// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #include "VideoCommon/RenderBase.h" #include #include #include #include #include #include #include "Common/Assert.h" #include "Common/CommonTypes.h" #include "Common/Config/Config.h" #include "Common/Event.h" #include "Common/FileUtil.h" #include "Common/Flag.h" #include "Common/Logging/Log.h" #include "Common/MsgHandler.h" #include "Common/Profiler.h" #include "Common/StringUtil.h" #include "Common/Thread.h" #include "Common/Timer.h" #include "Core/Config/SYSCONFSettings.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "Core/HW/VideoInterface.h" #include "Core/Host.h" #include "Core/Movie.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/AbstractStagingTexture.h" #include "VideoCommon/AbstractTexture.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/ImageWrite.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/PostProcessing.h" #include "VideoCommon/ShaderGenCommon.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/TextureDecoder.h" #include "VideoCommon/VertexManagerBase.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" // TODO: Move these out of here. int frameCount; int OSDChoice; static int OSDTime; std::unique_ptr g_renderer; // The maximum depth that is written to the depth buffer should never exceed this value. // This is necessary because we use a 2^24 divisor for all our depth values to prevent // floating-point round-trip errors. However the console GPU doesn't ever write a value // to the depth buffer that exceeds 2^24 - 1. const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f; static float AspectToWidescreen(float aspect) { return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f)); } Renderer::Renderer(int backbuffer_width, int backbuffer_height) : m_backbuffer_width(backbuffer_width), m_backbuffer_height(backbuffer_height) { UpdateActiveConfig(); UpdateDrawRectangle(); CalculateTargetSize(); OSDChoice = 0; OSDTime = 0; if (SConfig::GetInstance().bWii) m_aspect_wide = Config::Get(Config::SYSCONF_WIDESCREEN); m_surface_handle = Host_GetRenderHandle(); m_last_host_config_bits = ShaderHostConfig::GetCurrent().bits; } Renderer::~Renderer() = default; void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight, float Gamma) { CheckFifoRecording(); if (!fbStride || !fbHeight) return; } unsigned int Renderer::GetEFBScale() const { return m_efb_scale; } int Renderer::EFBToScaledX(int x) const { return x * static_cast(m_efb_scale); } int Renderer::EFBToScaledY(int y) const { return y * static_cast(m_efb_scale); } float Renderer::EFBToScaledXf(float x) const { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); } float Renderer::EFBToScaledYf(float y) const { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); } std::tuple Renderer::CalculateTargetScale(int x, int y) const { return std::make_tuple(x * static_cast(m_efb_scale), y * static_cast(m_efb_scale)); } // return true if target size changed bool Renderer::CalculateTargetSize() { if (g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL) { // Set a scale based on the window size int width = EFB_WIDTH * m_target_rectangle.GetWidth() / m_last_xfb_width; int height = EFB_HEIGHT * m_target_rectangle.GetWidth() / m_last_xfb_height; m_efb_scale = std::max((width - 1) / EFB_WIDTH + 1, (height - 1) / EFB_HEIGHT + 1); } else { m_efb_scale = g_ActiveConfig.iEFBScale; } const u32 max_size = g_ActiveConfig.backend_info.MaxTextureSize; if (max_size < EFB_WIDTH * m_efb_scale) m_efb_scale = max_size / EFB_WIDTH; int new_efb_width = 0; int new_efb_height = 0; std::tie(new_efb_width, new_efb_height) = CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT); if (new_efb_width != m_target_width || new_efb_height != m_target_height) { m_target_width = new_efb_width; m_target_height = new_efb_height; PixelShaderManager::SetEfbScaleChanged(EFBToScaledXf(1), EFBToScaledYf(1)); return true; } return false; } std::tuple Renderer::ConvertStereoRectangle(const TargetRectangle& rc) const { // Resize target to half its original size TargetRectangle draw_rc = rc; if (g_ActiveConfig.stereo_mode == StereoMode::TAB) { // The height may be negative due to flipped rectangles int height = rc.bottom - rc.top; draw_rc.top += height / 4; draw_rc.bottom -= height / 