// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include #include #include #include #include #include "Common/Atomic.h" #include "Common/CommonTypes.h" #include "Common/FileUtil.h" #include "Common/GL/GLInterfaceBase.h" #include "Common/GL/GLUtil.h" #include "Common/Logging/LogManager.h" #include "Common/MathUtil.h" #include "Common/StringUtil.h" #include "Core/Core.h" #include "VideoBackends/OGL/BoundingBox.h" #include "VideoBackends/OGL/FramebufferManager.h" #include "VideoBackends/OGL/PostProcessing.h" #include "VideoBackends/OGL/ProgramShaderCache.h" #include "VideoBackends/OGL/RasterFont.h" #include "VideoBackends/OGL/Render.h" #include "VideoBackends/OGL/SamplerCache.h" #include "VideoBackends/OGL/TextureCache.h" #include "VideoBackends/OGL/VertexManager.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPFunctions.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/Fifo.h" #include "VideoCommon/IndexGenerator.h" #include "VideoCommon/OnScreenDisplay.h" #include "VideoCommon/PixelEngine.h" #include "VideoCommon/PixelShaderManager.h" #include "VideoCommon/VertexShaderManager.h" #include "VideoCommon/VideoConfig.h" void VideoConfig::UpdateProjectionHack() { ::UpdateProjectionHack(g_Config.iPhackvalue, g_Config.sPhackvalue); } static int s_max_texture_size = 0; namespace OGL { VideoConfig g_ogl_config; // Declarations and definitions // ---------------------------- static std::unique_ptr s_raster_font; // 1 for no MSAA. Use s_MSAASamples > 1 to check for MSAA. static int s_MSAASamples = 1; static int s_last_multisamples = 1; static bool s_last_stereo_mode = false; static bool s_last_xfb_mode = false; static u32 s_blendMode; static bool s_vsync; // EFB cache related static const u32 EFB_CACHE_RECT_SIZE = 64; // Cache 64x64 blocks. static const u32 EFB_CACHE_WIDTH = (EFB_WIDTH + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; // round up static const u32 EFB_CACHE_HEIGHT = (EFB_HEIGHT + EFB_CACHE_RECT_SIZE - 1) / EFB_CACHE_RECT_SIZE; static bool s_efbCacheValid[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; static bool s_efbCacheIsCleared = false; static std::vector s_efbCache[2][EFB_CACHE_WIDTH * EFB_CACHE_HEIGHT]; // 2 for PEEK_Z and PEEK_COLOR static void APIENTRY ErrorCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const char* message, const void* userParam) { const char* s_source; const char* s_type; switch (source) { case GL_DEBUG_SOURCE_API_ARB: s_source = "API"; break; case GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB: s_source = "Window System"; break; case GL_DEBUG_SOURCE_SHADER_COMPILER_ARB: s_source = "Shader Compiler"; break; case GL_DEBUG_SOURCE_THIRD_PARTY_ARB: s_source = "Third Party"; break; case GL_DEBUG_SOURCE_APPLICATION_ARB: s_source = "Application"; break; case GL_DEBUG_SOURCE_OTHER_ARB: s_source = "Other"; break; default: s_source = "Unknown"; break; } switch (type) { case GL_DEBUG_TYPE_ERROR_ARB: s_type = "Error"; break; case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB: s_type = "Deprecated"; break; case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB: s_type = "Undefined"; break; case GL_DEBUG_TYPE_PORTABILITY_ARB: s_type = "Portability"; break; case GL_DEBUG_TYPE_PERFORMANCE_ARB: s_type = "Performance"; break; case GL_DEBUG_TYPE_OTHER_ARB: s_type = "Other"; break; default: s_type = "Unknown"; break; } switch (severity) { case GL_DEBUG_SEVERITY_HIGH_ARB: ERROR_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break; case GL_DEBUG_SEVERITY_MEDIUM_ARB: WARN_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break; case GL_DEBUG_SEVERITY_LOW_ARB: DEBUG_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break; case GL_DEBUG_SEVERITY_NOTIFICATION: DEBUG_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break; default: ERROR_LOG(HOST_GPU, "id: %x, source: %s, type: %s - %s", id, s_source, s_type, message); break; } } // Two small Fallbacks to avoid GL_ARB_ES2_compatibility static void APIENTRY DepthRangef(GLfloat neardepth, GLfloat fardepth) { glDepthRange(neardepth, fardepth); } static void APIENTRY ClearDepthf(GLfloat depthval) { glClearDepth(depthval); } static void InitDriverInfo() { std::string svendor = std::string(g_ogl_config.gl_vendor); std::string srenderer = std::string(g_ogl_config.gl_renderer); std::string sversion = std::string(g_ogl_config.gl_version); DriverDetails::Vendor vendor = DriverDetails::VENDOR_UNKNOWN; DriverDetails::Driver driver = DriverDetails::DRIVER_UNKNOWN; DriverDetails::Family family = DriverDetails::Family::UNKNOWN; double version = 0.0; // Get the vendor first if (svendor == "NVIDIA Corporation" && srenderer != "NVIDIA Tegra") { vendor = DriverDetails::VENDOR_NVIDIA; } else if (svendor == "ATI Technologies Inc." || svendor == "Advanced Micro Devices, Inc.") { vendor = DriverDetails::VENDOR_ATI; } else if (std::string::npos != sversion.find("Mesa")) { vendor = DriverDetails::VENDOR_MESA; } else if (std::string::npos != svendor.find("Intel")) { vendor = DriverDetails::VENDOR_INTEL; } else if (svendor == "ARM") { vendor = DriverDetails::VENDOR_ARM; } else if (svendor == "http://limadriver.org/") { vendor = DriverDetails::VENDOR_ARM; driver = DriverDetails::DRIVER_LIMA; } else if (svendor == "Qualcomm") { vendor = DriverDetails::VENDOR_QUALCOMM; } else if (svendor == "Imagination Technologies") { vendor = DriverDetails::VENDOR_IMGTEC; } else if (svendor == "NVIDIA Corporation" && srenderer == "NVIDIA Tegra") { vendor = DriverDetails::VENDOR_TEGRA; } else if (svendor == "Vivante Corporation") { vendor = DriverDetails::VENDOR_VIVANTE; } // Get device family and driver version...if we care about it switch (vendor) { case DriverDetails::VENDOR_QUALCOMM: { driver = DriverDetails::DRIVER_QUALCOMM; double glVersion; sscanf(g_ogl_config.gl_version, "OpenGL ES %lg V@%lg", &glVersion, &version); } break; case DriverDetails::VENDOR_ARM: // Currently the Mali-T line has two families in it. // Mali-T6xx and Mali-T7xx // These two families are similar enough that they share bugs in their drivers. // // Mali drivers provide no way to explicitly find out what video driver is running. // This is similar to how we can't find the Nvidia driver version in Windows. // Good thing is that ARM introduces a new video driver about once every two years so we can // find the driver version by the features it exposes. // r2p0 - No OpenGL ES 3.0 support (We don't support this) // r3p0 - OpenGL ES 3.0 support // r4p0 - Supports 'GL_EXT_shader_pixel_local_storage' extension. driver = DriverDetails::DRIVER_ARM; if (GLExtensions::Supports("GL_EXT_shader_pixel_local_storage")) version = 400; else version = 300; break; case DriverDetails::VENDOR_MESA: { if (svendor == "nouveau") { driver = DriverDetails::DRIVER_NOUVEAU; } else if (svendor == "Intel Open Source Technology Center") { driver = DriverDetails::DRIVER_I965; if (srenderer.find("Sandybridge") != std::string::npos) family = DriverDetails::Family::INTEL_SANDY; else if (srenderer.find("Ivybridge") != std::string::npos) family = DriverDetails::Family::INTEL_IVY; } else if (std::string::npos != srenderer.find("AMD") || std::string::npos != srenderer.find("ATI")) { driver = DriverDetails::DRIVER_R600; } int major = 0; int minor = 0; int release = 0; sscanf(g_ogl_config.gl_version, "%*s (Core Profile) Mesa %d.%d.