// Copyright 2022 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "Common/FatFsUtil.h" #include #include #include #include #include #include #include #include // Does not compile if diskio.h is included first. // clang-format off #include "ff.h" #include "diskio.h" // clang-format on #include "Common/Align.h" #include "Common/FileUtil.h" #include "Common/IOFile.h" #include "Common/Logging/Log.h" #include "Common/ScopeGuard.h" #include "Common/StringUtil.h" enum : u32 { SECTOR_SIZE = 512, MAX_CLUSTER_SIZE = 64 * SECTOR_SIZE, }; static std::mutex s_fatfs_mutex; static Common::FatFsCallbacks* s_callbacks; namespace { int SDCardDiskRead(File::IOFile* image, u8 pdrv, u8* buff, u32 sector, unsigned int count) { const u64 offset = static_cast(sector) * SECTOR_SIZE; if (!image->Seek(offset, File::SeekOrigin::Begin)) { ERROR_LOG_FMT(COMMON, "SD image seek failed (offset={})", offset); return RES_ERROR; } const size_t size = static_cast(count) * SECTOR_SIZE; if (!image->ReadBytes(buff, size)) { ERROR_LOG_FMT(COMMON, "SD image read failed (offset={}, size={})", offset, size); return RES_ERROR; } return RES_OK; } int SDCardDiskWrite(File::IOFile* image, u8 pdrv, const u8* buff, u32 sector, unsigned int count) { const u64 offset = static_cast(sector) * SECTOR_SIZE; if (!image->Seek(offset, File::SeekOrigin::Begin)) { ERROR_LOG_FMT(COMMON, "SD image seek failed (offset={})", offset); return RES_ERROR; } const size_t size = static_cast(count) * SECTOR_SIZE; if (!image->WriteBytes(buff, size)) { ERROR_LOG_FMT(COMMON, "SD image write failed (offset={}, size={})", offset, size); return RES_ERROR; } return RES_OK; } int SDCardDiskIOCtl(File::IOFile* image, u8 pdrv, u8 cmd, void* buff) { switch (cmd) { case CTRL_SYNC: return RES_OK; case GET_SECTOR_COUNT: *reinterpret_cast(buff) = image->GetSize() / SECTOR_SIZE; return RES_OK; default: WARN_LOG_FMT(COMMON, "Unexpected SD image ioctl {}", cmd); return RES_OK; } } u32 GetSystemTimeFAT() { const std::time_t time = std::time(nullptr); std::tm tm; #ifdef _WIN32 localtime_s(&tm, &time); #else localtime_r(&time, &tm); #endif DWORD fattime = 0; fattime |= (tm.tm_year - 80) << 25; fattime |= (tm.tm_mon + 1) << 21; fattime |= tm.tm_mday << 16; fattime |= tm.tm_hour << 11; fattime |= tm.tm_min << 5; fattime |= std::min(tm.tm_sec, 59) >> 1; return fattime; } } // namespace namespace Common { FatFsCallbacks::FatFsCallbacks() = default; FatFsCallbacks::~FatFsCallbacks() = default; u8 FatFsCallbacks::DiskInitialize(u8 pdrv) { return 0; } u8 FatFsCallbacks::DiskStatus(u8 pdrv) { return 0; } u32 FatFsCallbacks::GetCurrentTimeFAT() { return GetSystemTimeFAT(); } } // namespace Common namespace { class SDCardFatFsCallbacks : public Common::FatFsCallbacks { public: int DiskRead(u8 pdrv, u8* buff, u32 sector, unsigned int count) override { return SDCardDiskRead(m_image, pdrv, buff, sector, count); } int DiskWrite(u8 pdrv, const u8* buff, u32 sector, unsigned int count) override { return SDCardDiskWrite(m_image, pdrv, buff, sector, count); } int DiskIOCtl(u8 pdrv, u8 cmd, void* buff) override { return SDCardDiskIOCtl(m_image, pdrv, cmd, buff); } u32 GetCurrentTimeFAT() override { if (m_deterministic) return 0; return GetSystemTimeFAT(); } File::IOFile* m_image; bool m_deterministic; }; } // namespace extern "C" DSTATUS disk_status(BYTE pdrv) { return static_cast(s_callbacks->DiskStatus(pdrv)); } extern "C" DSTATUS disk_initialize(BYTE pdrv) { return static_cast(s_callbacks->DiskInitialize(pdrv)); } extern "C" DRESULT disk_read(BYTE pdrv, BYTE* buff, LBA_t sector, UINT count) { return static_cast(s_callbacks->DiskRead(pdrv, buff, sector, count)); } extern "C" DRESULT disk_write(BYTE pdrv, const BYTE* buff, LBA_t sector, UINT count) { return static_cast(s_callbacks->DiskWrite(pdrv, buff, sector, count)); } extern "C" DRESULT disk_ioctl(BYTE pdrv, BYTE cmd, void* buff) { return static_cast(s_callbacks->DiskIOCtl(pdrv, cmd, buff)); } extern "C" DWORD get_fattime(void) { return static_cast(s_callbacks->GetCurrentTimeFAT()); } extern "C" void* ff_memalloc(UINT msize) { return