// Copyright (C) 2003 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #if _WIN32 #include #endif #include "OpenCL.h" #include #include "XFBConvert.h" #include "Common.h" namespace { const __m128i _bias1 = _mm_set_epi32(128/2 << 16, 0, 128/2 << 16, 16 << 16); const __m128i _bias2 = _mm_set_epi32(128/2 << 16, 16 << 16, 128/2 << 16, 0); __m128i _y[256]; __m128i _u[256]; __m128i _v[256]; __m128i _r1[256]; __m128i _r2[256]; __m128i _g1[256]; __m128i _g2[256]; __m128i _b1[256]; __m128i _b2[256]; } // namespace #if defined(HAVE_OPENCL) && HAVE_OPENCL bool Inited = false; cl_kernel To_kernel; cl_program To_program; cl_kernel From_kernel; cl_program From_program; const char *__ConvertFromXFB = "int bound(int i) \n \ { \n \ return (i>255)?255:((i<0)?0:i); \n \ } \n \ \n \ void yuv2rgb(int y, int u, int v, int &r, int &g, int &b) \n \ { \n \ b = bound((76283*(y - 16) + 132252*(u - 128))>>16); \n \ g = bound((76283*(y - 16) - 53281 *(v - 128) - 25624*(u - 128))>>16); //last one u? \n \ r = bound((76283*(y - 16) + 104595*(v - 128))>>16); \n \ } \n \ \n \ void ConvertFromXFB(u32 *dst, const u8* _pXFB) \n \ { \n \ const unsigned char *src = _pXFB; \n \ int id = get_global_id(0); \n \ int srcOffset = id * 4; \n \ int dstOffset = id; \n \ u32 numBlocks = (width * height) / 2; \n \ \n \ int Y1 = src[srcOffset]; \n \ int U = src[srcOffset + 1]; \n \ int Y2 = src[srcOffset + 2]; \n \ int V = src[srcOffset + 3]; \n \ \n \ int r, g, b; \n \ yuv2rgb(Y1,U,V, r,g,b); \n \ dst[dstOffset] = 0xFF000000 | (r<<16) | (g<<8) | (b); \n \ yuv2rgb(Y2,U,V, r,g,b); \n \ dst[dstOffset + 1] = 0xFF000000 | (r<<16) | (g<<8) | (b); \n \ } \n"; const char *__ConvertToXFB = "__kernel void ConvertToXFB(__global unsigned int *dst, __global const unsigned char* _pEFB) \n \ { \n \ const unsigned char *src = _pEFB;\n \ int id = get_global_id(0);\n \ int srcOffset = id * 8; \n \ \n \ int y1 = (((16843 * src[srcOffset]) + (33030 * src[srcOffset + 1]) + (6423 * src[srcOffset + 2])) >> 16) + 16; \n \ int u1 = ((-(9699 * src[srcOffset]) - (19071 * src[srcOffset + 1]) + (28770 * src[srcOffset + 2])) >> 16) + 128;\n \ srcOffset += 4;\n \ \n \ int y2 = (((16843 * src[srcOffset]) + (33030 * src[srcOffset + 1]) + (6423 * src[srcOffset + 2])) >> 16) + 16;\n \ int v2 = (((28770 * src[srcOffset]) - (24117 * src[srcOffset + 1]) - (4653 * src[srcOffset + 2])) >> 16) + 128;\n \ \n \ dst[id] = (v2 << 24) | (y2 << 16) | (u1 << 8) | (y1); \n \ } \n "; void InitKernels() { From_program = OpenCL::CompileProgram(__ConvertFromXFB); From_kernel = OpenCL::CompileKernel(From_program, "ConvertFromXFB"); To_program = OpenCL::CompileProgram(__ConvertToXFB); To_kernel = OpenCL::CompileKernel(To_program, "ConvertToXFB"); Inited = true; } #endif void InitXFBConvTables() { for (int i = 0; i < 256; i++) { _y[i] = _mm_set_epi32(0xFFFFFFF, 76283*(i - 16), 76283*(i - 16), 76283*(i - 16)); _u[i] = _mm_set_epi32( 0, 0, -25624 * (i - 128), 132252 * (i - 128)); _v[i] = _mm_set_epi32( 0, 104595 * (i - 128), -53281 * (i - 128), 0); _r1[i] = _mm_add_epi32(_mm_set_epi32( 28770 * i / 2, 0, -9699 * i / 2, 16843 * i), _bias1); _g1[i] = _mm_set_epi32(-24117 * i / 2, 0, -19071 * i / 2, 33030 * i); _b1[i] = _mm_set_epi32( -4653 * i / 2, 0, 28770 * i / 2, 6423 * i); _r2[i] = _mm_add_epi32(_mm_set_epi32( 28770 * i / 2, 16843 * i, -9699 * i / 2, 0), _bias2); _g2[i] = _mm_set_epi32(-24117 * i / 2, 33030 * i, -19071 * i / 2, 0); _b2[i] = _mm_set_epi32( -4653 * i / 2, 6423 * i, 28770 * i / 2, 0); } } void ConvertFromXFB(u32 *dst, const u8* _pXFB, int width, int height) { if (((size_t)dst & 0xF) != 0) { PanicAlert("ConvertFromXFB - unaligned destination"); } const unsigned char *src = _pXFB; u32 numBlocks = ((width * height) / 2) / 2; #if defined(HAVE_OPENCL) && HAVE_OPENCL if(!Inited) InitKernels(); int err; size_t global = 0; // global domain size for our calculation size_t local = 0; // local domain size for our calculation printf("width %d, height %d\n", width, height); // Create the input and output arrays in device memory for our calculation // cl_mem _dst = clCreateBuffer(OpenCL::g_context, CL_MEM_WRITE_ONLY, sizeof(unsigned int) * numBlocks, NULL, NULL); if (!dst) { printf("Error: Failed to allocate device memory!\n"); exit(1); } cl_mem _src = clCreateBuffer(OpenCL::g_context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(unsigned char) * width * height, (void*)_pXFB, NULL); if (!src) { printf("Error: Failed to allocate device memory!\n"); exit(1); } // Set the arguments to our compute kernel // err = 0; err = clSetKernelArg(From_kernel, 0, sizeof(cl_mem), &_dst); err |= clSetKernelArg(From_kernel, 1, sizeof(cl_mem), &_src); if (err != CL_SUCCESS) { printf("Error: Failed to set kernel arguments! %d\n", err); exit(1); } // Get the maximum work group size for executing the kernel on the device // err = clGetKernelWorkGroupInfo(From_kernel, OpenCL::device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(int), &local, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to retrieve kernel work group info! %d\n", err); local = 32; } // Execute the kernel over the entire range of our 1d input data set // using the maximum number of work group items for this device // global = numBlocks; if(global < local) { // Global can't be less than local } err = clEnqueueNDRangeKernel(OpenCL::g_cmdq, From_kernel, 1, NULL, &global, &local, 0, NULL, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to execute kernel! %d\n", err); return; } // Wait for the command commands to get serviced before reading back results // clFinish(OpenCL::g_cmdq); // Read back the results from the device to verify the output // err = clEnqueueReadBuffer( OpenCL::g_cmdq, _dst, CL_TRUE, 0, sizeof(unsigned int) * numBlocks, dst, 0, NULL, NULL ); if (err != CL_SUCCESS) { printf("Error: Failed to read output array! %d\n", err); exit(1); } clReleaseMemObject(_dst); clReleaseMemObject(_src); #else for (u32 i = 0; i < numBlocks; i++) { __m128i y1 = _y[src[0]]; __m128i u = _u[src[1]]; __m128i y2 = _y[src[2]]; __m128i v = _v[src[3]]; __m128i y1_2 = _y[src[4+0]]; __m128i u_2 = _u[src[4+1]]; __m128i y2_2 = _y[src[4+2]]; __m128i v_2 = _v[src[4+3]]; __m128i c1 = _mm_srai_epi32(_mm_add_epi32(y1, _mm_add_epi32(u, v)), 16); __m128i c2 = _mm_srai_epi32(_mm_add_epi32(y2, _mm_add_epi32(u, v)), 16); __m128i c3 = _mm_srai_epi32(_mm_add_epi32(y1_2, _mm_add_epi32(u_2, v_2)), 16); __m128i c4 = _mm_srai_epi32(_mm_add_epi32(y2_2, _mm_add_epi32(u_2, v_2)), 16); __m128i four_dest = _mm_packus_epi16(_mm_packs_epi32(c1, c2), _mm_packs_epi32(c3, c4)); _mm_store_si128((__m128i *)dst, four_dest); dst += 4; src += 8; } #endif } void ConvertToXFB(u32 *dst, const u8* _pEFB, int width, int height) { const