4; } else { int width = rc.right - rc.left; draw_rc.left += width / 4; draw_rc.right -= width / 4; } // Create two target rectangle offset to the sides of the backbuffer TargetRectangle left_rc = draw_rc; TargetRectangle right_rc = draw_rc; if (g_ActiveConfig.stereo_mode == StereoMode::TAB) { left_rc.top -= m_backbuffer_height / 4; left_rc.bottom -= m_backbuffer_height / 4; right_rc.top += m_backbuffer_height / 4; right_rc.bottom += m_backbuffer_height / 4; } else { left_rc.left -= m_backbuffer_width / 4; left_rc.right -= m_backbuffer_width / 4; right_rc.left += m_backbuffer_width / 4; right_rc.right += m_backbuffer_width / 4; } return std::make_tuple(left_rc, right_rc); } void Renderer::SaveScreenshot(const std::string& filename, bool wait_for_completion) { // We must not hold the lock while waiting for the screenshot to complete. { std::lock_guard lk(m_screenshot_lock); m_screenshot_name = filename; m_screenshot_request.Set(); } if (wait_for_completion) { // This is currently only used by Android, and it was using a wait time of 2 seconds. m_screenshot_completed.WaitFor(std::chrono::seconds(2)); } } bool Renderer::CheckForHostConfigChanges() { ShaderHostConfig new_host_config = ShaderHostConfig::GetCurrent(); if (new_host_config.bits == m_last_host_config_bits) return false; OSD::AddMessage("Video config changed, reloading shaders.", OSD::Duration::NORMAL); m_last_host_config_bits = new_host_config.bits; return true; } // Create On-Screen-Messages void Renderer::DrawDebugText() { std::string final_yellow, final_cyan; if (g_ActiveConfig.bShowFPS || SConfig::GetInstance().m_ShowFrameCount) { if (g_ActiveConfig.bShowFPS) final_cyan += StringFromFormat("FPS: %.2f", m_fps_counter.GetFPS()); if (g_ActiveConfig.bShowFPS && SConfig::GetInstance().m_ShowFrameCount) final_cyan += " - "; if (SConfig::GetInstance().m_ShowFrameCount) { final_cyan += StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame()); if (Movie::IsPlayingInput()) final_cyan += StringFromFormat("\nInput: %" PRIu64 " / %" PRIu64, Movie::GetCurrentInputCount(), Movie::GetTotalInputCount()); } final_cyan += "\n"; final_yellow += "\n"; } if (SConfig::GetInstance().m_ShowLag) { final_cyan += StringFromFormat("Lag: %" PRIu64 "\n", Movie::GetCurrentLagCount()); final_yellow += "\n"; } if (SConfig::GetInstance().m_ShowInputDisplay) { final_cyan += Movie::GetInputDisplay(); final_yellow += "\n"; } if (SConfig::GetInstance().m_ShowRTC) { final_cyan += Movie::GetRTCDisplay(); final_yellow += "\n"; } // OSD Menu messages if (OSDChoice > 0) { OSDTime = Common::Timer::GetTimeMs() + 3000; OSDChoice = -OSDChoice; } if ((u32)OSDTime > Common::Timer::GetTimeMs()) { std::string res_text; switch (g_ActiveConfig.iEFBScale) { case EFB_SCALE_AUTO_INTEGRAL: res_text = "Auto (integral)"; break; case 1: res_text = "Native"; break; default: res_text = StringFromFormat("%dx", g_ActiveConfig.iEFBScale); break; } const char* ar_text = ""; switch (g_ActiveConfig.aspect_mode) { case AspectMode::Auto: ar_text = "Auto"; break; case AspectMode::Stretch: ar_text = "Stretch"; break; case AspectMode::Analog: ar_text = "Force 4:3"; break; case AspectMode::AnalogWide: ar_text = "Force 16:9"; break; } const char* const efbcopy_text = g_ActiveConfig.bSkipEFBCopyToRam ? "to Texture" : "to RAM"; const char* const xfbcopy_text = g_ActiveConfig.bSkipXFBCopyToRam ? "to Texture" : "to RAM"; // The rows const std::string lines[] = { std::string("Internal Resolution: ") + res_text, std::string("Aspect Ratio: ") + ar_text + (g_ActiveConfig.bCrop ? " (crop)" : ""), std::string("Copy EFB: ") + efbcopy_text, std::string("Fog: ") + (g_ActiveConfig.bDisableFog ? "Disabled" : "Enabled"), SConfig::GetInstance().m_EmulationSpeed <= 0 ? "Speed Limit: Unlimited" : StringFromFormat("Speed Limit: %li%%", std::lround(SConfig::GetInstance().m_EmulationSpeed * 100.f)), std::string("Copy XFB: ") + xfbcopy_text + (g_ActiveConfig.bImmediateXFB ? " (Immediate)" : ""), }; enum { lines_count = sizeof(lines) / sizeof(*lines) }; // The latest changed setting in yellow for (int i = 0; i != lines_count; ++i) { if (OSDChoice == -i - 1) final_yellow += lines[i]; final_yellow += '\n'; } // The other settings in cyan for (int i = 0; i != lines_count; ++i) { if (OSDChoice != -i - 1) final_cyan += lines[i]; final_cyan += '\n'; } } final_cyan += Common::Profiler::ToString(); if (g_ActiveConfig.bOverlayStats) final_cyan += Statistics::ToString(); if (g_ActiveConfig.bOverlayProjStats) final_cyan += Statistics::ToStringProj(); // and then the text RenderText(final_cyan, 20, 20, 0xFF00FFFF); RenderText(final_yellow, 20, 20, 0xFFFFFF00); } float Renderer::CalculateDrawAspectRatio() const { if (g_ActiveConfig.aspect_mode == AspectMode::Stretch) { // If stretch is enabled, we prefer the aspect ratio of the window. return (static_cast(m_backbuffer_width) / static_cast(m_backbuffer_height)); } // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio if (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide || (g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) { return AspectToWidescreen(VideoInterface::GetAspectRatio()); } else { return VideoInterface::GetAspectRatio(); } } bool Renderer::IsHeadless() const { return !m_surface_handle; } std::tuple Renderer::ScaleToDisplayAspectRatio(const int width, const int height) const { // Scale either the width or height depending the content aspect ratio. // This way we preserve as much resolution as possible when scaling. float scaled_width = static_cast(width); float scaled_height = static_cast(height); const float draw_aspect = CalculateDrawAspectRatio(); if (scaled_width / scaled_height >= draw_aspect) scaled_height = scaled_width / draw_aspect; else scaled_width = scaled_height * draw_aspect; return std::make_tuple(scaled_width, scaled_height); } void Renderer::UpdateDrawRectangle() { // The rendering window size const float win_width = static_cast(m_backbuffer_width); const float win_height = static_cast(m_backbuffer_height); // Update aspect ratio hack values // Won't take effect until next frame // Don't know if there is a better place for this code so there isn't a 1 frame delay if (g_ActiveConfig.bWidescreenHack) { float source_aspect = VideoInterface::GetAspectRatio(); if (m_aspect_wide) source_aspect = AspectToWidescreen(source_aspect); float target_aspect = 0.0f; switch (g_ActiveConfig.aspect_mode) { case AspectMode::Stretch: target_aspect = win_width / win_height; break; case AspectMode::Analog: target_aspect = VideoInterface::GetAspectRatio(); break; case AspectMode::AnalogWide: target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio()); break; case AspectMode::Auto: target_aspect = source_aspect; break; } float adjust = source_aspect / target_aspect; if (adjust > 1) { // Vert+ g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1 / adjust; } else { // Hor+ g_Config.fAspectRatioHackW = adjust; g_Config.fAspectRatioHackH = 1; } } else { // Hack is disabled g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1; } float draw_width, draw_height, crop_width, crop_height; // get the picture aspect ratio draw_width = crop_width = CalculateDrawAspectRatio(); draw_height = crop_height = 1; // crop the picture to a standard aspect ratio if (g_ActiveConfig.bCrop && g_ActiveConfig.aspect_mode != AspectMode::Stretch) { float expected_aspect = (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide || (g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) ? (16.0f / 9.0f) : (4.0f / 3.0f); if (crop_width / crop_height >= expected_aspect) { // the picture is flatter than it should be crop_width = crop_height * expected_aspect; } else { // the picture is skinnier than it should be crop_height = crop_width / expected_aspect; } } // scale the picture to fit the rendering window if (win_width / win_height >= crop_width / crop_height) { // the window is flatter than the picture draw_width *= win_height / crop_height; crop_width *= win_height / crop_height; draw_height *= win_height / crop_height; crop_height = win_height; } else { // the window is skinnier than the picture draw_width *= win_width / crop_width; draw_height *= win_width / crop_width; crop_height *= win_width / crop_width; crop_width = win_width; } // ensure divisibility by 4 to make it compatible with all the video encoders draw_width = std::ceil(draw_width) - static_cast(std::ceil(draw_width)) % 4; draw_height = std::ceil(draw_height) - static_cast(std::ceil(draw_height)) % 4; m_target_rectangle.left = static_cast(std::round(win_width / 2.0 - draw_width / 