// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #include "VideoCommon/RenderBase.h" #include #include #include #include #include #include #include "imgui.h" #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Config/Config.h" #include "Common/Event.h" #include "Common/FileUtil.h" #include "Common/Flag.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/Profiler.h" #include "Common/StringUtil.h" #include "Common/Thread.h" #include "Common/Timer.h" #include "Core/Analytics.h" #include "Core/Config/SYSCONFSettings.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "Core/HW/SystemTimers.h" #include "Core/HW/VideoInterface.h" #include "Core/Host.h" #include "Core/Movie.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/AbstractFramebuffer.h" #include "VideoCommon/AbstractStagingTexture.h" #include "VideoCommon/AbstractTexture.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FramebufferManager.h" #include "VideoCommon/ImageWrite.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/PostProcessing.h" #include "VideoCommon/ShaderCache.h" #include "VideoCommon/ShaderGenCommon.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VertexLoaderManager.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoBackendBase.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" std::unique_ptr g_renderer; static float AspectToWidescreen(float aspect) { return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f)); } Renderer::Renderer(int backbuffer_width, int backbuffer_height, float backbuffer_scale, AbstractTextureFormat backbuffer_format) : m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height), m_backbuffer_scale(backbuffer_scale), m_backbuffer_format(backbuffer_format) { UpdateActiveConfig(); UpdateDrawRectangle(); CalculateTargetSize(); m_aspect_wide = SConfig::GetInstance().bWii && Config::Get(Config::SYSCONF_WIDESCREEN); } Renderer::~Renderer() = default; bool Renderer::Initialize() { if (!InitializeImGui()) return false; m_post_processor = std::make_unique(); if (!m_post_processor->Initialize(m_backbuffer_format)) return false; return true; } void Renderer::Shutdown() { // First stop any framedumping, which might need to dump the last xfb frame. This process // can require additional graphics sub-systems so it needs to be done first ShutdownFrameDumping(); ShutdownImGui(); m_post_processor.reset(); } void Renderer::BeginUtilityDrawing() { g_vertex_manager->Flush(); } void Renderer::EndUtilityDrawing() { // Reset framebuffer/scissor/viewport. Pipeline will be reset at next draw. g_framebuffer_manager->BindEFBFramebuffer(); BPFunctions::SetScissor(); BPFunctions::SetViewport(); } void Renderer::SetFramebuffer(AbstractFramebuffer* framebuffer) { m_current_framebuffer = framebuffer; } void Renderer::SetAndDiscardFramebuffer(AbstractFramebuffer* framebuffer) { m_current_framebuffer = framebuffer; } void Renderer::SetAndClearFramebuffer(AbstractFramebuffer* framebuffer, const ClearColor& color_value, float depth_value) { m_current_framebuffer = framebuffer; } std::unique_ptr Renderer::CreateShaderFromSource(ShaderStage stage, const std::string& source) { return CreateShaderFromSource(stage, source.c_str(), source.size()); } void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) { g_framebuffer_manager->ClearEFB(rc, colorEnable, alphaEnable, zEnable, color, z); } void Renderer::ReinterpretPixelData(EFBReinterpretType convtype) { g_framebuffer_manager->ReinterpretPixelData(convtype); } u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { if (type == EFBAccessType::PeekColor) { u32 color = g_framebuffer_manager->PeekEFBColor(x, y); // a little-endian value is expected to be returned color = ((color & 0xFF00FF00) | ((color >> 16) & 0xFF) | ((color << 16) & 0xFF0000)); // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { color |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) { return color; // GX_READ_NONE } else if (alpha_read_mode.ReadMode == 1) { return color | 0xFF000000; // GX_READ_FF } else /*if(alpha_read_mode.ReadMode == 0)*/ { return color & 0x00FFFFFF; // GX_READ_00 } } else // if (type == EFBAccessType::PeekZ) { // Depth buffer is inverted for improved precision near far plane float depth = g_framebuffer_manager->PeekEFBDepth(x, y); if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange) depth = 1.0f - depth; u32 ret = 0; if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { // if Z is in 16 bit format you must return a 16 bit integer ret = MathUtil::Clamp(static_cast(depth * 65536.0f), 0, 0xFFFF); } else { ret = MathUtil::Clamp(static_cast(depth * 16777216.0f), 0, 0xFFFFFF); } return ret; } } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { if (type == EFBAccessType::PokeColor) { for (size_t i = 0; i < num_points; i++) { // Convert to expected format (BGRA->RGBA) // TODO: Check alpha, depending on mode? const EfbPokeData& point = points[i]; u32 color = ((point.data & 0xFF00FF00) | ((point.data >> 16) & 0xFF) | ((point.data << 16) & 0xFF0000)); g_framebuffer_manager->PokeEFBColor(point.x, point.y, color); } } else // if (type == EFBAccessType::PokeZ) { for (size_t i = 0; i < num_points; i++) { // Convert to floating-point depth. const EfbPokeData& point = points[i]; float depth = float(point.data & 0xFFFFFF) / 16777216.0f; if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange) depth = 1.0f - depth; g_framebuffer_manager->PokeEFBDepth(point.x, point.y, depth); } } } void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight, float Gamma) { CheckFifoRecording(); if (!fbStride || !fbHeight) return; } unsigned int Renderer::GetEFBScale() const { return