// Copyright 2008 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once #include #include #include #include "Common/CommonTypes.h" namespace MathUtil { template constexpr T Clamp(const T val, const T& min, const T& max) { return std::max(min, std::min(max, val)); } constexpr bool IsPow2(u32 imm) { return (imm & (imm - 1)) == 0; } // The most significant bit of the fraction is an is-quiet bit on all architectures we care about. static const u64 DOUBLE_SIGN = 0x8000000000000000ULL, DOUBLE_EXP = 0x7FF0000000000000ULL, DOUBLE_FRAC = 0x000FFFFFFFFFFFFFULL, DOUBLE_ZERO = 0x0000000000000000ULL, DOUBLE_QBIT = 0x0008000000000000ULL; static const u32 FLOAT_SIGN = 0x80000000, FLOAT_EXP = 0x7F800000, FLOAT_FRAC = 0x007FFFFF, FLOAT_ZERO = 0x00000000; union IntDouble { double d; u64 i; explicit IntDouble(u64 _i) : i(_i) {} explicit IntDouble(double _d) : d(_d) {} }; union IntFloat { float f; u32 i; explicit IntFloat(u32 _i) : i(_i) {} explicit IntFloat(float _f) : f(_f) {} }; inline bool IsQNAN(double d) { IntDouble x(d); return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) && ((x.i & DOUBLE_QBIT) == DOUBLE_QBIT); } inline bool IsSNAN(double d) { IntDouble x(d); return ((x.i & DOUBLE_EXP) == DOUBLE_EXP) && ((x.i & DOUBLE_FRAC) != DOUBLE_ZERO) && ((x.i & DOUBLE_QBIT) == DOUBLE_ZERO); } inline float FlushToZero(float f) { IntFloat x(f); if ((x.i & FLOAT_EXP) == 0) { x.i &= FLOAT_SIGN; // turn into signed zero } return x.f; } inline double FlushToZero(double d) { IntDouble x(d); if ((x.i & DOUBLE_EXP) == 0) { x.i &= DOUBLE_SIGN; // turn into signed zero } return x.d; } enum PPCFpClass { PPC_FPCLASS_QNAN = 0x11, PPC_FPCLASS_NINF = 0x9, PPC_FPCLASS_NN = 0x8, PPC_FPCLASS_ND = 0x18, PPC_FPCLASS_NZ = 0x12, PPC_FPCLASS_PZ = 0x2, PPC_FPCLASS_PD = 0x14, PPC_FPCLASS_PN = 0x4, PPC_FPCLASS_PINF = 0x5, }; // Uses PowerPC conventions for the return value, so it can be easily // used directly in CPU emulation. u32 ClassifyDouble(double dvalue); // More efficient float version. u32 ClassifyFloat(float fvalue); extern const int frsqrte_expected_base[]; extern const int frsqrte_expected_dec[]; extern const int fres_expected_base[]; extern const int fres_expected_dec[]; // PowerPC approximation algorithms double ApproximateReciprocalSquareRoot(double val); double ApproximateReciprocal(double val); template struct Rectangle { T left{}; T top{}; T right{}; T bottom{}; constexpr Rectangle() = default; constexpr Rectangle(T theLeft, T theTop, T theRight, T theBottom) : left(theLeft), top(theTop), right(theRight), bottom(theBottom) {} constexpr bool operator==(const Rectangle& r) const { return left == r.left && top == r.top && right == r.right && bottom == r.bottom; } T GetWidth() const { return abs(right - left); } T GetHeight() const { return abs(bottom - top); } // If the rectangle is in a coordinate system with a lower-left origin, use // this Clamp. void ClampLL(T x1, T y1, T x2, T y2) { left = Clamp(left, x1, x2); right = Clamp(right, x1, x2); top = Clamp(top, y2, y1); bottom = Clamp(bottom, y2, y1); } // If the rectangle is in a coordinate system with an upper-left origin, // use this Clamp. void ClampUL(T x1, T y1, T x2, T y2) { left = Clamp(left, x1, x2); right = Clamp(right, x1, x2); top = Clamp(top, y1, y2); bottom = Clamp(bottom, y1, y2); } }; } // namespace MathUtil float MathFloatVectorSum(const std::vector&); #define ROUND_UP(x, a) (((x) + (a) - 1) & ~((a) - 1)) #define ROUND_DOWN(x, a) ((x) & ~((a) - 1)) // Rounds down. 0 -> undefined inline int IntLog2(u64 val) { #if defined(__GNUC__) return 63 - __builtin_clzll(val); #elif defined(_MSC_VER) unsigned long result = -1; _BitScanReverse64(&result, val); return result; #else int result = -1; while (val != 0) { val >>= 1; ++result; } return result; #endif } // Tiny matrix/vector library. // Used for things like Free-Look in the gfx backend. class Matrix33 { public: static void LoadIdentity(Matrix33& mtx); // set mtx to be a rotation matrix around the x axis static void RotateX(Matrix33& mtx, float rad); // set mtx to be a rotation matrix around the y axis static void RotateY(Matrix33& mtx, float rad); // set result = a x b static void Multiply(const Matrix33& a, const Matrix33& b, Matrix33& result); static void Multiply(const Matrix33& a, const float vec[3], float result[3]); float data[9]; }; class Matrix44 { public: static void LoadIdentity(Matrix44& mtx); static void LoadMatrix33(Matrix44& mtx, const Matrix33& m33); static void Set(Matrix44& mtx, const float mtxArray[16]); static void Translate(Matrix44& mtx, const float vec[3]); static void Shear(Matrix44& mtx, const float a, const float b = 0); static void Multiply(const Matrix44& a, const Matrix44& b, Matrix44& result); float data[16]; };