std::malloc(msize); } extern "C" void ff_memfree(void* mblock) { return std::free(mblock); } extern "C" int ff_cre_syncobj(BYTE vol, FF_SYNC_t* sobj) { *sobj = new std::recursive_mutex(); return *sobj != nullptr; } extern "C" int ff_req_grant(FF_SYNC_t sobj) { std::recursive_mutex* m = reinterpret_cast(sobj); m->lock(); return 1; } extern "C" void ff_rel_grant(FF_SYNC_t sobj) { std::recursive_mutex* m = reinterpret_cast(sobj); m->unlock(); } extern "C" int ff_del_syncobj(FF_SYNC_t sobj) { delete reinterpret_cast(sobj); return 1; } static const char* FatFsErrorToString(FRESULT error_code) { // These are taken from the comment next to each value in ff.h switch (error_code) { case FR_OK: return "Succeeded"; case FR_DISK_ERR: return "A hard error occurred in the low level disk I/O layer"; case FR_INT_ERR: return "Assertion failed"; case FR_NOT_READY: return "The physical drive cannot work"; case FR_NO_FILE: return "Could not find the file"; case FR_NO_PATH: return "Could not find the path"; case FR_INVALID_NAME: return "The path name format is invalid"; case FR_DENIED: return "Access denied due to prohibited access or directory full"; case FR_EXIST: return "Access denied due to prohibited access"; case FR_INVALID_OBJECT: return "The file/directory object is invalid"; case FR_WRITE_PROTECTED: return "The physical drive is write protected"; case FR_INVALID_DRIVE: return "The logical drive number is invalid"; case FR_NOT_ENABLED: return "The volume has no work area"; case FR_NO_FILESYSTEM: return "There is no valid FAT volume"; case FR_MKFS_ABORTED: return "The f_mkfs() aborted due to any problem"; case FR_TIMEOUT: return "Could not get a grant to access the volume within defined period"; case FR_LOCKED: return "The operation is rejected according to the file sharing policy"; case FR_NOT_ENOUGH_CORE: return "LFN working buffer could not be allocated"; case FR_TOO_MANY_OPEN_FILES: return "Number of open files > FF_FS_LOCK"; case FR_INVALID_PARAMETER: return "Given parameter is invalid"; default: return "Unknown error"; } } namespace Common { static constexpr u64 MebibytesToBytes(u64 mebibytes) { return mebibytes * 1024 * 1024; } static constexpr u64 GibibytesToBytes(u64 gibibytes) { return gibibytes * 1024 * 1024 * 1024; } static bool CheckIfFATCompatible(const File::FSTEntry& entry) { if (!entry.isDirectory) return true; if (entry.children.size() > 65536) { ERROR_LOG_FMT(COMMON, "Directory {} has too many entries ({})", entry.physicalName, entry.children.size()); return false; } for (const File::FSTEntry& child : entry.children) { const size_t size = UTF8ToUTF16(child.virtualName).size(); if (size > 255) { ERROR_LOG_FMT(COMMON, "Filename {0} (in directory {1}) is too long ({2})", child.virtualName, entry.physicalName, size); return false; } if (child.size >= GibibytesToBytes(4)) { ERROR_LOG_FMT(COMMON, "File {0} (in directory {1}) is too large ({2})", child.virtualName, entry.physicalName, child.size); return false; } if (!CheckIfFATCompatible(child)) return false; } return true; } static u64 GetSize(const File::FSTEntry& entry) { if (!entry.isDirectory) return AlignUp(entry.size, MAX_CLUSTER_SIZE); u64 size = 0; for (const File::FSTEntry& child : entry.children) { size += 32; // For simplicity, assume that all names are LFN. const u64 num_lfn_entries = (UTF8ToUTF16(child.virtualName).size() + 13 - 1) / 13; size += num_lfn_entries * 32; } size = AlignUp(size, MAX_CLUSTER_SIZE); for (const File::FSTEntry& child : entry.children) size += GetSize(child); return size; } static bool Pack(const File::FSTEntry& entry, bool is_root, std::vector& tmp_buffer) { if (!entry.isDirectory) { File::IOFile src(entry.physicalName, "rb"); if (!src) { ERROR_LOG_FMT(COMMON, "Failed to open file {}", entry.physicalName); return false; } FIL dst; const auto open_error_code = f_open(&dst, entry.virtualName.c_str(), FA_CREATE_ALWAYS | FA_WRITE); if (open_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to open file {} in SD image: {}", entry.physicalName, FatFsErrorToString(open_error_code)); return