m_efb_scale; } int Renderer::EFBToScaledX(int x) const { return x * static_cast(m_efb_scale); } int Renderer::EFBToScaledY(int y) const { return y * static_cast(m_efb_scale); } float Renderer::EFBToScaledXf(float x) const { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); } float Renderer::EFBToScaledYf(float y) const { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); } std::tuple Renderer::CalculateTargetScale(int x, int y) const { return std::make_tuple(x * static_cast(m_efb_scale), y * static_cast(m_efb_scale)); } // return true if target size changed bool Renderer::CalculateTargetSize() { if (g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL) { // Set a scale based on the window size int width = EFB_WIDTH * m_target_rectangle.GetWidth() / m_last_xfb_width; int height = EFB_HEIGHT * m_target_rectangle.GetHeight() / m_last_xfb_height; m_efb_scale = std::max((width - 1) / EFB_WIDTH + 1, (height - 1) / EFB_HEIGHT + 1); } else { m_efb_scale = g_ActiveConfig.iEFBScale; } const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize; if (max_size < EFB_WIDTH * m_efb_scale) m_efb_scale = max_size / EFB_WIDTH; int new_efb_width = 0; int new_efb_height = 0; std::tie(new_efb_width, new_efb_height) = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT); new_efb_width = std::max(new_efb_width, 1); new_efb_height = std::max(new_efb_height, 1); if (new_efb_width != m_target_width || new_efb_height != m_target_height) { m_target_width = new_efb_width; m_target_height = new_efb_height; PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1)); return true; } return false; } std::tuple Renderer::ConvertStereoRectangle(const TargetRectangle& rc) const { // Resize target to half its original size TargetRectangle draw_rc = rc; if (g_ActiveConfig.stereo_mode == StereoMode::TAB) { // The height may be negative due to flipped rectangles int height = rc.bottom - rc.top; draw_rc.top += height / 4; draw_rc.bottom -= height / 4; } else { int width = rc.right - rc.left; draw_rc.left += width / 4; draw_rc.right -= width / 4; } // Create two target rectangle offset to the sides of the backbuffer TargetRectangle left_rc = draw_rc; TargetRectangle right_rc = draw_rc; if (g_ActiveConfig.stereo_mode == StereoMode::TAB) { left_rc.top -= m_backbuffer_height / 4; left_rc.bottom -= m_backbuffer_height / 4; right_rc.top += m_backbuffer_height / 4; right_rc.bottom += m_backbuffer_height / 4; } else { left_rc.left -= m_backbuffer_width / 4; left_rc.right -= m_backbuffer_width / 4; right_rc.left += m_backbuffer_width / 4; right_rc.right += m_backbuffer_width / 4; } return std::make_tuple(left_rc, right_rc); } void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion) { // We must not hold the lock while waiting for the screenshot to complete. { std::lock_guard lk(m_screenshot_lock); m_screenshot_name = filename; m_screenshot_request.Set(); } if (wait_for_completion) { // This is currently only used by Android, and it was using a wait time of 2 seconds. m_screenshot_completed.WaitFor(std::chrono::seconds(2)); } } void Renderer::CheckForConfigChanges() { const ShaderHostConfig old_shader_host_config = ShaderHostConfig::GetCurrent(); const StereoMode old_stereo = g_ActiveConfig.stereo_mode; const u32 old_multisamples = g_ActiveConfig.iMultisamples; const int old_anisotropy = g_ActiveConfig.iMaxAnisotropy; const bool old_force_filtering = g_ActiveConfig.bForceFiltering; const bool old_vsync = g_ActiveConfig.bVSyncActive; const bool old_bbox = g_ActiveConfig.bBBoxEnable; UpdateActiveConfig(); // Update texture cache settings with any changed options. g_texture_cache->OnConfigChanged(g_ActiveConfig); // Check for post-processing shader changes. Done up here as it doesn't affect anything outside // the post-processor. Note that options are applied every frame, so no need to check those. if (m_post_processor->GetConfig()->GetShader() != g_ActiveConfig.sPostProcessingShader) m_post_processor->RecompileShader(); // Determine which (if any) settings have changed. ShaderHostConfig new_host_config = ShaderHostConfig::GetCurrent(); u32 changed_bits = 0; if (old_shader_host_config.bits != new_host_config.bits) changed_bits |= CONFIG_CHANGE_BIT_HOST_CONFIG; if (old_stereo != g_ActiveConfig.stereo_mode) changed_bits |= CONFIG_CHANGE_BIT_STEREO_MODE; if (old_multisamples != g_ActiveConfig.iMultisamples) changed_bits |= CONFIG_CHANGE_BIT_MULTISAMPLES; if (old_anisotropy != g_ActiveConfig.iMaxAnisotropy) changed_bits |= CONFIG_CHANGE_BIT_ANISOTROPY; if (old_force_filtering != g_ActiveConfig.bForceFiltering) changed_bits |= CONFIG_CHANGE_BIT_FORCE_TEXTURE_FILTERING; if (old_vsync != g_ActiveConfig.bVSyncActive) changed_bits |= CONFIG_CHANGE_BIT_VSYNC; if (old_bbox != g_ActiveConfig.bBBoxEnable) changed_bits |= CONFIG_CHANGE_BIT_BBOX; if (CalculateTargetSize()) changed_bits |= CONFIG_CHANGE_BIT_TARGET_SIZE; // No changes? if (changed_bits == 0) return; // Notify the backend of the changes, if any. OnConfigChanged(changed_bits); // Framebuffer changed? if (changed_bits & (CONFIG_CHANGE_BIT_MULTISAMPLES | CONFIG_CHANGE_BIT_STEREO_MODE | CONFIG_CHANGE_BIT_TARGET_SIZE)) { g_framebuffer_manager->RecreateEFBFramebuffer(); } // Reload shaders if host config has changed. if (changed_bits & (CONFIG_CHANGE_BIT_HOST_CONFIG | CONFIG_CHANGE_BIT_MULTISAMPLES)) { OSD::AddMessage("Video config changed, reloading shaders.", OSD::Duration::NORMAL); WaitForGPUIdle(); SetPipeline(nullptr); g_vertex_manager->InvalidatePipelineObject(); g_shader_cache->SetHostConfig(new_host_config); g_shader_cache->Reload(); g_framebuffer_manager->RecompileShaders(); } // Viewport