%d", &major, &minor, &release); version = 100 * major + 10 * minor + release; } break; case DriverDetails::VENDOR_INTEL: // Happens in OS X/Windows { u32 market_name; sscanf(g_ogl_config.gl_renderer, "Intel HD Graphics %d", &market_name); switch (market_name) { case 2000: case 3000: family = DriverDetails::Family::INTEL_SANDY; break; case 2500: case 4000: family = DriverDetails::Family::INTEL_IVY; break; default: family = DriverDetails::Family::UNKNOWN; break; }; #ifdef _WIN32 int glmajor = 0; int glminor = 0; int major = 0; int minor = 0; int release = 0; int revision = 0; // Example version string: '4.3.0 - Build 10.18.10.3907' sscanf(g_ogl_config.gl_version, "%d.%d.0 - Build %d.%d.%d.%d", &glmajor, &glminor, &major, &minor, &release, &revision); version = 100000000 * major + 1000000 * minor + 10000 * release + revision; version /= 10000; #endif } break; case DriverDetails::VENDOR_NVIDIA: { int glmajor = 0; int glminor = 0; int glrelease = 0; int major = 0; int minor = 0; // TODO: this is known to be broken on Windows // Nvidia seems to have removed their driver version from this string, so we can't get it. // hopefully we'll never have to workaround Nvidia bugs sscanf(g_ogl_config.gl_version, "%d.%d.%d NVIDIA %d.%d", &glmajor, &glminor, &glrelease, &major, &minor); version = 100 * major + minor; } break; // We don't care about these default: break; } DriverDetails::Init(DriverDetails::API_OPENGL, vendor, driver, version, family); } // Init functions Renderer::Renderer() { s_blendMode = 0; bool bSuccess = true; // Init extension support. if (!GLExtensions::Init()) { // OpenGL 2.0 is required for all shader based drawings. There is no way to get this by // extensions PanicAlert("GPU: OGL ERROR: Does your video card support OpenGL 2.0?"); bSuccess = false; } g_ogl_config.gl_vendor = (const char*)glGetString(GL_VENDOR); g_ogl_config.gl_renderer = (const char*)glGetString(GL_RENDERER); g_ogl_config.gl_version = (const char*)glGetString(GL_VERSION); InitDriverInfo(); if (GLExtensions::Version() < 300) { // integer vertex attributes require a gl3 only function PanicAlert("GPU: OGL ERROR: Need OpenGL version 3.\n" "GPU: Does your video card support OpenGL 3?"); bSuccess = false; } // check for the max vertex attributes GLint numvertexattribs = 0; glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &numvertexattribs); if (numvertexattribs < 16) { PanicAlert("GPU: OGL ERROR: Number of attributes %d not enough.\n" "GPU: Does your video card support OpenGL 2.x?", numvertexattribs); bSuccess = false; } // check the max texture width and height GLint max_texture_size; glGetIntegerv(GL_MAX_TEXTURE_SIZE, (GLint*)&max_texture_size); if (max_texture_size < 1024) { PanicAlert("GL_MAX_TEXTURE_SIZE too small at %i - must be at least 1024.", max_texture_size); bSuccess = false; } if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGL) { if (!GLExtensions::Supports("GL_ARB_framebuffer_object")) { // We want the ogl3 framebuffer instead of the ogl2 one for better blitting support. // It's also compatible with the gles3 one. PanicAlert("GPU: ERROR: Need GL_ARB_framebuffer_object for multiple render targets.\n" "GPU: Does your video card support OpenGL 3.0?"); bSuccess = false; } if (!GLExtensions::Supports("GL_ARB_vertex_array_object")) { // This extension is used to replace lots of pointer setting function. // Also gles3 requires to use it. PanicAlert("GPU: OGL ERROR: Need GL_ARB_vertex_array_object.\n" "GPU: Does your video card support OpenGL 3.0?"); bSuccess = false; } if (!GLExtensions::Supports("GL_ARB_map_buffer_range")) { // ogl3 buffer mapping for better streaming support. // The ogl2 one also isn't in gles3. PanicAlert("GPU: OGL ERROR: Need GL_ARB_map_buffer_range.\n" "GPU: Does your video card support OpenGL 3.0?"); bSuccess = false; } if (!GLExtensions::Supports("GL_ARB_uniform_buffer_object")) { // ubo allow us to keep the current constants on shader switches // we also can stream them much nicer and pack into it whatever we want to PanicAlert("GPU: OGL ERROR: Need GL_ARB_uniform_buffer_object.\n" "GPU: Does your video card support OpenGL 3.1?"); bSuccess = false; } else if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_UBO)) { PanicAlert( "Buggy GPU driver detected.\n" "Please either install the closed-source GPU driver or update your Mesa 3D version."); bSuccess = false; } if (!GLExtensions::Supports("GL_ARB_sampler_objects")) { // Our sampler cache uses this extension. It could easyly be workaround and it's by far the // highest requirement, but it seems that no driver lacks support for it. PanicAlert("GPU: OGL ERROR: Need GL_ARB_sampler_objects.\n" "GPU: Does your video card support OpenGL 3.3?"); bSuccess = false; } // OpenGL 3 doesn't provide GLES like float functions for depth. // They are in core in OpenGL 4.1, so almost every driver should support them. // But for the oldest ones, we provide fallbacks to the old double functions. if (!GLExtensions::Supports("GL_ARB_ES2_compatibility")) { glDepthRangef = DepthRangef; glClearDepthf = ClearDepthf; } } // Copy the GPU name to g_Config, so Analytics can see it. g_Config.backend_info.AdapterName = g_ogl_config.gl_renderer; g_Config.backend_info.bSupportsDualSourceBlend = (GLExtensions::Supports("GL_ARB_blend_func_extended") || GLExtensions::Supports("GL_EXT_blend_func_extended")); g_Config.backend_info.bSupportsPrimitiveRestart = !DriverDetails::HasBug(DriverDetails::BUG_PRIMITIVE_RESTART) && ((GLExtensions::Version() >= 310) || GLExtensions::Supports("GL_NV_primitive_restart")); g_Config.backend_info.bSupportsBBox = GLExtensions::Supports("GL_ARB_shader_storage_buffer_object"); g_Config.backend_info.bSupportsGSInstancing = GLExtensions::Supports("GL_ARB_gpu_shader5"); g_Config.backend_info.bSupportsSSAA = GLExtensions::Supports("GL_ARB_gpu_shader5") && GLExtensions::Supports("GL_ARB_sample_shading"); g_Config.backend_info.bSupportsGeometryShaders = GLExtensions::Version() >= 320 && !DriverDetails::HasBug(DriverDetails::BUG_BROKEN_GEOMETRY_SHADERS); g_Config.backend_info.bSupportsPaletteConversion = GLExtensions::Supports("GL_ARB_texture_buffer_object") || GLExtensions::Supports("GL_OES_texture_buffer") || GLExtensions::Supports("GL_EXT_texture_buffer"); g_Config.backend_info.bSupportsClipControl = GLExtensions::Supports("GL_ARB_clip_control"); g_ogl_config.bSupportsCopySubImage = (GLExtensions::Supports("GL_ARB_copy_image") || GLExtensions::Supports("GL_NV_copy_image") || GLExtensions::Supports("GL_EXT_copy_image") || GLExtensions::Supports("GL_OES_copy_image")) && !DriverDetails::HasBug(DriverDetails::BUG_BROKEN_COPYIMAGE); // Desktop OpenGL supports the binding layout if it supports 420pack // OpenGL ES 3.1 supports it implicitly without an extension g_Config.backend_info.bSupportsBindingLayout = GLExtensions::Supports("GL_ARB_shading_language_420pack"); // Clip distance support is useless without a method to clamp the depth range g_Config.backend_info.bSupportsDepthClamp = GLExtensions::Supports("GL_ARB_depth_clamp"); g_ogl_config.bSupportsGLSLCache = GLExtensions::Supports("GL_ARB_get_program_binary"); g_ogl_config.bSupportsGLPinnedMemory = GLExtensions::Supports("GL_AMD_pinned_memory"); g_ogl_config.bSupportsGLSync = GLExtensions::Supports("GL_ARB_sync"); g_ogl_config.bSupportsGLBaseVertex = GLExtensions::Supports("GL_ARB_draw_elements_base_vertex") || GLExtensions::Supports("GL_EXT_draw_elements_base_vertex") || GLExtensions::Supports("GL_OES_draw_elements_base_vertex"); g_ogl_config.bSupportsGLBufferStorage = GLExtensions::Supports("GL_ARB_buffer_storage") || GLExtensions::Supports("GL_EXT_buffer_storage"); g_ogl_config.bSupportsMSAA = GLExtensions::Supports("GL_ARB_texture_multisample"); g_ogl_config.bSupportViewportFloat = GLExtensions::Supports("GL_ARB_viewport_array"); g_ogl_config.bSupportsDebug = GLExtensions::Supports("GL_KHR_debug") || GLExtensions::Supports("GL_ARB_debug_output"); g_ogl_config.bSupports3DTextureStorage = GLExtensions::Supports("GL_ARB_texture_storage_multisample") || GLExtensions::Supports("GL_OES_texture_storage_multisample_2d_array"); g_ogl_config.bSupports2DTextureStorage = GLExtensions::Supports("GL_ARB_texture_storage_multisample"); g_ogl_config.bSupportsEarlyFragmentTests = GLExtensions::Supports("GL_ARB_shader_image_load_store"); g_ogl_config.bSupportsConservativeDepth = GLExtensions::Supports("GL_ARB_conservative_depth"); g_ogl_config.bSupportsAniso = GLExtensions::Supports("GL_EXT_texture_filter_anisotropic"); if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3) { g_ogl_config.SupportedESPointSize = GLExtensions::Supports("GL_OES_geometry_point_size") ? 1 : GLExtensions::Supports("GL_EXT_geometry_point_size") ? 2 : 0; g_ogl_config.SupportedESTextureBuffer = GLExtensions::Supports("VERSION_GLES_3_2") ? ES_TEXBUF_TYPE::TEXBUF_CORE : GLExtensions::Supports("GL_OES_texture_buffer") ? ES_TEXBUF_TYPE::TEXBUF_OES : GLExtensions::Supports("GL_EXT_texture_buffer") ? ES_TEXBUF_TYPE::TEXBUF_EXT : ES_TEXBUF_TYPE::TEXBUF_NONE; g_ogl_config.bSupportsGLSLCache = true; g_ogl_config.bSupportsGLSync = true; // TODO: Implement support for GL_EXT_clip_cull_distance when there is an extension for // depth clamping. g_Config.backend_info.bSupportsDepthClamp = false; if (GLExtensions::Version() == 300) { g_ogl_config.eSupportedGLSLVersion = GLSLES_300; g_ogl_config.bSupportsAEP = false; g_Config.backend_info.bSupportsGeometryShaders = false; } else if (GLExtensions::Version() == 310) { g_ogl_config.eSupportedGLSLVersion = GLSLES_310; g_ogl_config.bSupportsAEP = GLExtensions::Supports("GL_ANDROID_extension_pack_es31a"); g_Config.backend_info.bSupportsBindingLayout = true; g_ogl_config.bSupportsEarlyFragmentTests = true; g_Config.backend_info.bSupportsGeometryShaders = g_ogl_config.bSupportsAEP; g_Config.backend_info.bSupportsGSInstancing = g_Config.backend_info.bSupportsGeometryShaders && g_ogl_config.SupportedESPointSize > 0; g_Config.backend_info.bSupportsSSAA = g_ogl_config.bSupportsAEP; g_Config.backend_info.bSupportsBBox = true; g_ogl_config.bSupportsMSAA = true; g_ogl_config.bSupports2DTextureStorage = true; if (g_ActiveConfig.iStereoMode > 0 && g_ActiveConfig.iMultisamples > 1 && !g_ogl_config.bSupports3DTextureStorage) { // GLES 3.1 can't support stereo rendering and MSAA OSD::AddMessage("MSAA Stereo rendering isn't supported by your GPU.", 10000); g_ActiveConfig.iMultisamples = 1; } } else { g_ogl_config.eSupportedGLSLVersion = GLSLES_320; g_ogl_config.bSupportsAEP = GLExtensions::Supports("GL_ANDROID_extension_pack_es31a"); g_Config.backend_info.bSupportsBindingLayout = true; g_ogl_config.bSupportsEarlyFragmentTests = true; g_Config.backend_info.bSupportsGeometryShaders = true; g_Config.backend_info.bSupportsGSInstancing = g_ogl_config.SupportedESPointSize > 0; g_Config.backend_info.bSupportsPaletteConversion = true; g_Config.backend_info.bSupportsSSAA = true; g_Config.backend_info.bSupportsBBox = true; g_ogl_config.bSupportsCopySubImage = true; g_ogl_config.bSupportsGLBaseVertex = true; g_ogl_config.bSupportsDebug = true; g_ogl_config.bSupportsMSAA = true; g_ogl_config.bSupports2DTextureStorage = true; g_ogl_config.bSupports3DTextureStorage = true; } } else { if (GLExtensions::Version() < 300) { PanicAlert("GPU: OGL ERROR: Need at least GLSL 1.30\n" "GPU: Does your video card support OpenGL 3.0?\n" "GPU: Your driver supports GLSL %s", (const char*)glGetString(GL_SHADING_LANGUAGE_VERSION)); bSuccess = false; } else if (GLExtensions::Version() == 300) { g_ogl_config.eSupportedGLSLVersion = GLSL_130; g_ogl_config.bSupportsEarlyFragmentTests = false; // layout keyword is only supported on glsl150+ g_ogl_config.bSupportsConservativeDepth = false; // layout keyword is only supported on glsl150+ g_Config.backend_info.bSupportsGeometryShaders = false; // geometry shaders are only supported on glsl150+ } else if (GLExtensions::Version() == 310) { g_ogl_config.eSupportedGLSLVersion = GLSL_140; g_ogl_config.bSupportsEarlyFragmentTests = false; // layout keyword is only supported on glsl150+ g_ogl_config.bSupportsConservativeDepth = false; // layout keyword is only supported on glsl150+ g_Config.backend_info.bSupportsGeometryShaders = false; // geometry shaders are only supported on glsl150+ } else if (GLExtensions::Version() == 320) { g_ogl_config.eSupportedGLSLVersion = GLSL_150; } else if (GLExtensions::Version() == 330) { g_ogl_config.eSupportedGLSLVersion = GLSL_330; } else { g_ogl_config.eSupportedGLSLVersion = GLSL_400; g_Config.backend_info.bSupportsSSAA = true; } // Desktop OpenGL can't have the Android Extension Pack g_ogl_config.bSupportsAEP = false; } // Either method can do early-z tests. See PixelShaderGen for details. g_Config.backend_info.bSupportsEarlyZ = g_ogl_config.bSupportsEarlyFragmentTests || g_ogl_config.bSupportsConservativeDepth; if (g_ogl_config.bSupportsDebug) { if (GLExtensions::Supports("GL_KHR_debug")) { glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, true); glDebugMessageCallback(ErrorCallback, nullptr); } else { glDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, true); glDebugMessageCallbackARB(ErrorCallback, nullptr); } if (LogManager::GetInstance()->IsEnabled(LogTypes::HOST_GPU, LogTypes::LERROR)) glEnable(GL_DEBUG_OUTPUT); else glDisable(GL_DEBUG_OUTPUT); } int samples; glGetIntegerv(GL_SAMPLES, &samples); if (samples > 1) { // MSAA on default framebuffer isn't working because of glBlitFramebuffer. // It also isn't useful as we don't render anything to the default framebuffer. // We also try to get a non-msaa fb, so this only happens when forced by the driver. PanicAlert("MSAA on default framebuffer isn't supported.\n" "Please avoid forcing Dolphin to use MSAA by the driver.