false; } const size_t src_size = src.GetSize(); if (src.GetSize() != entry.size) { ERROR_LOG_FMT(COMMON, "File at {} does not match previously read filesize ({} != {})", entry.physicalName, entry.size, src_size); return false; } if (entry.size >= GibibytesToBytes(4)) { ERROR_LOG_FMT(COMMON, "File at {} is too large to fit into FAT ({} >= 4GiB)", entry.physicalName, entry.size); return false; } u64 size = entry.size; while (size > 0) { u32 chunk_size = static_cast(std::min(size, static_cast(tmp_buffer.size()))); if (!src.ReadBytes(tmp_buffer.data(), chunk_size)) { ERROR_LOG_FMT(COMMON, "Failed to read data from file at {}", entry.physicalName); return false; } u32 written_size; const auto write_error_code = f_write(&dst, tmp_buffer.data(), chunk_size, &written_size); if (write_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to write file {} to SD image: {}", entry.physicalName, FatFsErrorToString(write_error_code)); return false; } if (written_size != chunk_size) { ERROR_LOG_FMT(COMMON, "Failed to write bytes of file {} to SD image ({} != {})", entry.physicalName, written_size, chunk_size); return false; } size -= chunk_size; } const auto close_error_code = f_close(&dst); if (close_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to close file {} in SD image: {}", entry.physicalName, FatFsErrorToString(close_error_code)); return false; } if (!src.Close()) { ERROR_LOG_FMT(COMMON, "Failed to close file {}", entry.physicalName); return false; } return true; } if (!is_root) { const auto mkdir_error_code = f_mkdir(entry.virtualName.c_str()); if (mkdir_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to make directory {} in SD image: {}", entry.physicalName, FatFsErrorToString(mkdir_error_code)); return false; } const auto chdir_error_code = f_chdir(entry.virtualName.c_str()); if (chdir_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to entry directory {} in SD image: {}", entry.physicalName, FatFsErrorToString(chdir_error_code)); return false; } } for (const File::FSTEntry& child : entry.children) { if (!Pack(child, false, tmp_buffer)) return false; } if (!is_root) { const auto chdir_up_error_code = f_chdir(".."); if (chdir_up_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to leave directory {} in SD image: {}", entry.physicalName, FatFsErrorToString(chdir_up_error_code)); return false; } } return true; } static void SortFST(File::FSTEntry* root) { std::sort(root->children.begin(), root->children.end(), [](const File::FSTEntry& lhs, const File::FSTEntry& rhs) { return lhs.virtualName < rhs.virtualName; }); for (auto& child : root->children) SortFST(&child); } bool SyncSDFolderToSDImage(bool deterministic) { const std::string source_dir = File::GetUserPath(D_WIISDCARDSYNCFOLDER_IDX); const std::string image_path = File::GetUserPath(F_WIISDCARDIMAGE_IDX); if (source_dir.empty() || image_path.empty()) return false; INFO_LOG_FMT(COMMON, "Starting SD card conversion from folder {} to file {}", source_dir, image_path); if (!File::IsDirectory(source_dir)) { ERROR_LOG_FMT(COMMON, "{} is not a directory, not converting", source_dir); return false; } File::FSTEntry root = File::ScanDirectoryTree(source_dir, true); if (deterministic) SortFST(&root); if (!CheckIfFATCompatible(root)) return false; u64 size = GetSize(root); // Allocate a reasonable amount of free space size += std::clamp(size / 2, MebibytesToBytes(512), GibibytesToBytes(8)); size = AlignUp(size, MAX_CLUSTER_SIZE); std::lock_guard lk(s_fatfs_mutex); SDCardFatFsCallbacks callbacks; s_callbacks = &callbacks; Common::ScopeGuard callbacks_guard{[] { s_callbacks = nullptr; }}; File::IOFile image; callbacks.m_image = ℑ callbacks.m_deterministic = deterministic; const std::string temp_image_path = File::GetTempFilenameForAtomicWrite(image_path); if (!image.Open(temp_image_path, "w+b")) { ERROR_LOG_FMT(COMMON, "Failed to create or overwrite SD image at {}", image_path); return false; } // delete temp file in failure case Common::ScopeGuard image_delete_guard{[&] { File::Delete(temp_image_path); }}; if (!image.Resize(size)) { ERROR_LOG_FMT(COMMON, "Failed to allocate {} bytes for SD image at {}", size, image_path); return false; } MKFS_PARM options = {}; options.fmt = FM_FAT32; options.n_fat = 0; // Number of FATs: automatic options.align = 1; // Alignment of the data region (in sectors) options.n_root = 0; // Number of root directory entries: automatic (and unused for FAT32) options.au_size = 0; // Cluster size: automatic std::vector tmp_buffer(MAX_CLUSTER_SIZE); const auto mkfs_error_code = f_mkfs("", &options, tmp_buffer.data(), static_cast(tmp_buffer.size())); if (mkfs_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to initialize SD image filesystem: {}", FatFsErrorToString(mkfs_error_code)); return false; } FATFS fs; const auto mount_error_code = f_mount(&fs, "", 0); if (mount_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to mount SD image filesystem: {}", FatFsErrorToString(mount_error_code)); return false; } Common::ScopeGuard unmount_guard{[] { f_unmount(""); }}; if (!Pack(root, true, tmp_buffer)) { ERROR_LOG_FMT(COMMON, "Failed to pack folder {} to SD image at {}", source_dir, temp_image_path); return false; } unmount_guard.Exit(); // unmount before closing the image if (!image.Close()) { ERROR_LOG_FMT(COMMON, "Failed to close SD image at {}", temp_image_path); return false; } if (!File::Rename(temp_image_path, image_path)) { ERROR_LOG_FMT(COMMON, "Failed to rename SD image from {} to {}", temp_image_path, image_path); return false; } image_delete_guard.Dismiss(); // no need to delete the temp file anymore after the rename INFO_LOG_FMT(COMMON, "Successfully packed folder {} to SD image at {}", source_dir, image_path); return true; } static bool Unpack(const std::string path, bool is_directory, const char* name, std::vector& tmp_buffer) { if (!is_directory) { FIL src; const auto open_error_code = f_open(&src, name, FA_READ); if (open_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to open file {} in SD image: {}", path, FatFsErrorToString(open_error_code)); return false; } File::IOFile dst(path, "wb"); if (!dst) { ERROR_LOG_FMT(COMMON, "Failed to open file {}", path); return false; } u32 size = f_size(&src); while (size > 0) { u32 chunk_size = std::min(size, static_cast(tmp_buffer.size())); u32 read_size; const auto read_error_code = f_read(&src, tmp_buffer.data(), chunk_size, &read_size); if (read_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to read from file {} in SD image: {}", path, FatFsErrorToString(read_error_code)); return false; } if (read_size != chunk_size) { ERROR_LOG_FMT(COMMON, "Failed to read bytes of file {} in SD image ({} != {})", path, read_size, chunk_size); return false; } if (!dst.WriteBytes(tmp_buffer.data(), chunk_size)) { ERROR_LOG_FMT(COMMON, "Failed to write to file {}", path); return false; } size -= chunk_size; } if (!dst.Close()) { ERROR_LOG_FMT(COMMON, "Failed to close file {}", path); return false; } const auto close_error_code = f_close(&src); if (close_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to close file {} in SD image: {}", path, FatFsErrorToString(close_error_code)); return false; } return true; } if (!File::CreateDir(path)) { ERROR_LOG_FMT(COMMON, "Failed to create directory {}", path); return false; } const auto chdir_error_code = f_chdir(name); if (chdir_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to enter directory {} in SD image: {}", path, FatFsErrorToString(chdir_error_code)); return false; } DIR directory; const auto opendir_error_code = f_opendir(&directory, "."); if (opendir_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to open directory {} in SD image: {}", path, FatFsErrorToString(opendir_error_code)); return false; } FILINFO entry; while (true) { const auto readdir_error_code = f_readdir(&directory, &entry); if (readdir_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to read directory {} in SD image: {}", path, FatFsErrorToString(readdir_error_code)); return false; } if (entry.fname[0] == '\0') break; if (entry.fname[0] == '?' && entry.fname[1] == '\0' && entry.altname[0] == '\0') { // FATFS