and scissor rect have to be reset since they will be scaled differently. if (changed_bits & CONFIG_CHANGE_BIT_TARGET_SIZE) { BPFunctions::SetViewport(); BPFunctions::SetScissor(); } } // Create On-Screen-Messages void Renderer::DrawDebugText() { const auto& config = SConfig::GetInstance(); if (g_ActiveConfig.bShowFPS) { // Position in the top-right corner of the screen. ImGui::SetNextWindowPos(ImVec2(ImGui::GetIO().DisplaySize.x - (10.0f * m_backbuffer_scale), 10.0f * m_backbuffer_scale), ImGuiCond_Always, ImVec2(1.0f, 0.0f)); ImGui::SetNextWindowSize(ImVec2(100.0f * m_backbuffer_scale, 30.0f * m_backbuffer_scale)); if (ImGui::Begin("FPS", nullptr, ImGuiWindowFlags_NoTitleBar | ImGuiWindowFlags_NoInputs | ImGuiWindowFlags_NoMove | ImGuiWindowFlags_NoSavedSettings | ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoNav | ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoFocusOnAppearing)) { ImGui::TextColored(ImVec4(0.0f, 1.0f, 1.0f, 1.0f), "FPS: %.2f", m_fps_counter.GetFPS()); } ImGui::End(); } const bool show_movie_window = config.m_ShowFrameCount | config.m_ShowLag | config.m_ShowInputDisplay | config.m_ShowRTC; if (show_movie_window) { // Position under the FPS display. ImGui::SetNextWindowPos(ImVec2(ImGui::GetIO().DisplaySize.x - (10.0f * m_backbuffer_scale), 50.0f * m_backbuffer_scale), ImGuiCond_FirstUseEver, ImVec2(1.0f, 0.0f)); ImGui::SetNextWindowSizeConstraints( ImVec2(150.0f * m_backbuffer_scale, 20.0f * m_backbuffer_scale), ImGui::GetIO().DisplaySize); if (ImGui::Begin("Movie", nullptr, ImGuiWindowFlags_NoFocusOnAppearing)) { if (config.m_ShowFrameCount) { ImGui::Text("Frame: %" PRIu64, Movie::GetCurrentFrame()); } if (Movie::IsPlayingInput()) { ImGui::Text("Input: %" PRIu64 " / %" PRIu64, Movie::GetCurrentInputCount(), Movie::GetTotalInputCount()); } if (SConfig::GetInstance().m_ShowLag) ImGui::Text("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount()); if (SConfig::GetInstance().m_ShowInputDisplay) ImGui::TextUnformatted(Movie::GetInputDisplay().c_str()); if (SConfig::GetInstance().m_ShowRTC) ImGui::TextUnformatted(Movie::GetRTCDisplay().c_str()); } ImGui::End(); } if (g_ActiveConfig.bOverlayStats) Statistics::Display(); if (g_ActiveConfig.bOverlayProjStats) Statistics::DisplayProj(); } float Renderer::CalculateDrawAspectRatio() const { if (g_ActiveConfig.aspect_mode == AspectMode::Stretch) { // If stretch is enabled, we prefer the aspect ratio of the window. return (static_cast(m_backbuffer_width) / static_cast(m_backbuffer_height)); } // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio if (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide || (g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) { return AspectToWidescreen(VideoInterface::GetAspectRatio()); } else { return VideoInterface::GetAspectRatio(); } } bool Renderer::IsHeadless() const { return true; } void Renderer::ChangeSurface(void* new_surface_handle) { std::lock_guard lock(m_swap_mutex); m_new_surface_handle = new_surface_handle; m_surface_changed.Set(); } void Renderer::ResizeSurface() { std::lock_guard lock(m_swap_mutex); m_surface_resized.Set(); } void Renderer::SetViewportAndScissor(const MathUtil::Rectangle& rect, float min_depth, float max_depth) { SetViewport(static_cast(rect.left), static_cast(rect.top), static_cast(rect.GetWidth()), static_cast(rect.GetHeight()), min_depth, max_depth); SetScissorRect(rect); } void Renderer::ScaleTexture(AbstractFramebuffer* dst_framebuffer, const MathUtil::Rectangle& dst_rect, const AbstractTexture* src_texture, const MathUtil::Rectangle& src_rect) { ASSERT(dst_framebuffer->GetColorFormat() == AbstractTextureFormat::RGBA8); BeginUtilityDrawing(); // The shader needs to know the source rectangle. const auto converted_src_rect = g_renderer->ConvertFramebufferRectangle( src_rect, src_texture->GetWidth(), src_texture->GetHeight()); const float rcp_src_width = 1.0f / src_texture->GetWidth(); const float rcp_src_height = 1.0f / src_texture->GetHeight(); const std::array uniforms = {{converted_src_rect.left * rcp_src_width, converted_src_rect.top * rcp_src_height, converted_src_rect.GetWidth() * rcp_src_width, converted_src_rect.GetHeight() * rcp_src_height}}; g_vertex_manager->UploadUtilityUniforms(&uniforms, sizeof(uniforms)); // Discard if we're overwriting the whole thing. if (static_cast(dst_rect.GetWidth()) == dst_framebuffer->GetWidth() && static_cast(dst_rect.GetHeight()) == dst_framebuffer->GetHeight()) { SetAndDiscardFramebuffer(dst_framebuffer); } else { SetFramebuffer(dst_framebuffer); } SetViewportAndScissor(ConvertFramebufferRectangle(dst_rect, dst_framebuffer)); SetPipeline(dst_framebuffer->GetLayers() > 1 ? g_shader_cache->GetRGBA8StereoCopyPipeline() : g_shader_cache->GetRGBA8CopyPipeline()); SetTexture(0, src_texture); SetSamplerState(0, RenderState::GetLinearSamplerState()); Draw(0, 3); EndUtilityDrawing(); if (dst_framebuffer->GetColorAttachment()) dst_framebuffer->GetColorAttachment()->FinishedRendering(); } MathUtil::Rectangle Renderer::ConvertFramebufferRectangle(const MathUtil::Rectangle& rect, const AbstractFramebuffer* framebuffer) { return ConvertFramebufferRectangle(rect, framebuffer->GetWidth(), framebuffer->GetHeight()); } MathUtil::Rectangle Renderer::ConvertFramebufferRectangle(const MathUtil::Rectangle& rect, u32 fb_width, u32 fb_height) { MathUtil::Rectangle ret = rect; if (g_ActiveConfig.backend_info.bUsesLowerLeftOrigin) { ret.top = fb_height - rect.bottom; ret.bottom = fb_height - rect.top; } return ret; } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(rc.bottom); return result; } std::tuple