2.0)); m_target_rectangle.top = static_cast(std::round(win_height / 2.0 - draw_height / 2.0)); m_target_rectangle.right = m_target_rectangle.left + static_cast(draw_width); m_target_rectangle.bottom = m_target_rectangle.top + static_cast(draw_height); } void Renderer::SetWindowSize(int width, int height) { // Scale the window size by the EFB scale. if (g_ActiveConfig.iEFBScale != EFB_SCALE_AUTO_INTEGRAL) std::tie(width, height) = CalculateTargetScale(width, height); std::tie(width, height) = CalculateOutputDimensions(width, height); // Track the last values of width/height to avoid sending a window resize event every frame. if (width != m_last_window_request_width || height != m_last_window_request_height) { m_last_window_request_width = width; m_last_window_request_height = height; Host_RequestRenderWindowSize(width, height); } } std::tuple Renderer::CalculateOutputDimensions(int width, int height) { width = std::max(width, 1); height = std::max(height, 1); float scaled_width, scaled_height; std::tie(scaled_width, scaled_height) = ScaleToDisplayAspectRatio(width, height); if (g_ActiveConfig.bCrop) { // Force 4:3 or 16:9 by cropping the image. float current_aspect = scaled_width / scaled_height; float expected_aspect = (g_ActiveConfig.aspect_mode == AspectMode::AnalogWide || (g_ActiveConfig.aspect_mode != AspectMode::Analog && m_aspect_wide)) ? (16.0f / 9.0f) : (4.0f / 3.0f); if (current_aspect > expected_aspect) { // keep height, crop width scaled_width = scaled_height * expected_aspect; } else { // keep width, crop height scaled_height = scaled_width / expected_aspect; } } width = static_cast(std::ceil(scaled_width)); height = static_cast(std::ceil(scaled_height)); // UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video // encoders, so do that here too to match it width -= width % 4; height -= height % 4; return std::make_tuple(width, height); } void Renderer::CheckFifoRecording() { bool wasRecording = g_bRecordFifoData; g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording(); if (g_bRecordFifoData) { if (!wasRecording) { RecordVideoMemory(); } FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd); } } void Renderer::RecordVideoMemory() { const u32* bpmem_ptr = reinterpret_cast(&bpmem); u32 cpmem[256] = {}; // The FIFO recording format splits XF memory into xfmem and xfregs; follow // that split here. const u32* xfmem_ptr = reinterpret_cast(&xfmem); const u32* xfregs_ptr = reinterpret_cast(&xfmem) + FifoDataFile::XF_MEM_SIZE; u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE; FillCPMemoryArray(cpmem); FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size, texMem); } void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, u64 ticks) { // Heuristic to detect if a GameCube game is in 16:9 anamorphic widescreen mode. if (!SConfig::GetInstance().bWii) { size_t flush_count_4_3, flush_count_anamorphic; std::tie(flush_count_4_3, flush_count_anamorphic) = g_vertex_manager->ResetFlushAspectRatioCount(); size_t flush_total = flush_count_4_3 + flush_count_anamorphic; // Modify the threshold based on which aspect ratio we're already using: if // the game's in 4:3, it probably won't switch to anamorphic, and vice-versa. if (m_aspect_wide) m_aspect_wide = !(flush_count_4_3 > 0.75 * flush_total); else m_aspect_wide = flush_count_anamorphic > 0.75 * flush_total; } // Ensure the last frame was written to the dump. // This is required even if frame dumping has stopped, since the frame dump is one frame // behind the renderer. FlushFrameDump(); if (xfbAddr && fbWidth && fbStride && fbHeight) { constexpr int force_safe_texture_cache_hash = 0; // Get the current XFB from texture cache auto* xfb_entry = g_texture_cache->GetXFBTexture( xfbAddr, fbStride, fbHeight, TextureFormat::XFB, force_safe_texture_cache_hash); if (xfb_entry && xfb_entry->id != m_last_xfb_id) { m_last_xfb_texture = xfb_entry->texture.get(); m_last_xfb_id = xfb_entry->id; m_last_xfb_ticks = ticks; auto xfb_rect = xfb_entry->texture->GetConfig().GetRect(); xfb_rect.right -= EFBToScaledX(fbStride - fbWidth); m_last_xfb_region = xfb_rect; // TODO: merge more generic parts into VideoCommon g_renderer->SwapImpl(xfb_entry->texture.get(), xfb_rect, ticks, xfb_entry->gamma); m_fps_counter.Update(); if (IsFrameDumping()) DumpCurrentFrame(); frameCount++; GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true); // Begin new frame // Set default viewport and scissor, for the clear to work correctly // New frame stats.ResetFrame(); Core::Callback_VideoCopiedToXFB(true); } // Update our last xfb values m_last_xfb_width = (fbStride < 1 || fbStride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbStride; m_last_xfb_height = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight; } } bool Renderer::IsFrameDumping() { if (m_screenshot_request.IsSet()) return true; if (SConfig::GetInstance().m_DumpFrames) return true; return false; } void Renderer::DumpCurrentFrame() { // Scale/render to frame dump texture. RenderFrameDump(); // Queue a readback for the next frame. QueueFrameDumpReadback(); } void Renderer::RenderFrameDump() { int target_width, target_height; if (!g_ActiveConfig.bInternalResolutionFrameDumps && !IsHeadless()) { auto target_rect = GetTargetRectangle(); target_width = target_rect.GetWidth(); target_height = target_rect.GetHeight(); } else { std::tie(target_width, target_height) = CalculateOutputDimensions( m_last_xfb_texture->GetConfig().width, m_last_xfb_texture->GetConfig().height); } // Ensure framebuffer exists (we lazily allocate it in case frame dumping isn't used). // Or, resize texture if it isn't large enough to accommodate the current frame. if (!m_frame_dump_render_texture || m_frame_dump_render_texture->GetConfig().width != static_cast(target_width) || m_frame_dump_render_texture->GetConfig().height == static_cast(target_height)) { // Recreate texture objects. Release before creating so we don't temporarily use twice the RAM. TextureConfig config(target_width, target_height, 1, 1, AbstractTextureFormat::RGBA8, true); m_frame_dump_render_texture.reset(); m_frame_dump_render_texture = CreateTexture(config); _assert_(m_frame_dump_render_texture); } // Scaling is likely to occur here, but if possible, do a bit-for-bit copy. if (m_last_xfb_region.GetWidth() != target_width || m_last_xfb_region.GetHeight() != target_height) { m_frame_dump_render_texture->ScaleRectangleFromTexture( m_last_xfb_texture, m_last_xfb_region, EFBRectangle{0, 0, target_width, target_height}); } else { m_frame_dump_render_texture->CopyRectangleFromTexture( m_last_xfb_texture, m_last_xfb_region, 0, 0, EFBRectangle{0, 0, target_width, target_height}, 0, 0); } } void Renderer::QueueFrameDumpReadback() { // Index 0 was just sent to AVI dump. Swap with the second texture. if (m_frame_dump_readback_textures[0]) std::swap(m_frame_dump_readback_textures[0], m_frame_dump_readback_textures[1]); std::unique_ptr& rbtex = m_frame_dump_readback_textures[0]; if (!rbtex || rbtex->GetConfig() != m_frame_dump_render_texture->GetConfig()) { rbtex = CreateStagingTexture(StagingTextureType::Readback, m_frame_dump_render_texture->GetConfig()); } m_last_frame_state = AVIDump::FetchState(m_last_xfb_ticks); m_last_frame_exported = true; rbtex->CopyFromTexture(m_frame_dump_render_texture.get(), 0, 0); } void Renderer::FlushFrameDump() { if (!m_last_frame_exported) return; // Ensure the previously-queued frame was encoded. FinishFrameData(); // Queue encoding of the last frame dumped. std::unique_ptr& rbtex = m_frame_dump_readback_textures[0]; rbtex->Flush(); if (rbtex->Map()) { DumpFrameData(reinterpret_cast(rbtex->GetMappedPointer()), rbtex->GetConfig().width, rbtex->GetConfig().height, static_cast(rbtex->GetMappedStride()), m_last_frame_state); rbtex->Unmap(); } m_last_frame_exported = false; // Shutdown frame dumping if it is no longer active. if (!IsFrameDumping()) ShutdownFrameDumping(); } void Renderer::ShutdownFrameDumping() { // Ensure the last queued readback has been sent to the encoder. FlushFrameDump(); if (!m_frame_dump_thread_running.IsSet()) return; // Ensure previous frame has been encoded. FinishFrameData(); // Wake thread up, and wait for it to exit. m_frame_dump_thread_running.Clear(); m_frame_dump_start.Set(); if (m_frame_dump_thread.joinable()) m_frame_dump_thread.join(); } void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state) { m_frame_dump_config = FrameDumpConfig{data, w, h, stride, state}; if (!m_frame_dump_thread_running.IsSet()) { if (m_frame_dump_thread.joinable()) m_frame_dump_thread.join(); m_frame_dump_thread_running.Set(); m_frame_dump_thread = std::thread(&Renderer::RunFrameDumps, this); } // Wake worker thread up. m_frame_dump_start.Set(); m_frame_dump_frame_running = true; } void Renderer::FinishFrameData() { if (!m_frame_dump_frame_running) return; m_frame_dump_done.Wait(); m_frame_dump_frame_running = false; } void Renderer::RunFrameDumps() { Common::SetCurrentThreadName("FrameDumping"); bool dump_to_avi = !g_ActiveConfig.bDumpFramesAsImages; bool frame_dump_started = false; // If Dolphin was compiled without libav, we only support dumping to images. #if !defined(HAVE_FFMPEG) if (dump_to_avi) { WARN_LOG(VIDEO, "AVI frame dump requested, but Dolphin was compiled without libav. " "Frame dump will be saved as images instead."); dump_to_avi = false; } #endif while (true) { m_frame_dump_start.Wait(); if (!m_frame_dump_thread_running.IsSet()) break; auto config = m_frame_dump_config; // Save screenshot if (m_screenshot_request.TestAndClear()) { std::lock_guard lk(m_screenshot_lock); if (TextureToPng(config.data, config.stride, m_screenshot_name, config.width, config.height, false)) OSD::AddMessage("Screenshot saved to " + m_screenshot_name); // Reset settings m_screenshot_name.clear(); m_screenshot_completed.Set(); } if (SConfig::GetInstance().m_DumpFrames) { if (!frame_dump_started) { if (dump_to_avi) frame_dump_started = StartFrameDumpToAVI(config); else frame_dump_started = StartFrameDumpToImage(config); // Stop frame dumping if we fail to start. if (!frame_dump_started) SConfig::GetInstance().m_DumpFrames = false; } // If we failed to start frame dumping, don't write a frame. if (frame_dump_started) { if (dump_to_avi) DumpFrameToAVI(config); else DumpFrameToImage(config); } } m_frame_dump_done.Set(); } if (frame_dump_started) { // No additional cleanup is needed when dumping to images. if (dump_to_avi) StopFrameDumpToAVI(); } } #if defined(HAVE_FFMPEG) bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config) { return AVIDump::Start(config.width, config.height); } void Renderer::DumpFrameToAVI(const FrameDumpConfig& config) { AVIDump::AddFrame(config.data, config.width, config.height, config.stride, config.state); } void Renderer::StopFrameDumpToAVI() { AVIDump::Stop(); } #else bool Renderer::StartFrameDumpToAVI(const FrameDumpConfig& config) { return false; } void Renderer::DumpFrameToAVI(const FrameDumpConfig& config) { } void Renderer::StopFrameDumpToAVI() { } #endif // defined(HAVE_FFMPEG) std::string Renderer::GetFrameDumpNextImageFileName() const { return StringFromFormat("%sframedump_%u.png", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), m_frame_dump_image_counter); } bool Renderer::StartFrameDumpToImage(const FrameDumpConfig& config) { m_frame_dump_image_counter = 1; if (!SConfig::GetInstance().m_DumpFramesSilent) { // Only check for the presence of the first image to confirm overwriting. // A previous run will always have at least one image, and it's safe to assume that if the user // has allowed the first image to be overwritten, this will apply any remaining images as well. std::string filename = GetFrameDumpNextImageFileName(); if (File::Exists(filename)) { if (!AskYesNoT("Frame dump image(s) '%s' already exists. Overwrite?", filename.c_str())) return false; } } return true; } void Renderer::DumpFrameToImage(const FrameDumpConfig& config) { std::string filename = GetFrameDumpNextImageFileName(); TextureToPng(config.data, config.stride, filename, config.width, config.height, false); m_frame_dump_image_counter++; } bool Renderer::UseVertexDepthRange() const { // We can't compute the depth range in the vertex shader if we don't support depth clamp. if (!g_ActiveConfig.backend_info.bSupportsDepthClamp) return false; // We need a full depth range if a ztexture is used. if (bpmem.ztex2.type != ZTEXTURE_DISABLE && !bpmem.zcontrol.early_ztest) return true; // If an inverted depth range is unsupported, we also need to check if the range is inverted. if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange && xfmem.viewport.zRange < 0.0f) return true; // If an oversized depth range or a ztexture is used, we need to calculate the depth range // in the vertex shader. return fabs(xfmem.viewport.zRange) > 16777215.0f || fabs(xfmem.viewport.farZ) > 16777215.0f; }