\n" "%d samples on default framebuffer found.", samples); bSuccess = false; } if (!bSuccess) { // Not all needed extensions are supported, so we have to stop here. // Else some of the next calls might crash. return; } glGetIntegerv(GL_MAX_SAMPLES, &g_ogl_config.max_samples); if (g_ogl_config.max_samples < 1 || !g_ogl_config.bSupportsMSAA) g_ogl_config.max_samples = 1; g_Config.VerifyValidity(); UpdateActiveConfig(); OSD::AddMessage(StringFromFormat("Video Info: %s, %s, %s", g_ogl_config.gl_vendor, g_ogl_config.gl_renderer, g_ogl_config.gl_version), 5000); WARN_LOG(VIDEO, "Missing OGL Extensions: %s%s%s%s%s%s%s%s%s%s%s%s%s%s", g_ActiveConfig.backend_info.bSupportsDualSourceBlend ? "" : "DualSourceBlend ", g_ActiveConfig.backend_info.bSupportsPrimitiveRestart ? "" : "PrimitiveRestart ", g_ActiveConfig.backend_info.bSupportsEarlyZ ? "" : "EarlyZ ", g_ogl_config.bSupportsGLPinnedMemory ? "" : "PinnedMemory ", g_ogl_config.bSupportsGLSLCache ? "" : "ShaderCache ", g_ogl_config.bSupportsGLBaseVertex ? "" : "BaseVertex ", g_ogl_config.bSupportsGLBufferStorage ? "" : "BufferStorage ", g_ogl_config.bSupportsGLSync ? "" : "Sync ", g_ogl_config.bSupportsMSAA ? "" : "MSAA ", g_ActiveConfig.backend_info.bSupportsSSAA ? "" : "SSAA ", g_ActiveConfig.backend_info.bSupportsGSInstancing ? "" : "GSInstancing ", g_ActiveConfig.backend_info.bSupportsClipControl ? "" : "ClipControl ", g_ogl_config.bSupportsCopySubImage ? "" : "CopyImageSubData ", g_ActiveConfig.backend_info.bSupportsDepthClamp ? "" : "DepthClamp "); s_last_multisamples = g_ActiveConfig.iMultisamples; s_MSAASamples = s_last_multisamples; s_last_stereo_mode = g_ActiveConfig.iStereoMode > 0; s_last_xfb_mode = g_ActiveConfig.bUseRealXFB; // Decide framebuffer size s_backbuffer_width = (int)GLInterface->GetBackBufferWidth(); s_backbuffer_height = (int)GLInterface->GetBackBufferHeight(); // Handle VSync on/off s_vsync = g_ActiveConfig.IsVSync(); if (!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VSYNC)) GLInterface->SwapInterval(s_vsync); // TODO: Move these somewhere else? FramebufferManagerBase::SetLastXfbWidth(MAX_XFB_WIDTH); FramebufferManagerBase::SetLastXfbHeight(MAX_XFB_HEIGHT); UpdateDrawRectangle(); s_last_efb_scale = g_ActiveConfig.iEFBScale; CalculateTargetSize(); PixelShaderManager::SetEfbScaleChanged(); // Because of the fixed framebuffer size we need to disable the resolution // options while running g_Config.bRunning = true; glStencilFunc(GL_ALWAYS, 0, 0); glBlendFunc(GL_ONE, GL_ONE); glViewport(0, 0, GetTargetWidth(), GetTargetHeight()); // Reset The Current Viewport if (g_ActiveConfig.backend_info.bSupportsClipControl) glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClearDepthf(1.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); if (g_ActiveConfig.backend_info.bSupportsDepthClamp) { glEnable(GL_CLIP_DISTANCE0); glEnable(GL_CLIP_DISTANCE1); glEnable(GL_DEPTH_CLAMP); } glPixelStorei(GL_UNPACK_ALIGNMENT, 4); // 4-byte pixel alignment glDisable(GL_STENCIL_TEST); glEnable(GL_SCISSOR_TEST); glScissor(0, 0, GetTargetWidth(), GetTargetHeight()); glBlendColor(0, 0, 0, 0.5f); glClearDepthf(1.0f); if (g_ActiveConfig.backend_info.bSupportsPrimitiveRestart) { if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3) { glEnable(GL_PRIMITIVE_RESTART_FIXED_INDEX); } else { if (GLExtensions::Version() >= 310) { glEnable(GL_PRIMITIVE_RESTART); glPrimitiveRestartIndex(65535); } else { glEnableClientState(GL_PRIMITIVE_RESTART_NV); glPrimitiveRestartIndexNV(65535); } } } IndexGenerator::Init(); UpdateActiveConfig(); ClearEFBCache(); } Renderer::~Renderer() { FlushFrameDump(); FinishFrameData(); DestroyFrameDumpResources(); } void Renderer::Shutdown() { g_framebuffer_manager.reset(); g_Config.bRunning = false; UpdateActiveConfig(); s_raster_font.reset(); m_post_processor.reset(); OpenGL_DeleteAttributelessVAO(); } void Renderer::Init() { // Initialize the FramebufferManager g_framebuffer_manager = std::make_unique(s_target_width, s_target_height, s_MSAASamples); m_post_processor = std::make_unique(); s_raster_font = std::make_unique(); OpenGL_CreateAttributelessVAO(); } void Renderer::RenderText(const std::string& text, int left, int top, u32 color) { const int nBackbufferWidth = (int)GLInterface->GetBackBufferWidth(); const int nBackbufferHeight = (int)GLInterface->GetBackBufferHeight(); s_raster_font->printMultilineText(text, left * 2.0f / (float)nBackbufferWidth - 1, 1 - top * 2.0f / (float)nBackbufferHeight, 0, nBackbufferWidth, nBackbufferHeight, color); } TargetRectangle Renderer::ConvertEFBRectangle(const EFBRectangle& rc) { TargetRectangle result; result.left = EFBToScaledX(rc.left); result.top = EFBToScaledY(EFB_HEIGHT - rc.top); result.right = EFBToScaledX(rc.right); result.bottom = EFBToScaledY(EFB_HEIGHT - rc.bottom); return result; } // Function: This function handles the OpenGL glScissor() function // ---------------------------- // Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg() // case 0x52 > SetScissorRect() // ---------------------------- // bpmem.scissorTL.x, y = 342x342 // bpmem.scissorBR.x, y = 981x821 // Renderer::GetTargetHeight() = the fixed ini file setting // donkopunchstania - it appears scissorBR is the bottom right pixel inside the scissor box // therefore the width and height are (scissorBR + 1) - scissorTL void Renderer::SetScissorRect(const EFBRectangle& rc) { TargetRectangle trc = ConvertEFBRectangle(rc); glScissor(trc.left, trc.bottom, trc.GetWidth(), trc.GetHeight()); } void Renderer::SetColorMask() { // Only enable alpha channel if it's supported by the current EFB format GLenum ColorMask = GL_FALSE, AlphaMask = GL_FALSE; if (bpmem.alpha_test.TestResult() != AlphaTest::FAIL) { if (bpmem.blendmode.colorupdate) ColorMask = GL_TRUE; if (bpmem.blendmode.alphaupdate && (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24)) AlphaMask = GL_TRUE; } glColorMask(ColorMask, ColorMask, ColorMask, AlphaMask); } void ClearEFBCache() { if (!s_efbCacheIsCleared) { s_efbCacheIsCleared = true; memset(s_efbCacheValid, 0, sizeof(s_efbCacheValid)); } } void Renderer::UpdateEFBCache(EFBAccessType type, u32 cacheRectIdx, const EFBRectangle& efbPixelRc, const TargetRectangle& targetPixelRc, const void* data) { u32 cacheType = (type == PEEK_Z ? 0 : 1); if (!s_efbCache[cacheType][cacheRectIdx].size()) s_efbCache[cacheType][cacheRectIdx].resize(EFB_CACHE_RECT_SIZE * EFB_CACHE_RECT_SIZE); u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left; u32 efbPixelRcHeight = efbPixelRc.bottom - efbPixelRc.top; u32 efbPixelRcWidth = efbPixelRc.right - efbPixelRc.left; for (u32 yCache = 0; yCache < efbPixelRcHeight; ++yCache) { u32 yEFB = efbPixelRc.top + yCache; u32 yPixel = (EFBToScaledY(EFB_HEIGHT - yEFB) + EFBToScaledY(EFB_HEIGHT - yEFB - 1)) / 2; u32 yData = yPixel - targetPixelRc.bottom; for (u32 xCache = 0; xCache < efbPixelRcWidth; ++xCache) { u32 xEFB = efbPixelRc.left + xCache; u32 xPixel = (EFBToScaledX(xEFB) + EFBToScaledX(xEFB + 1)) / 2; u32 xData = xPixel - targetPixelRc.left; u32 value; if (type == PEEK_Z) { float* ptr = (float*)data; value = MathUtil::Clamp((u32)(ptr[yData * targetPixelRcWidth + xData] * 16777216.0f), 0, 0xFFFFFF); } else { u32* ptr = (u32*)data; value = ptr[yData * targetPixelRcWidth + xData]; } s_efbCache[cacheType][cacheRectIdx][yCache * EFB_CACHE_RECT_SIZE + xCache] = value; } } s_efbCacheValid[cacheType][cacheRectIdx] = true; s_efbCacheIsCleared = false; } // This function allows the CPU to directly access the EFB. // There are EFB peeks (which will read the color or depth of a pixel) // and EFB pokes (which will change the color or depth of a pixel). // // The behavior of EFB peeks can only be modified by: // - GX_PokeAlphaRead // The behavior of EFB pokes can be modified by: // - GX_PokeAlphaMode (TODO) // - GX_PokeAlphaUpdate (TODO) // - GX_PokeBlendMode (TODO) // - GX_PokeColorUpdate (TODO) // - GX_PokeDither (TODO) // - GX_PokeDstAlpha (TODO) // - GX_PokeZMode (TODO) u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) { u32 cacheRectIdx = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_WIDTH + (x / EFB_CACHE_RECT_SIZE); EFBRectangle efbPixelRc; if (type == PEEK_COLOR || type == PEEK_Z) { // Get the rectangular target region