Renderer::ScaleToDisplayAspectRatio(const int width, const int height) const { // Scale either the width or height depending the content aspect ratio. // This way we preserve as much resolution as possible when scaling. float scaled_width = static_cast(width); float scaled_height = static_cast(height); const float draw_aspect = CalculateDrawAspectRatio(); if (scaled_width / scaled_height >= draw_aspect) scaled_height = scaled_width / draw_aspect; else scaled_width = scaled_height * draw_aspect; return std::make_tuple(scaled_width, scaled_height); } void Renderer::UpdateDrawRectangle() { // The rendering window size const float win_width = static_cast(m_backbuffer_width); const float win_height = static_cast(m_backbuffer_height); // Update aspect ratio hack values // Won't take effect until next frame // Don't know if there is a better place for this code so there isn't a 1 frame delay if (g_ActiveConfig.bWidescreenHack) { float source_aspect = VideoInterface::GetAspectRatio(); if (m_aspect_wide) source_aspect = AspectToWidescreen(source_aspect); float target_aspect = 0.0f; switch (g_ActiveConfig.aspect_mode) { case AspectMode::Stretch: target_aspect = win_width / win_height; break; case AspectMode::Analog: target_aspect = VideoInterface::GetAspectRatio(); break; case AspectMode::AnalogWide: target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio()); break; case AspectMode::Auto: default: target_aspect = source_aspect; break; } float adjust = source_aspect / target_aspect; if (adjust > 1) { // Vert+ g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1 / adjust; } else { // Hor+ g_Config.fAspectRatioHackW = adjust; g_Config.fAspectRatioHackH = 1; } } else { // Hack is disabled g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1; } float draw_width, draw_height, crop_width, crop_height; // get the picture aspect ratio draw_width = crop_width = CalculateDrawAspectRatio(); draw_height = crop_height = 1; // crop the picture to a standard aspect ratio if (g_ActiveConfig.bCrop && g_ActiveConfig.aspect_mode != AspectMode::Stretch) { float expected_aspect = (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide || (g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) ? (16.0f / 9.0f) : (4.0f / 3.0f); if (crop_width / crop_height >= expected_aspect) { // the picture is flatter than it should be crop_width = crop_height * expected_aspect; } else { // the picture is skinnier than it should be crop_height = crop_width / expected_aspect; } } // scale the picture to fit the rendering window if (win_width / win_height >= crop_width / crop_height) { // the window is flatter than the picture draw_width *= win_height / crop_height; crop_width *= win_height / crop_height; draw_height *= win_height / crop_height; crop_height = win_height; } else { // the window is skinnier than the picture draw_width *= win_width / crop_width; draw_height *= win_width / crop_width; crop_height *= win_width / crop_width; crop_width = win_width; } // ensure divisibility by 4 to make it compatible with all the video encoders draw_width = std::ceil(draw_width) - static_cast(std::ceil(draw_width)) % 4; draw_height = std::ceil(draw_height) - static_cast(std::ceil(draw_height)) % 4; m_target_rectangle.left = static_cast(std::round(win_width / 2.0 - draw_width / 2.0)); m_target_rectangle.top = static_cast(std::round(win_height / 2.0 - draw_height / 2.0)); m_target_rectangle.right = m_target_rectangle.left + static_cast(draw_width); m_target_rectangle.bottom = m_target_rectangle.top + static_cast(draw_height); } void Renderer::SetWindowSize(int width, int height) { std::tie(width, height) = CalculateOutputDimensions(width, height); // Track the last values of width/height to avoid sending a window resize event every frame. if (width != m_last_window_request_width || height != m_last_window_request_height) { m_last_window_request_width = width; m_last_window_request_height = height; Host_RequestRenderWindowSize(width, height); } } std::tuple Renderer::CalculateOutputDimensions(int width, int height) { width = std::max(width, 1); height = std::max(height, 1); float scaled_width, scaled_height; std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height); if (g_ActiveConfig.bCrop) { // Force 4:3 or 16:9 by cropping the image. float current_aspect = scaled_width / scaled_height; float expected_aspect = (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide || (g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) ? (16.0f / 9.0f) : (4.0f / 3.0f); if (current_aspect > expected_aspect) { // keep height, crop width scaled_width = scaled_height * expected_aspect; } else { // keep width, crop height scaled_height = scaled_width / expected_aspect; } } width = static_cast(std::ceil(scaled_width)); height = static_cast(std::ceil(scaled_height)); // UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video // encoders, so do that here too to match it width -= width % 4; height -= height % 4; return std::make_tuple(width, height); } void Renderer::CheckFifoRecording() { bool wasRecording = g_bRecordFifoData; g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording(); if (g_bRecordFifoData) { if (!wasRecording) { RecordVideoMemory(); } FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd); } } void Renderer::RecordVideoMemory() { const u32* bpmem_ptr = reinterpret_cast(&bpmem); u32 cpmem[256] = {}; // The FIFO recording format splits XF memory into xfmem and xfregs; follow // that split here. const u32* xfmem_ptr = reinterpret_cast(&xfmem); const u32* xfregs_ptr = reinterpret_cast(&xfmem) + FifoDataFile::XF_MEM_SIZE; u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE; FillCPMemoryArray(cpmem); FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size, texMem); } static std::string GenerateImGuiVertexShader() { const APIType api_type = g_ActiveConfig.backend_info.api_type; std::stringstream ss; // Uniform buffer contains the viewport size, and we transform in the vertex shader. if (api_type == APIType::D3D) ss << "cbuffer PSBlock : register(b0) {\n"; else if (api_type == APIType::OpenGL) ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n"; else if (api_type == APIType::Vulkan) ss << "UBO_BINDING(std140, 1) uniform PSBlock {\n"; ss << "float2 u_rcp_viewport_size_mul2;\n"; ss << "};\n"; if (api_type == APIType::D3D) { ss << "void main(in float2 rawpos : POSITION,\n" << " in float2 rawtex0 : TEXCOORD,\n" << " in float4 rawcolor0 : COLOR,\n" << " out float2 frag_uv : TEXCOORD,\n" << " out float4 frag_color : COLOR,\n" << " out float4 out_pos : SV_Position)\n"; } else { ss << "ATTRIBUTE_LOCATION(" << SHADER_POSITION_ATTRIB << ") in float2 rawpos;\n" << "ATTRIBUTE_LOCATION(" << SHADER_TEXTURE0_ATTRIB << ") in float2 rawtex0;\n" << "ATTRIBUTE_LOCATION(" << SHADER_COLOR0_ATTRIB << ") in float4 rawcolor0;\n" << "VARYING_LOCATION(0) out float2 frag_uv;\n" << "VARYING_LOCATION(1) out float4 frag_color;\n" << "void main()\n"; } ss << "{\n" << " frag_uv = rawtex0;\n" << " frag_color = rawcolor0;\n"; ss << " " << (api_type == APIType::D3D ? "out_pos" : "gl_Position") << "= float4(rawpos.x * u_rcp_viewport_size_mul2.x - 1.0, 1.0 - rawpos.y * " "u_rcp_viewport_size_mul2.y, 0.0, 1.0);\n"; // Clip-space is flipped in Vulkan if (api_type == APIType::Vulkan) ss << " gl_Position.y = -gl_Position.y;\n"; ss << "}\n"; return ss.str(); } static std::string GenerateImGuiPixelShader() { const APIType api_type = g_ActiveConfig.backend_info.api_type; std::stringstream ss; if (api_type == APIType::D3D) { ss << "Texture2DArray tex0 : register(t0);\n" << "SamplerState samp0 : register(s0);\n" << "void main(in float2 frag_uv : TEXCOORD,\n" << " in float4 frag_color : COLOR,\n" << " out float4 ocol0 : SV_Target)\n"; } else { ss << "SAMPLER_BINDING(0) uniform sampler2DArray samp0;\n" << "VARYING_LOCATION(0) in float2 frag_uv; \n" << "VARYING_LOCATION(1) in float4 frag_color;\n" << "FRAGMENT_OUTPUT_LOCATION(0) out float4 ocol0;\n" << "void main()\n"; } ss << "{\n"; if (api_type == APIType::D3D) ss << " ocol0 = tex0.Sample(samp0, float3(frag_uv, 0.0)) * frag_color;\n"; else ss << " ocol0 = texture(samp0, float3(frag_uv, 0.0)) * frag_color;\n"; ss << "}\n"; return ss.str(); } bool Renderer::InitializeImGui() { if (!ImGui::CreateContext()) { PanicAlert("Creating ImGui context failed"); return false; } // Don't create an ini file. TODO: Do we want this in the future? ImGui::GetIO().IniFilename = nullptr; ImGui::GetIO().DisplayFramebufferScale.x = m_backbuffer_scale; ImGui::GetIO().DisplayFramebufferScale.y = m_backbuffer_scale; ImGui::GetIO().FontGlobalScale = m_backbuffer_scale; ImGui::GetStyle().ScaleAllSizes(m_backbuffer_scale); PortableVertexDeclaration vdecl = {}; vdecl.position = {VAR_FLOAT, 2, offsetof(ImDrawVert, pos), true, false}; vdecl.texcoords[0] = {VAR_FLOAT, 2, offsetof(ImDrawVert, uv), true, false}; vdecl.colors[0] = {VAR_UNSIGNED_BYTE, 4, offsetof(ImDrawVert, col), true, false}; vdecl.stride = sizeof(ImDrawVert); m_imgui_vertex_format = CreateNativeVertexFormat(vdecl); if (!m_imgui_vertex_format) { PanicAlert("Failed to create imgui vertex format"); return false; } const std::string vertex_shader_source = GenerateImGuiVertexShader(); const std::string pixel_shader_source = GenerateImGuiPixelShader(); std::unique_ptr vertex_shader = CreateShaderFromSource( ShaderStage::Vertex, vertex_shader_source.c_str(), vertex_shader_source.size()); std::unique_ptr pixel_shader = CreateShaderFromSource( ShaderStage::Pixel, pixel_shader_source.c_str(), pixel_shader_source.size()); if (!vertex_shader || !pixel_shader) { PanicAlert("Failed to compile imgui shaders"); return false; } AbstractPipelineConfig pconfig = {}; pconfig.vertex_format = m_imgui_vertex_format.get(); pconfig.vertex_shader = vertex_shader.get(); pconfig.pixel_shader = pixel_shader.get(); pconfig.rasterization_state = RenderState::GetCullBackFaceRasterizationState(PrimitiveType::Triangles); pconfig.depth_state = RenderState::GetNoDepthTestingDepthState(); pconfig.blending_state = RenderState::GetNoBlendingBlendState(); pconfig.blending_state.blendenable = true; pconfig.blending_state.srcfactor = BlendMode::SRCALPHA; pconfig.blending_state.dstfactor = BlendMode::INVSRCALPHA; pconfig.blending_state.srcfactoralpha = BlendMode::ZERO; pconfig.blending_state.dstfactoralpha = BlendMode::ONE; pconfig.framebuffer_state.color_texture_format = m_backbuffer_format; pconfig.framebuffer_state.depth_texture_format = AbstractTextureFormat::Undefined; pconfig.framebuffer_state.samples = 1; pconfig.framebuffer_state.per_sample_shading = false; pconfig.usage = AbstractPipelineUsage::Utility; m_imgui_pipeline = g_renderer->CreatePipeline(pconfig); if (!m_imgui_pipeline) { PanicAlert("Failed to create imgui pipeline"); return false; } // Font texture(s). { ImGuiIO& io = ImGui::GetIO(); u8* font_tex_pixels; int font_tex_width, font_tex_height; io.Fonts->GetTexDataAsRGBA32(&font_tex_pixels, &font_tex_width, &font_tex_height); TextureConfig font_tex_config(font_tex_width, font_tex_height, 1, 1, 1, AbstractTextureFormat::RGBA8, 0); std::unique_ptr font_tex = CreateTexture(font_tex_config); if (!font_tex) { PanicAlert("Failed to create imgui texture"); return false; } font_tex->Load(0, font_tex_width, font_tex_height, font_tex_width, font_tex_pixels, sizeof(u32) * font_tex_width * font_tex_height); io.Fonts->TexID = font_tex.get(); m_imgui_textures.push_back(std::move(font_tex)); } m_imgui_last_frame_time = Common::Timer::GetTimeUs(); BeginImGuiFrame(); return true; } void Renderer::ShutdownImGui() { ImGui::EndFrame(); ImGui::DestroyContext(); m_imgui_pipeline.reset(); m_imgui_vertex_format.reset(); m_imgui_textures.clear(); } void Renderer::BeginImGuiFrame() { std::unique_lock imgui_lock(m_imgui_mutex); const u64 current_time_us = Common::Timer::GetTimeUs(); const u64 time_diff_us = current_time_us - m_imgui_last_frame_time; const float time_diff_secs = static_cast(time_diff_us / 1000000.0); m_imgui_last_frame_time = current_time_us; // Update I/O with window dimensions. ImGuiIO& io = ImGui::GetIO(); io.DisplaySize = ImVec2(static_cast(m_backbuffer_width), static_cast(m_backbuffer_height)); io.DeltaTime = time_diff_secs; ImGui::NewFrame(); } void Renderer::DrawImGui() { ImDrawData* draw_data = ImGui::GetDrawData(); if (!draw_data) return; SetViewport(0.0f, 0.0f, static_cast(m_backbuffer_width), static_cast(m_backbuffer_height), 0.0f, 1.0f); // Uniform buffer for draws. struct ImGuiUbo { float u_rcp_viewport_size_mul2[2]; float padding[2]; }; ImGuiUbo ubo = {{1.0f / m_backbuffer_width * 2.0f, 1.0f / m_backbuffer_height * 2.0f}}; // Set up common state for drawing. SetPipeline(m_imgui_pipeline.get()); SetSamplerState(0, RenderState::GetPointSamplerState()); g_vertex_manager->UploadUtilityUniforms(&ubo, sizeof(ubo)); for (int i = 0; i < draw_data->CmdListsCount; i++) { const ImDrawList* cmdlist = draw_data->CmdLists[i]; if (cmdlist->VtxBuffer.empty() || cmdlist->IdxBuffer.empty()) return; u32 base_vertex, base_index; g_vertex_manager->UploadUtilityVertices(cmdlist->VtxBuffer.Data, sizeof(ImDrawVert), cmdlist->VtxBuffer.Size, cmdlist->IdxBuffer.Data, cmdlist->IdxBuffer.Size, &base_vertex, &base_index); for (const ImDrawCmd& cmd : cmdlist->CmdBuffer) { if (cmd.UserCallback) { cmd.UserCallback(cmdlist, &cmd); continue; } SetScissorRect(ConvertFramebufferRectangle( MathUtil::Rectangle( static_cast(cmd.ClipRect.x), static_cast(cmd.ClipRect.y), static_cast(cmd.ClipRect.z), static_cast(cmd.ClipRect.w)), m_current_framebuffer)); SetTexture(0, reinterpret_cast(cmd.TextureId)); DrawIndexed(base_index, cmd.ElemCount, base_vertex); base_index += cmd.ElemCount; } } } std::unique_lock Renderer::GetImGuiLock() { return std::unique_lock(m_imgui_mutex); } void Renderer::BeginUIFrame() { if (IsHeadless()) return; BeginUtilityDrawing(); BindBackbuffer({0.0f, 0.0f, 0.0f, 1.0f}); } void Renderer::EndUIFrame() { { auto lock = GetImGuiLock(); ImGui::Render(); } if (!IsHeadless()) { DrawImGui(); std::lock_guard guard(m_swap_mutex); PresentBackbuffer(); EndUtilityDrawing(); } BeginImGuiFrame(); } void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, u64 ticks) { const AspectMode suggested = g_ActiveConfig.suggested_aspect_mode; if (suggested == AspectMode::Analog || suggested == AspectMode::AnalogWide) { m_aspect_wide = suggested == AspectMode::AnalogWide; } else if (SConfig::GetInstance().bWii) { m_aspect_wide = Config::Get(Config::SYSCONF_WIDESCREEN); } else { // Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode. size_t flush_count_4_3, flush_count_anamorphic; std::tie(flush_count_4_3, flush_count_anamorphic) = g_vertex_manager->ResetFlushAspectRatioCount(); size_t flush_total = flush_count_4_3 + flush_count_anamorphic; // Modify the threshold based on which aspect ratio we're already using: if // the game's in 4:3, it probably won't switch to anamorphic, and vice-versa. if (m_aspect_wide) m_aspect_wide = !(flush_count_4_3 > 0.75 * flush_total); else m_aspect_wide = flush_count_anamorphic > 0.75 * flush_total; } // Ensure the last frame was written to the dump. // This is required even if frame dumping has stopped, since the frame dump is one frame // behind the renderer. FlushFrameDump(); if (xfbAddr && fbWidth && fbStride && fbHeight) { constexpr int force_safe_texture_cache_hash = 0; // Get the current XFB from texture cache auto* xfb_entry = g_texture_cache->GetXFBTexture( xfbAddr, fbStride, fbHeight, TextureFormat::XFB, force_safe_texture_cache_hash); if (xfb_entry && xfb_entry->id != m_last_xfb_id) { const TextureConfig& texture_config = xfb_entry->texture->GetConfig(); m_last_xfb_texture = xfb_entry->texture.get(); m_last_xfb_id = xfb_entry->id; m_last_xfb_ticks = ticks; auto xfb_rect = texture_config.GetRect(); // It's possible that the returned XFB texture is native resolution // even when we're rendering at higher than native resolution // if the XFB was was loaded entirely from console memory. // If so, adjust the rectangle by native resolution instead of scaled resolution. const u32 native_stride_width_difference = fbStride - fbWidth; if (texture_config.width == xfb_entry->native_width) xfb_rect.right -= native_stride_width_difference; else xfb_rect.right -= EFBToScaledX(native_stride_width_difference); m_last_xfb_region = xfb_rect; // Since we use the common pipelines here and draw vertices if a batch is currently being // built by the vertex loader, we end up trampling over its pointer, as we share the buffer // with the loader, and it has not been unmapped yet. Force a pipeline flush to avoid this. g_vertex_manager->Flush(); // Render any UI elements to the draw list. { auto lock = GetImGuiLock(); DrawDebugText(); OSD::DrawMessages(); ImGui::Render(); } // Render the XFB to the screen. BeginUtilityDrawing(); if (!IsHeadless()) { BindBackbuffer({{0.0f, 0.0f, 0.0f, 1.0f}}); UpdateDrawRectangle(); RenderXFBToScreen(xfb_entry->texture.get(), xfb_rect); DrawImGui(); // Present