indicates entries that have neither a short nor a long filename this way. // These are likely corrupted file entries so just skip them. continue; } const std::string_view childname = entry.fname; // Check for path traversal attacks. const bool is_path_traversal_attack = (childname.find("\\") != std::string_view::npos) || (childname.find('/') != std::string_view::npos) || std::all_of(childname.begin(), childname.end(), [](char c) { return c == '.'; }); if (is_path_traversal_attack) { ERROR_LOG_FMT( COMMON, "Path traversal attack detected in directory {} in SD image, child filename is {}", path, childname); return false; } if (!Unpack(fmt::format("{}/{}", path, childname), entry.fattrib & AM_DIR, entry.fname, tmp_buffer)) { return false; } } const auto closedir_error_code = f_closedir(&directory); if (closedir_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to close directory {} in SD image: {}", path, FatFsErrorToString(closedir_error_code)); return false; } const auto chdir_up_error_code = f_chdir(".."); if (chdir_up_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to leave directory {} in SD image: {}", path, FatFsErrorToString(chdir_up_error_code)); return false; } return true; } bool SyncSDImageToSDFolder() { const std::string image_path = File::GetUserPath(F_WIISDCARDIMAGE_IDX); const std::string target_dir = File::GetUserPath(D_WIISDCARDSYNCFOLDER_IDX); if (image_path.empty() || target_dir.empty()) return false; std::lock_guard lk(s_fatfs_mutex); SDCardFatFsCallbacks callbacks; s_callbacks = &callbacks; Common::ScopeGuard callbacks_guard{[] { s_callbacks = nullptr; }}; INFO_LOG_FMT(COMMON, "Starting SD card conversion from file {} to folder {}", image_path, target_dir); File::IOFile image; callbacks.m_image = ℑ // this shouldn't matter since we're not modifying the SD image here, but initialize it to // something consistent just in case callbacks.m_deterministic = true; if (!image.Open(image_path, "r+b")) { ERROR_LOG_FMT(COMMON, "Failed to open SD image at {}", image_path); return false; } FATFS fs; const auto mount_error_code = f_mount(&fs, "", 0); if (mount_error_code != FR_OK) { ERROR_LOG_FMT(COMMON, "Failed to mount SD image file system: {}", FatFsErrorToString(mount_error_code)); return false; } Common::ScopeGuard unmount_guard{[] { f_unmount(""); }}; // Unpack() and GetTempFilenameForAtomicWrite() don't want the trailing separator. const std::string target_dir_without_slash = target_dir.substr(0, target_dir.length() - 1); // Most systems don't offer atomic directory renaming, so it's simpler to directly work on the // actual one and rollback if needed. const bool target_dir_exists = File::IsDirectory(target_dir); const std::string backup_target_dir_without_slash = File::GetTempFilenameForAtomicWrite(target_dir_without_slash); if (target_dir_exists) { if (!File::Rename(target_dir_without_slash, backup_target_dir_without_slash)) { ERROR_LOG_FMT(COMMON, "Failed to move old SD folder to {}", backup_target_dir_without_slash); return false; } } std::vector tmp_buffer(MAX_CLUSTER_SIZE); if (!Unpack(target_dir_without_slash, true, "", tmp_buffer)) { ERROR_LOG_FMT(COMMON, "Failed to unpack SD image {} to {}", image_path, target_dir); File::DeleteDirRecursively(target_dir_without_slash); if (target_dir_exists) File::Rename(backup_target_dir_without_slash, target_dir_without_slash); return false; } unmount_guard.Exit(); // unmount before closing the image if (target_dir_exists) File::DeleteDirRecursively(backup_target_dir_without_slash); // even if this fails the conversion has already succeeded, so we still return true if (!image.Close()) ERROR_LOG_FMT(COMMON, "Failed to close SD image {}", image_path); INFO_LOG_FMT(COMMON, "Successfully unpacked SD image {} to {}", image_path, target_dir); return true; } void RunInFatFsContext(FatFsCallbacks& callbacks, const std::function& function) { std::lock_guard lk(s_fatfs_mutex); s_callbacks = &callbacks; Common::ScopeGuard callbacks_guard{[] { s_callbacks = nullptr; }}; function(); } } // namespace Common