containing the EFB pixel efbPixelRc.left = (x / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE; efbPixelRc.top = (y / EFB_CACHE_RECT_SIZE) * EFB_CACHE_RECT_SIZE; efbPixelRc.right = std::min(efbPixelRc.left + EFB_CACHE_RECT_SIZE, (u32)EFB_WIDTH); efbPixelRc.bottom = std::min(efbPixelRc.top + EFB_CACHE_RECT_SIZE, (u32)EFB_HEIGHT); } else { efbPixelRc.left = x; efbPixelRc.top = y; efbPixelRc.right = x + 1; efbPixelRc.bottom = y + 1; } TargetRectangle targetPixelRc = ConvertEFBRectangle(efbPixelRc); u32 targetPixelRcWidth = targetPixelRc.right - targetPixelRc.left; u32 targetPixelRcHeight = targetPixelRc.top - targetPixelRc.bottom; // TODO (FIX) : currently, AA path is broken/offset and doesn't return the correct pixel switch (type) { case PEEK_Z: { if (!s_efbCacheValid[0][cacheRectIdx]) { if (s_MSAASamples > 1) { ResetAPIState(); // Resolve our rectangle. FramebufferManager::GetEFBDepthTexture(efbPixelRc); glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer()); RestoreAPIState(); } std::unique_ptr depthMap(new float[targetPixelRcWidth * targetPixelRcHeight]); glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight, GL_DEPTH_COMPONENT, GL_FLOAT, depthMap.get()); UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, depthMap.get()); } u32 xRect = x % EFB_CACHE_RECT_SIZE; u32 yRect = y % EFB_CACHE_RECT_SIZE; u32 z = s_efbCache[0][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect]; // if Z is in 16 bit format you must return a 16 bit integer if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) z = z >> 8; return z; } case PEEK_COLOR: // GXPeekARGB { // Although it may sound strange, this really is A8R8G8B8 and not RGBA or 24-bit... // Tested in Killer 7, the first 8bits represent the alpha value which is used to // determine if we're aiming at an enemy (0x80 / 0x88) or not (0x70) // Wind Waker is also using it for the pictograph to determine the color of each pixel if (!s_efbCacheValid[1][cacheRectIdx]) { if (s_MSAASamples > 1) { ResetAPIState(); // Resolve our rectangle. FramebufferManager::GetEFBColorTexture(efbPixelRc); glBindFramebuffer(GL_READ_FRAMEBUFFER, FramebufferManager::GetResolvedFramebuffer()); RestoreAPIState(); } std::unique_ptr colorMap(new u32[targetPixelRcWidth * targetPixelRcHeight]); if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGLES3) // XXX: Swap colours glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight, GL_RGBA, GL_UNSIGNED_BYTE, colorMap.get()); else glReadPixels(targetPixelRc.left, targetPixelRc.bottom, targetPixelRcWidth, targetPixelRcHeight, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, colorMap.get()); UpdateEFBCache(type, cacheRectIdx, efbPixelRc, targetPixelRc, colorMap.get()); } u32 xRect = x % EFB_CACHE_RECT_SIZE; u32 yRect = y % EFB_CACHE_RECT_SIZE; u32 color = s_efbCache[1][cacheRectIdx][yRect * EFB_CACHE_RECT_SIZE + xRect]; // check what to do with the alpha channel (GX_PokeAlphaRead) PixelEngine::UPEAlphaReadReg alpha_read_mode = PixelEngine::GetAlphaReadMode(); if (bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24) { color = RGBA8ToRGBA6ToRGBA8(color); } else if (bpmem.zcontrol.pixel_format == PEControl::RGB565_Z16) { color = RGBA8ToRGB565ToRGBA8(color); } if (bpmem.zcontrol.pixel_format != PEControl::RGBA6_Z24) { color |= 0xFF000000; } if (alpha_read_mode.ReadMode == 2) { // GX_READ_NONE return color; } else if (alpha_read_mode.ReadMode == 1) { // GX_READ_FF return (color | 0xFF000000); } else /*if(alpha_read_mode.ReadMode == 0)*/ { // GX_READ_00 return (color & 0x00FFFFFF); } } default: break; } return 0; } void Renderer::PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) { FramebufferManager::PokeEFB(type, points, num_points); } u16 Renderer::BBoxRead(int index) { int swapped_index = index; if (index >= 2) swapped_index ^= 1; // swap 2 and 3 for top/bottom // Here we get the min/max value of the truncated position of the upscaled and swapped // framebuffer. // So we have to correct them to the unscaled EFB sizes. int value = BoundingBox::Get(swapped_index); if (index < 2) { // left/right value = value * EFB_WIDTH / s_target_width; } else { // up/down -- we have to swap up and down value = value * EFB_HEIGHT / s_target_height; value = EFB_HEIGHT - value - 1; } if (index & 1) value++; // fix max values to describe the outer border return value; } void Renderer::BBoxWrite(int index, u16 _value) { int value = _value; // u16 isn't enough to multiply by the efb width if (index & 1) value--; if (index < 2) { value = value * s_target_width / EFB_WIDTH; } else { index ^= 1; // swap 2 and 3 for top/bottom value = EFB_HEIGHT - value - 1; value = value * s_target_height / EFB_HEIGHT; } BoundingBox::Set(index, value); } void Renderer::SetViewport() { // reversed gxsetviewport(xorig, yorig, width, height, nearz, farz) // [0] = width/2 // [1] = height/2 // [2] = 16777215 * (farz - nearz) // [3] = xorig + width/2 + 342 // [4] = yorig + height/2 + 342 // [5] = 16777215 * farz int scissorXOff = bpmem.scissorOffset.x * 2; int scissorYOff = bpmem.scissorOffset.y * 2; // TODO: ceil, floor or just cast to int? float X = EFBToScaledXf(xfmem.viewport.xOrig - xfmem.viewport.wd - (float)scissorXOff); float Y = EFBToScaledYf((float)EFB_HEIGHT - xfmem.viewport.yOrig + xfmem.viewport.ht + (float)scissorYOff); float Width = EFBToScaledXf(2.0f * xfmem.viewport.wd); float Height = EFBToScaledYf(-2.0f * xfmem.viewport.ht); float GLNear = MathUtil::Clamp( xfmem.viewport.farZ - MathUtil::Clamp(xfmem.viewport.zRange, -16777216.0f, 16777216.0f), 0.0f, 16777215.0f) / 16777216.0f; float GLFar = MathUtil::Clamp(xfmem.viewport.farZ, 0.0f, 16777215.0f) / 16777216.0f; if (Width < 0) { X += Width; Width *= -1; } if (Height < 0) { Y += Height; Height *= -1; } // Update the view port if (g_ogl_config.bSupportViewportFloat) { glViewportIndexedf(0, X, Y, Width, Height); } else { auto iceilf = [](float f) { return static_cast(ceilf(f)); }; glViewport(iceilf(X), iceilf(Y), iceilf(Width), iceilf(Height)); } // Set the reversed depth range. If we do depth clipping and depth range in the // vertex shader we only need to ensure depth values don't exceed the maximum // value supported by the console GPU. If not, we simply clamp the near/far values // themselves to the maximum value as done above. if (g_ActiveConfig.backend_info.bSupportsDepthClamp) { if (xfmem.viewport.zRange < 0.0f) glDepthRangef(0.0f, GX_MAX_DEPTH); else glDepthRangef(GX_MAX_DEPTH, 0.0f); } else { glDepthRangef(GLFar, GLNear); } } void Renderer::ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable, u32 color, u32 z) { ResetAPIState(); // color GLboolean const color_mask = colorEnable ? GL_TRUE : GL_FALSE, alpha_mask = alphaEnable ? GL_TRUE : GL_FALSE; glColorMask(color_mask, color_mask, color_mask, alpha_mask); glClearColor(float((color >> 16) & 0xFF) / 255.0f, float((color >> 8) & 0xFF) / 255.0f, float((color >> 0) & 0xFF) / 255.0f, float((color >> 24) & 0xFF) / 255.0f); // depth glDepthMask(zEnable ? GL_TRUE : GL_FALSE); glClearDepthf(float(z & 0xFFFFFF) / 16777216.0f); // Update rect for clearing the picture glEnable(GL_SCISSOR_TEST); TargetRectangle const targetRc = ConvertEFBRectangle(rc); glScissor(targetRc.left, targetRc.bottom, targetRc.GetWidth(), targetRc.GetHeight()); // glColorMask/glDepthMask/glScissor affect glClear (glViewport does not) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); RestoreAPIState(); ClearEFBCache(); } void Renderer::BlitScreen(TargetRectangle src, TargetRectangle dst, GLuint src_texture, int src_width, int src_height) { if (g_ActiveConfig.iStereoMode == STEREO_SBS || g_ActiveConfig.iStereoMode == STEREO_TAB) { TargetRectangle leftRc, rightRc; // Top-and-Bottom mode needs to compensate for inverted vertical screen coordinates. if (g_ActiveConfig.iStereoMode == STEREO_TAB) ConvertStereoRectangle(dst, rightRc, leftRc); else ConvertStereoRectangle(dst, leftRc, rightRc); m_post_processor->BlitFromTexture(src, leftRc, src_texture, src_width, src_height, 0); m_post_processor->BlitFromTexture(src, rightRc, src_texture, src_width, src_height, 1); } else { m_post_processor->BlitFromTexture(src, dst, src_texture, src_width, src_height); } } void Renderer::ReinterpretPixelData(unsigned int convtype) { if (convtype == 0 || convtype == 2) { FramebufferManager::ReinterpretPixelData(convtype); } else { ERROR_LOG(VIDEO, "Trying to reinterpret pixel data with unsupported conversion type %d", convtype); } } void Renderer::SetBlendMode(bool forceUpdate) { // Our render target always uses an alpha channel, so we need to override the blend functions to // assume a destination alpha of 1 if the render target isn't supposed to have an alpha channel // Example: D3DBLEND_DESTALPHA needs to be D3DBLEND_ONE since the result without an alpha channel // is assumed to always be 1. bool target_has_alpha = bpmem.zcontrol.pixel_format == PEControl::RGBA6_Z24; bool useDstAlpha = bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate && target_has_alpha; bool useDualSource = g_ActiveConfig.backend_info.bSupportsDualSourceBlend; // Only use dual-source blending when required on drivers that don't support it very well. if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DUAL_SOURCE_BLENDING) && !useDstAlpha) useDualSource = false; const GLenum glSrcFactors[8] = { GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR, (useDualSource) ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA, (useDualSource) ? GL_ONE_MINUS_SRC1_ALPHA : (GLenum)GL_ONE_MINUS_SRC_ALPHA, (target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE, (target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO}; const GLenum glDestFactors[8] = { GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, (useDualSource) ? GL_SRC1_ALPHA : (GLenum)GL_SRC_ALPHA, (useDualSource) ? GL_ONE_MINUS_SRC1_ALPHA : (GLenum)GL_ONE_MINUS_SRC_ALPHA, (target_has_alpha) ? GL_DST_ALPHA : (GLenum)GL_ONE, (target_has_alpha) ? GL_ONE_MINUS_DST_ALPHA : (GLenum)GL_ZERO}; // blend mode bit mask // 0 - blend enable // 1 - dst alpha enabled // 2 - reverse subtract enable (else add) // 3-5 - srcRGB function // 6-8 - dstRGB function u32 newval = useDstAlpha << 1; newval |= bpmem.blendmode.subtract << 2; if (bpmem.blendmode.subtract) { newval |= 0x0049; // enable blending src 1 dst 1 } else if (bpmem.blendmode.blendenable) { newval |= 1; // enable blending newval |= bpmem.blendmode.srcfactor << 3; newval |= bpmem.blendmode.dstfactor << 6; } u32 changes = forceUpdate ? 0xFFFFFFFF : newval ^ s_blendMode; if (changes & 1) { // blend enable change (newval & 1) ? glEnable(GL_BLEND) : glDisable(GL_BLEND); } if (changes & 4) { // subtract enable change GLenum equation = newval & 4 ? GL_FUNC_REVERSE_SUBTRACT : GL_FUNC_ADD; GLenum equationAlpha = useDstAlpha ? GL_FUNC_ADD : equation; glBlendEquationSeparate(equation, equationAlpha); } if (changes & 0x1FA) { u32 srcidx = (newval >> 3) & 7; u32 dstidx = (newval >> 6) & 7; GLenum srcFactor = glSrcFactors[srcidx]; GLenum dstFactor = glDestFactors[dstidx]; // adjust alpha factors if (useDstAlpha) { srcidx = BlendMode::ONE; dstidx = BlendMode::ZERO; } else { // we can't use GL_DST_COLOR or GL_ONE_MINUS_DST_COLOR for source in alpha channel so use // their alpha equivalent instead if (srcidx == BlendMode::DSTCLR) srcidx = BlendMode::DSTALPHA; else if (srcidx == BlendMode::INVDSTCLR) srcidx = BlendMode::INVDSTALPHA; // we can't use GL_SRC_COLOR or GL_ONE_MINUS_SRC_COLOR for destination in alpha channel so use // their alpha equivalent instead if (dstidx == BlendMode::SRCCLR) dstidx = BlendMode::SRCALPHA; else if (dstidx == BlendMode::INVSRCCLR) dstidx = BlendMode::INVSRCALPHA; } GLenum srcFactorAlpha = glSrcFactors[srcidx]; GLenum dstFactorAlpha = glDestFactors[dstidx]; // blend RGB change glBlendFuncSeparate(srcFactor, dstFactor, srcFactorAlpha, dstFactorAlpha); } s_blendMode = newval; } // This function has the final picture. We adjust the aspect ratio here. void Renderer::SwapImpl(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, u64 ticks, float Gamma) { if (g_ogl_config.bSupportsDebug) { if (LogManager::GetInstance()->IsEnabled(LogTypes::HOST_GPU, LogTypes::LERROR)) glEnable(GL_DEBUG_OUTPUT); else glDisable(GL_DEBUG_OUTPUT); } if ((!XFBWrited && !g_ActiveConfig.RealXFBEnabled()) || !fbWidth || !fbHeight) { Core::Callback_VideoCopiedToXFB(false); return; } u32 xfbCount = 0; const XFBSourceBase* const* xfbSourceList = FramebufferManager::GetXFBSource(xfbAddr, fbStride, fbHeight, &xfbCount); if (g_ActiveConfig.VirtualXFBEnabled() && (!xfbSourceList || xfbCount == 0)) { Core::Callback_VideoCopiedToXFB(false); return; } ResetAPIState(); UpdateDrawRectangle(); TargetRectangle flipped_trc = GetTargetRectangle(); // Flip top and bottom for some reason; TODO: Fix the code to suck less? std::swap(flipped_trc.top, flipped_trc.bottom); // Copy the framebuffer to screen. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); DrawFrame(flipped_trc, rc, xfbAddr, xfbSourceList, xfbCount, fbWidth, fbStride, fbHeight); // The FlushFrameDump call here is necessary even after frame dumping is stopped. // If left out, screenshots are "one frame" behind, as an extra frame is dumped and buffered. FlushFrameDump(); if (IsFrameDumping()) { // Currently, we only use the off-screen buffer as a frame dump source if full-resolution // frame dumping is enabled, saving the need for an extra copy. In the future, this could // be extended to be used for surfaceless contexts as well. bool use_offscreen_buffer = g_ActiveConfig.bInternalResolutionFrameDumps; if (use_offscreen_buffer) { // DumpFrameUsingFBO resets GL_FRAMEBUFFER, so change back to the window for drawing OSD. DumpFrameUsingFBO(rc, xfbAddr, xfbSourceList, xfbCount, fbWidth, fbStride, fbHeight, ticks); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); } else { glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); DumpFrame(flipped_trc, ticks); } } // Finish up the current frame, print some stats SetWindowSize(fbStride, fbHeight); GLInterface->Update(); // just updates the render window position and the backbuffer size bool xfbchanged = s_last_xfb_mode != g_ActiveConfig.bUseRealXFB; if (FramebufferManagerBase::LastXfbWidth() != fbStride || FramebufferManagerBase::LastXfbHeight() != fbHeight) { xfbchanged = true; unsigned int const last_w = (fbStride < 1 || fbStride > MAX_XFB_WIDTH) ? MAX_XFB_WIDTH : fbStride; unsigned int const last_h = (fbHeight < 1 || fbHeight > MAX_XFB_HEIGHT) ? MAX_XFB_HEIGHT : fbHeight; FramebufferManagerBase::SetLastXfbWidth(last_w); FramebufferManagerBase::SetLastXfbHeight(last_h); } bool WindowResized = false; int W = (int)GLInterface->GetBackBufferWidth(); int H = (int)GLInterface->GetBackBufferHeight(); if (W != s_backbuffer_width || H != s_backbuffer_height || s_last_efb_scale != g_ActiveConfig.iEFBScale) { WindowResized = true; s_backbuffer_width = W; s_backbuffer_height = H; s_last_efb_scale = g_ActiveConfig.iEFBScale; } bool TargetSizeChanged = false; if (CalculateTargetSize()) { TargetSizeChanged = true; } if (TargetSizeChanged || xfbchanged || WindowResized || (s_last_multisamples != g_ActiveConfig.iMultisamples) || (s_last_stereo_mode != (g_ActiveConfig.iStereoMode > 0))) { s_last_xfb_mode = g_ActiveConfig.bUseRealXFB; UpdateDrawRectangle(); if (TargetSizeChanged || s_last_multisamples != g_ActiveConfig.iMultisamples || s_last_stereo_mode != (g_ActiveConfig.iStereoMode > 0)) { s_last_stereo_mode = g_ActiveConfig.iStereoMode > 0; s_last_multisamples = g_ActiveConfig.iMultisamples; s_MSAASamples = s_last_multisamples; if (s_MSAASamples > 1 && s_MSAASamples > g_ogl_config.max_samples) { s_MSAASamples = g_ogl_config.max_samples; OSD::AddMessage(StringFromFormat( "%d Anti Aliasing samples selected, but only %d supported by your GPU.", s_last_multisamples, g_ogl_config.max_samples), 10000); } g_framebuffer_manager.reset(); g_framebuffer_manager = std::make_unique(s_target_width, s_target_height, s_MSAASamples); PixelShaderManager::SetEfbScaleChanged(); } } // --------------------------------------------------------------------- glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Reset viewport for drawing text glViewport(0, 0, GLInterface->GetBackBufferWidth(), GLInterface->GetBackBufferHeight()); DrawDebugText(); // Do our OSD callbacks OSD::DoCallbacks(OSD::CallbackType::OnFrame); OSD::DrawMessages(); #ifdef ANDROID if (s_surface_needs_change.IsSet()) { GLInterface->UpdateHandle(s_new_surface_handle); GLInterface->UpdateSurface(); s_new_surface_handle = nullptr; s_surface_needs_change.Clear(); s_surface_changed.Set(); } #endif // Copy the rendered frame to the real window GLInterface->Swap(); // Clear framebuffer glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); if (s_vsync != g_ActiveConfig.IsVSync()) { s_vsync = g_ActiveConfig.IsVSync(); if (!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VSYNC)) GLInterface->SwapInterval(s_vsync); } // Clean out old stuff from caches. It's not worth it to clean out the shader caches. TextureCache::Cleanup(frameCount); // Render to the framebuffer. FramebufferManager::SetFramebuffer(0); RestoreAPIState(); g_Config.iSaveTargetId = 0; UpdateActiveConfig(); TextureCache::OnConfigChanged(g_ActiveConfig); // For testing zbuffer targets. // Renderer::SetZBufferRender(); // SaveTexture("tex.png", GL_TEXTURE_2D, s_FakeZTarget, // GetTargetWidth(), GetTargetHeight()); // Invalidate EFB cache ClearEFBCache(); } void Renderer::DrawFrame(const TargetRectangle& target_rc, const EFBRectangle& source_rc, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { if (g_ActiveConfig.bUseXFB) { if (g_ActiveConfig.bUseRealXFB) DrawRealXFB(target_rc, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); else DrawVirtualXFB(target_rc, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); } else { DrawEFB(target_rc, source_rc); } } void Renderer::DrawEFB(const TargetRectangle& target_rc, const EFBRectangle& source_rc) { TargetRectangle scaled_source_rc = ConvertEFBRectangle(source_rc); // for msaa mode, we must resolve the efb content to non-msaa GLuint tex = FramebufferManager::ResolveAndGetRenderTarget(source_rc); BlitScreen(scaled_source_rc, target_rc, tex, s_target_width, s_target_height); } void Renderer::DrawVirtualXFB(const TargetRectangle& target_rc, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { for (u32 i = 0; i < xfb_count; ++i) { const XFBSource* xfbSource = static_cast(xfb_sources[i]); TargetRectangle draw_rc; TargetRectangle source_rc; source_rc.left = xfbSource->sourceRc.left; source_rc.right = xfbSource->sourceRc.right; source_rc.top = xfbSource->sourceRc.top; source_rc.bottom = xfbSource->sourceRc.bottom; // use virtual xfb with offset int xfbHeight = xfbSource->srcHeight; int xfbWidth = xfbSource->srcWidth; int hOffset = (static_cast(xfbSource->srcAddr) - static_cast(xfb_addr)) / (static_cast(fb_stride) * 2); draw_rc.top = target_rc.top - hOffset * target_rc.GetHeight() / static_cast(fb_height); draw_rc.bottom = target_rc.top - (hOffset + xfbHeight) * target_rc.GetHeight() / static_cast(fb_height); draw_rc.left = target_rc.left + (target_rc.GetWidth() - xfbWidth * target_rc.GetWidth() / static_cast(fb_stride)) / 2; draw_rc.right = target_rc.left + (target_rc.GetWidth() + xfbWidth * target_rc.GetWidth() / static_cast(fb_stride)) / 2; // The following code disables auto stretch. Kept for reference. // scale draw area for a 1 to 1 pixel mapping with the draw target // float h_scale = static_cast(fb_width) / static_cast(target_rc.GetWidth()); // float v_scale = static_cast(fb_height) / static_cast(target_rc.GetHeight()); // draw_rc.top *= v_scale; // draw_rc.bottom *= v_scale; // draw_rc.left *= h_scale; // draw_rc.right *= h_scale; source_rc.right -= Renderer::EFBToScaledX(fb_stride - fb_width); BlitScreen(source_rc, draw_rc, xfbSource->texture, xfbSource->texWidth, xfbSource->texHeight); } } void Renderer::DrawRealXFB(const TargetRectangle& target_rc, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height) { for (u32 i = 0; i < xfb_count; ++i) { const XFBSource* xfbSource = static_cast(xfb_sources[i]); TargetRectangle source_rc; source_rc.left = xfbSource->sourceRc.left; source_rc.right = xfbSource->sourceRc.right; source_rc.top = xfbSource->sourceRc.top; source_rc.bottom = xfbSource->sourceRc.bottom; source_rc.right -= fb_stride - fb_width; // RealXFB doesn't call ConvertEFBRectangle for sourceRc, therefore it is still assuming a top- // left origin. The top offset is always zero (see FramebufferManagerBase::GetRealXFBSource). source_rc.top = source_rc.bottom; source_rc.bottom = 0; TargetRectangle draw_rc = target_rc; BlitScreen(source_rc, draw_rc, xfbSource->texture, xfbSource->texWidth, xfbSource->texHeight); } } void Renderer::FlushFrameDump() { if (!m_last_frame_exported) return; FinishFrameData(); glBindBuffer(GL_PIXEL_PACK_BUFFER, m_frame_dumping_pbo[0]); m_frame_pbo_is_mapped[0] = true; void* data = glMapBufferRange( GL_PIXEL_PACK_BUFFER, 0, m_last_frame_width[0] * m_last_frame_height[0] * 4, GL_MAP_READ_BIT); DumpFrameData(reinterpret_cast(data), m_last_frame_width[0], m_last_frame_height[0], m_last_frame_width[0] * 4, m_last_frame_state, true); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); m_last_frame_exported = false; } void Renderer::DumpFrame(const TargetRectangle& flipped_trc, u64 ticks) { if (!m_frame_dumping_pbo[0]) { glGenBuffers(2, m_frame_dumping_pbo.data()); glBindBuffer(GL_PIXEL_PACK_BUFFER, m_frame_dumping_pbo[0]); } else { FlushFrameDump(); std::swap(m_frame_dumping_pbo[0], m_frame_dumping_pbo[1]); std::swap(m_frame_pbo_is_mapped[0], m_frame_pbo_is_mapped[1]); std::swap(m_last_frame_width[0], m_last_frame_width[1]); std::swap(m_last_frame_height[0], m_last_frame_height[1]); glBindBuffer(GL_PIXEL_PACK_BUFFER, m_frame_dumping_pbo[0]); if (m_frame_pbo_is_mapped[0]) glUnmapBuffer(GL_PIXEL_PACK_BUFFER); m_frame_pbo_is_mapped[0] = false; } if (flipped_trc.GetWidth() != m_last_frame_width[0] || flipped_trc.GetHeight() != m_last_frame_height[0]) { m_last_frame_width[0] = flipped_trc.GetWidth(); m_last_frame_height[0] = flipped_trc.GetHeight(); glBufferData(GL_PIXEL_PACK_BUFFER, m_last_frame_width[0] * m_last_frame_height[0] * 4, nullptr, GL_STREAM_READ); } m_last_frame_state = AVIDump::FetchState(ticks); m_last_frame_exported = true; glPixelStorei(GL_PACK_ALIGNMENT, 1); glReadPixels(flipped_trc.left, flipped_trc.bottom, m_last_frame_width[0], m_last_frame_height[0], GL_RGBA, GL_UNSIGNED_BYTE, 0); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); } void Renderer::DumpFrameUsingFBO(const EFBRectangle& source_rc, u32 xfb_addr, const XFBSourceBase* const* xfb_sources, u32 xfb_count, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks) { // This needs to be converted to the GL bottom-up window coordinate system. TargetRectangle render_rc = CalculateFrameDumpDrawRectangle(); std::swap(render_rc.top, render_rc.bottom); // Ensure the render texture meets the size requirements of the draw area. u32 render_width = static_cast(render_rc.GetWidth()); u32 render_height = static_cast(render_rc.GetHeight()); PrepareFrameDumpRenderTexture(render_width, render_height); // Ensure the alpha channel of the render texture is blank. The frame dump backend expects // that the alpha is set to 1.0 for all pixels. FramebufferManager::SetFramebuffer(m_frame_dump_render_framebuffer); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); // Render the frame into the frame dump render texture. Disable alpha writes in case the // post-processing shader writes a non-1.0 value. glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_FALSE); DrawFrame(render_rc, source_rc, xfb_addr, xfb_sources, xfb_count, fb_width, fb_stride, fb_height); // Copy frame to output buffer. This assumes that GL_FRAMEBUFFER has been set. DumpFrame(render_rc, ticks); // Restore state after drawing. This isn't the game state, it's the state set by ResetAPIState. glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); FramebufferManager::SetFramebuffer(0); } void Renderer::PrepareFrameDumpRenderTexture(u32 width, u32 height) { // Ensure framebuffer exists (we lazily allocate it in case frame dumping isn't used). // Or, resize texture if it isn't large enough to accommodate the current frame. if (m_frame_dump_render_texture != 0 && m_frame_dump_render_framebuffer != 0 && m_frame_dump_render_texture_width >= width && m_frame_dump_render_texture_height >= height) { return; } // Recreate texture objects. if (m_frame_dump_render_texture != 0) glDeleteTextures(1, &m_frame_dump_render_texture); if (m_frame_dump_render_framebuffer != 0) glDeleteFramebuffers(1, &m_frame_dump_render_framebuffer); glGenTextures(1, &m_frame_dump_render_texture); glActiveTexture(GL_TEXTURE9); glBindTexture(GL_TEXTURE_2D, m_frame_dump_render_texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); glGenFramebuffers(1, &m_frame_dump_render_framebuffer); FramebufferManager::SetFramebuffer(m_frame_dump_render_framebuffer); FramebufferManager::FramebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_frame_dump_render_texture, 0); m_frame_dump_render_texture_width = width; m_frame_dump_render_texture_height = height; TextureCache::SetStage(); } void Renderer::DestroyFrameDumpResources() { if (m_frame_dump_render_framebuffer) glDeleteFramebuffers(1, &m_frame_dump_render_framebuffer); if (m_frame_dump_render_texture) glDeleteTextures(1, &m_frame_dump_render_texture); if (m_frame_dumping_pbo[0]) glDeleteBuffers(2, m_frame_dumping_pbo.data()); } // ALWAYS call RestoreAPIState for each ResetAPIState call you're doing void Renderer::ResetAPIState() { // Gets us to a reasonably sane state where it's possible to do things like // image copies with textured quads, etc. glDisable(GL_SCISSOR_TEST); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); if (GLInterface->GetMode() == GLInterfaceMode::MODE_OPENGL) glDisable(GL_COLOR_LOGIC_OP); if (g_ActiveConfig.backend_info.bSupportsDepthClamp) { glDisable(GL_CLIP_DISTANCE0); glDisable(GL_CLIP_DISTANCE1); } glDepthMask(GL_FALSE); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); } void Renderer::RestoreAPIState() { // Gets us back into a more game-like state. glEnable(GL_SCISSOR_TEST); if (g_ActiveConfig.backend_info.bSupportsDepthClamp) { glEnable(GL_CLIP_DISTANCE0); glEnable(GL_CLIP_DISTANCE1); } SetGenerationMode(); BPFunctions::SetScissor(); SetColorMask(); SetDepthMode(); SetBlendMode(true); SetLogicOpMode(); SetViewport(); const VertexManager* const vm = static_cast(g_vertex_manager.get()); glBindBuffer(GL_ARRAY_BUFFER, vm->m_vertex_buffers); if (vm->m_last_vao) glBindVertexArray(vm->m_last_vao); TextureCache::SetStage(); } void Renderer::SetGenerationMode() { // none, ccw, cw, ccw if (bpmem.genMode.cullmode > 0) { // TODO: GX_CULL_ALL not supported, yet! glEnable(GL_CULL_FACE); glFrontFace(bpmem.genMode.cullmode == 2 ? GL_CCW : GL_CW); } else { glDisable(GL_CULL_FACE); } } void Renderer::SetDepthMode() { const GLenum glCmpFuncs[8] = {GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, GL_ALWAYS}; if (bpmem.zmode.testenable) { glEnable(GL_DEPTH_TEST); glDepthMask(bpmem.zmode.updateenable ? GL_TRUE : GL_FALSE); glDepthFunc(glCmpFuncs[bpmem.zmode.func]); } else { // if the test is disabled write is disabled too // TODO: When PE performance metrics are being emulated via occlusion queries, we should // (probably?) enable depth test with depth function ALWAYS here glDisable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); } } void Renderer::SetLogicOpMode() { if (GLInterface->GetMode() != GLInterfaceMode::MODE_OPENGL) return; // Logic ops aren't available in GLES3/GLES2 const GLenum glLogicOpCodes[16] = { GL_CLEAR, GL_AND, GL_AND_REVERSE, GL_COPY, GL_AND_INVERTED, GL_NOOP, GL_XOR, GL_OR, GL_NOR, GL_EQUIV, GL_INVERT, GL_OR_REVERSE, GL_COPY_INVERTED, GL_OR_INVERTED, GL_NAND, GL_SET}; if (bpmem.blendmode.logicopenable && !bpmem.blendmode.blendenable) { glEnable(GL_COLOR_LOGIC_OP); glLogicOp(glLogicOpCodes[bpmem.blendmode.logicmode]); } else { glDisable(GL_COLOR_LOGIC_OP); } } void Renderer::SetDitherMode() { if (bpmem.blendmode.dither) glEnable(GL_DITHER); else glDisable(GL_DITHER); } void Renderer::SetSamplerState(int stage, int texindex, bool custom_tex) { auto const& tex = bpmem.tex[texindex]; auto const& tm0 = tex.texMode0[stage]; auto const& tm1 = tex.texMode1[stage]; g_sampler_cache->SetSamplerState((texindex * 4) + stage, tm0, tm1, custom_tex); } void Renderer::SetInterlacingMode() { // TODO } } namespace OGL { u32 Renderer::GetMaxTextureSize() { // Right now nvidia seems to do something very weird if we try to cache GL_MAX_TEXTURE_SIZE in // init. This is a workaround that lets // us keep the perf improvement that caching it gives us. if (s_max_texture_size == 0) glGetIntegerv(GL_MAX_TEXTURE_SIZE, &s_max_texture_size); return static_cast(s_max_texture_size); } void Renderer::ChangeSurface(void* new_surface_handle) { // Win32 polls the window size when redrawing, X11 runs an event loop in another thread. // This is only necessary for Android at this point, although handling resizes here // would be more efficient than polling. #ifdef ANDROID s_new_surface_handle = new_surface_handle; s_surface_needs_change.Set(); s_surface_changed.Wait(); #endif } }