to the window system. { std::lock_guard guard(m_swap_mutex); PresentBackbuffer(); } // Update the window size based on the frame that was just rendered. // Due to depending on guest state, we need to call this every frame. SetWindowSize(texture_config.width, texture_config.height); } m_fps_counter.Update(); DolphinAnalytics::PerformanceSample perf_sample; perf_sample.speed_ratio = SystemTimers::GetEstimatedEmulationPerformance(); perf_sample.num_prims = stats.thisFrame.numPrims + stats.thisFrame.numDLPrims; perf_sample.num_draw_calls = stats.thisFrame.numDrawCalls; DolphinAnalytics::Instance()->ReportPerformanceInfo(std::move(perf_sample)); if (IsFrameDumping()) DumpCurrentFrame(); // Begin new frame m_frame_count++; stats.ResetFrame(); g_shader_cache->RetrieveAsyncShaders(); g_vertex_manager->OnEndFrame(); BeginImGuiFrame(); // We invalidate the pipeline object at the start of the frame. // This is for the rare case where only a single pipeline configuration is used, // and hybrid ubershaders have compiled the specialized shader, but without any // state changes the specialized shader will not take over. g_vertex_manager->InvalidatePipelineObject(); // Flush any outstanding EFB copies to RAM, in case the game is running at an uncapped frame // rate and not waiting for vblank. Otherwise, we'd end up with a huge list of pending copies. g_texture_cache->FlushEFBCopies(); // Remove stale EFB/XFB copies. g_texture_cache->Cleanup(m_frame_count); // Handle any config changes, this gets propogated to the backend. CheckForConfigChanges(); g_Config.iSaveTargetId = 0; EndUtilityDrawing(); Core::Callback_VideoCopiedToXFB(true); } else { Flush(); } // Update our last xfb values m_last_xfb_width = (fbStride < 1 || fbStride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbStride; m_last_xfb_height = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight; } else { Flush(); } } void Renderer::RenderXFBToScreen(const AbstractTexture* texture, const EFBRectangle& rc) { const auto target_rc = GetTargetRectangle(); if (g_ActiveConfig.stereo_mode == StereoMode::SBS || g_ActiveConfig.stereo_mode == StereoMode::TAB) { TargetRectangle left_rc, right_rc; std::tie(left_rc, right_rc) = ConvertStereoRectangle(target_rc); m_post_processor->BlitFromTexture(left_rc, rc, texture, 0); m_post_processor->BlitFromTexture(right_rc, rc, texture, 1); } else { m_post_processor->BlitFromTexture(target_rc, rc, texture, 0); } } bool Renderer::IsFrameDumping() { if (m_screenshot_request.IsSet()) return true; if (SConfig::GetInstance().m_DumpFrames) return true; return false; } void Renderer::DumpCurrentFrame() { int target_width, target_height; if (!g_ActiveConfig.bInternalResolutionFrameDumps && !IsHeadless()) { auto target_rect = GetTargetRectangle(); target_width = target_rect.GetWidth(); target_height = target_rect.GetHeight(); } else { std::tie(target_width, target_height) = CalculateOutputDimensions( m_last_xfb_texture->GetConfig().width, m_last_xfb_texture->GetConfig().height); } // We only need to render a copy if we need to stretch/scale the XFB copy. const AbstractTexture* source_tex = m_last_xfb_texture; MathUtil::Rectangle source_rect = m_last_xfb_region; if (source_rect.GetWidth() != target_width || source_rect.GetHeight() != target_height) { if (!CheckFrameDumpRenderTexture(target_width, target_height)) return; source_tex = m_frame_dump_render_texture.get(); source_rect = MathUtil::Rectangle(0, 0, target_width, target_height); ScaleTexture(m_frame_dump_render_framebuffer.get(), source_rect, m_last_xfb_texture, m_last_xfb_region); } // Index 0 was just sent to AVI dump. Swap with the second texture. if (m_frame_dump_readback_textures[0]) std::swap(m_frame_dump_readback_textures[0], m_frame_dump_readback_textures[1]); if (!CheckFrameDumpReadbackTexture(target_width, target_height)) return; const auto converted_region = ConvertFramebufferRectangle(source_rect, source_tex->GetWidth(), source_tex->GetHeight()); m_frame_dump_readback_textures[0]->CopyFromTexture( source_tex, converted_region, 0, 0, MathUtil::Rectangle(0, 0, target_width, target_height)); m_last_frame_state = AVIDump::FetchState(m_last_xfb_ticks); m_last_frame_exported = true; } bool Renderer::CheckFrameDumpRenderTexture(u32 target_width, u32 target_height) { // Ensure framebuffer exists (we lazily allocate it in case frame dumping isn't used). // Or, resize texture if it isn't large enough to accommodate the current frame. if (m_frame_dump_render_texture && m_frame_dump_render_texture->GetWidth() == target_width && m_frame_dump_render_texture->GetHeight() == target_height) { return true; } // Recreate texture, but release before creating so we don't temporarily use twice the RAM. m_frame_dump_render_framebuffer.reset(); m_frame_dump_render_texture.reset(); m_frame_dump_render_texture = CreateTexture(TextureConfig(target_width, target_height, 1, 1, 1, AbstractTextureFormat::RGBA8, AbstractTextureFlag_RenderTarget)); if (!m_frame_dump_render_texture) { PanicAlert("Failed to allocate frame dump render texture"); return false; } m_frame_dump_render_framebuffer = CreateFramebuffer(m_frame_dump_render_texture.get(), nullptr); ASSERT(m_frame_dump_render_framebuffer); return true; } bool Renderer::CheckFrameDumpReadbackTexture(u32 target_width, u32 target_height) { std::unique_ptr& rbtex = m_frame_dump_readback_textures[0]; if (rbtex && rbtex->GetWidth() == target_width && rbtex->GetHeight() == target_height) return true; rbtex.reset(); rbtex = CreateStagingTexture( StagingTextureType::Readback, TextureConfig(target_width, target_height, 