unsigned char *src = _pEFB; u32 numBlocks = ((width * height) / 2) / 4; if (((size_t)dst & 0xF) != 0) { PanicAlert("ConvertToXFB - unaligned XFB"); } #if defined(HAVE_OPENCL) && HAVE_OPENCL if(!Inited) InitKernels(); int err; size_t global = 0; // global domain size for our calculation size_t local = 0; // local domain size for our calculation printf("width %d, height %d\n", width, height); // Create the input and output arrays in device memory for our calculation // cl_mem _dst = clCreateBuffer(OpenCL::g_context, CL_MEM_WRITE_ONLY, sizeof(unsigned int) * numBlocks, NULL, NULL); if (!dst) { printf("Error: Failed to allocate device memory!\n"); exit(1); } cl_mem _src = clCreateBuffer(OpenCL::g_context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(unsigned char) * width * height, (void*)_pEFB, NULL); if (!src) { printf("Error: Failed to allocate device memory!\n"); exit(1); } // Set the arguments to our compute kernel // err = 0; err = clSetKernelArg(To_kernel, 0, sizeof(cl_mem), &_dst); err |= clSetKernelArg(To_kernel, 1, sizeof(cl_mem), &_src); if (err != CL_SUCCESS) { printf("Error: Failed to set kernel arguments! %d\n", err); exit(1); } // Get the maximum work group size for executing the kernel on the device // err = clGetKernelWorkGroupInfo(To_kernel, OpenCL::device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(int), &local, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to retrieve kernel work group info! %d\n", err); local = 64; } // Execute the kernel over the entire range of our 1d input data set // using the maximum number of work group items for this device // global = numBlocks; if(global < local) { // Global can't be less than local } err = clEnqueueNDRangeKernel(OpenCL::g_cmdq, To_kernel, 1, NULL, &global, &local, 0, NULL, NULL); if (err != CL_SUCCESS) { printf("Error: Failed to execute kernel! %d\n", err); return; } // Wait for the command commands to get serviced before reading back results // clFinish(OpenCL::g_cmdq); // Read back the results from the device to verify the output // err = clEnqueueReadBuffer( OpenCL::g_cmdq, _dst, CL_TRUE, 0, sizeof(unsigned int) * numBlocks, dst, 0, NULL, NULL ); if (err != CL_SUCCESS) { printf("Error: Failed to read output array! %d\n", err); exit(1); } clReleaseMemObject(_dst); clReleaseMemObject(_src); #else for (u32 i = 0; i < numBlocks; i++) { __m128i yuyv0 = _mm_srai_epi32( _mm_add_epi32( _mm_add_epi32(_r1[src[0]], _mm_add_epi32(_g1[src[1]], _b1[src[2]])), _mm_add_epi32(_r2[src[4]], _mm_add_epi32(_g2[src[5]], _b2[src[6]]))), 16); src += 8; __m128i yuyv1 = _mm_srai_epi32( _mm_add_epi32( _mm_add_epi32(_r1[src[0]], _mm_add_epi32(_g1[src[1]], _b1[src[2]])), _mm_add_epi32(_r2[src[4]], _mm_add_epi32(_g2[src[5]], _b2[src[6]]))), 16); src += 8; __m128i yuyv2 = _mm_srai_epi32( _mm_add_epi32( _mm_add_epi32(_r1[src[0]], _mm_add_epi32(_g1[src[1]], _b1[src[2]])), _mm_add_epi32(_r2[src[4]], _mm_add_epi32(_g2[src[5]], _b2[src[6]]))), 16); src += 8; __m128i yuyv3 = _mm_srai_epi32( _mm_add_epi32( _mm_add_epi32(_r1[src[0]], _mm_add_epi32(_g1[src[1]], _b1[src[2]])), _mm_add_epi32(_r2[src[4]], _mm_add_epi32(_g2[src[5]], _b2[src[6]]))), 16); src += 8; __m128i four_dest = _mm_packus_epi16(_mm_packs_epi32(yuyv0, yuyv1), _mm_packs_epi32(yuyv2, yuyv3)); _mm_store_si128((__m128i *)dst, four_dest); dst += 4; } #endif }