevksel"), BitfieldExtract<&TevKSel::kasel1>("tevksel")); out.Write("}}\n"); return out; } void EnumeratePixelShaderUids(const std::function& callback) { PixelShaderUid uid; for (u32 texgens = 0; texgens <= 8; texgens++) { pixel_ubershader_uid_data* const puid = uid.GetUidData(); puid->num_texgens = texgens; for (u32 early_depth = 0; early_depth < 2; early_depth++) { puid->early_depth = early_depth != 0; for (u32 per_pixel_depth = 0; per_pixel_depth < 2; per_pixel_depth++) { // Don't generate shaders where we have early depth tests enabled, and write gl_FragDepth. if (early_depth && per_pixel_depth) continue; puid->per_pixel_depth = per_pixel_depth != 0; for (u32 uint_output = 0; uint_output < 2; uint_output++) { puid->uint_output = uint_output; callback(uid); } } } } } } // namespace UberShader