1, 1, 1, AbstractTextureFormat::RGBA8, 0)); if (!rbtex) return false; return true; } void Renderer::FlushFrameDump() { if (!m_last_frame_exported) return; // Ensure the previously-queued frame was encoded. FinishFrameData(); // Queue encoding of the last frame dumped. std::unique_ptr& rbtex = m_frame_dump_readback_textures[0]; rbtex->Flush(); if (rbtex->Map()) { DumpFrameData(reinterpret_cast(rbtex->GetMappedPointer()), rbtex->GetConfig().width, rbtex->GetConfig().height, static_cast(rbtex->GetMappedStride()), m_last_frame_state); rbtex->Unmap(); } m_last_frame_exported = false; // Shutdown frame dumping if it is no longer active. if (!IsFrameDumping()) ShutdownFrameDumping(); } void Renderer::ShutdownFrameDumping() { // Ensure the last queued readback has been sent to the encoder. FlushFrameDump(); if (!m_frame_dump_thread_running.IsSet()) return; // Ensure previous frame has been encoded. FinishFrameData(); // Wake thread up, and wait for it to exit. m_frame_dump_thread_running.Clear(); m_frame_dump_start.Set(); if (m_frame_dump_thread.joinable()) m_frame_dump_thread.join(); m_frame_dump_render_framebuffer.reset(); m_frame_dump_render_texture.reset(); for (auto& tex : m_frame_dump_readback_textures) tex.reset(); } void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state) { m_frame_dump_config = FrameDumpConfig{data, w, h, stride, state}; if (!m_frame_dump_thread_running.IsSet()) { if (m_frame_dump_thread.joinable()) m_frame_dump_thread.join(); m_frame_dump_thread_running.Set(); m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this); } // Wake worker thread up. m_frame_dump_start.Set(); m_frame_dump_frame_running = true; } void Renderer::FinishFrameData() { if (!m_frame_dump_frame_running) return; m_frame_dump_done.Wait(); m_frame_dump_frame_running = false; } void Renderer::RunFrameDumps() { Common::SetCurrentThreadName("FrameDumping"); bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages; bool frame_dump_started = false; // If Dolphin was compiled without libav, we only support dumping to images. #if !defined(HAVE_FFMPEG) if (dump_to_avi) { WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. " "Frame dump will be saved as images instead."); dump_to_avi = false; } #endif while (true) { m_frame_dump_start.Wait(); if (!m_frame_dump_thread_running.IsSet()) break; auto config = m_frame_dump_config; // Save screenshot if (m_screenshot_request.TestAndClear()) { std::lock_guard lk(m_screenshot_lock); if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height, false)) OSD::AddMessage("Screenshot saved to " + m_screenshot_name); // Reset settings m_screenshot_name.clear(); m_screenshot_completed.Set(); } if (SConfig::GetInstance().m_DumpFrames) { if (!frame_dump_started) { if (dump_to_avi) frame_dump_started = StartFrameDumpToAVI(config); else frame_dump_started = StartFrameDumpToImage(config); // Stop frame dumping if we fail to start. if (!frame_dump_started) SConfig::GetInstance().m_DumpFrames = false; } // If we failed to start frame dumping, don't write a frame. if (frame_dump_started) { if (dump_to_avi) DumpFrameToAVI(config); else DumpFrameToImage(config); } } m_frame_dump_done.Set(); } if (frame_dump_started) { // No additional cleanup is needed when dumping to images. if (dump_to_avi) StopFrameDumpToAVI(); } } #if defined(HAVE_FFMPEG) bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config) { return AVIDump::Start(config.width, config.height); } void Renderer::DumpFrameToAVI(const FrameDumpConfig& config) { AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state); } void Renderer::StopFrameDumpToAVI() { AVIDump::Stop(); } #else bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config) { return false; } void Renderer::DumpFrameToAVI(const FrameDumpConfig& config) { } void Renderer::StopFrameDumpToAVI() { } #endif // defined(HAVE_FFMPEG) std::string Renderer::GetFrameDumpNextImageFileName() const { return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), m_frame_dump_image_counter); } bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config) { m_frame_dump_image_counter = 1; if (!SConfig::GetInstance().m_DumpFramesSilent) { // Only check for the presence of the first image to confirm overwriting. // A previous run will always have at least one image, and it's safe to assume that if the user // has allowed the first image to be overwritten, this will apply any remaining images as well. std::string filename = GetFrameDumpNextImageFileName(); if (File::Exists(filename)) { if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str())) return false; } } return true; } void Renderer::DumpFrameToImage(const FrameDumpConfig& config) { std::string filename = GetFrameDumpNextImageFileName(); TextureToPng(config.data, config.stride, filename, config.width, config.height, false); m_frame_dump_image_counter++; } bool Renderer::UseVertexDepthRange() const { // We can't compute the depth range in the vertex shader if we don't support depth clamp. if (!g_ActiveConfig.backend_info.bSupportsDepthClamp) return false; // We need a full depth range if a ztexture is used. if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest) return true; // If an inverted depth range is unsupported, we also need to check if the range is inverted. if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f) return true; // If an oversized depth range or a ztexture is used, we need to calculate the depth range // in the vertex shader. return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f; } std::unique_ptr Renderer::CreateAsyncShaderCompiler() { return std::make_unique(); }