// Copyright 2018 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "DiscIO/WIABlob.h" #include #include #include #include #include #include #include #include #include #include #include "Common/Align.h" #include "Common/CommonTypes.h" #include "Common/File.h" #include "Common/Logging/Log.h" #include "Common/StringUtil.h" #include "Common/Swap.h" #include "DiscIO/VolumeWii.h" #include "DiscIO/WiiEncryptionCache.h" namespace DiscIO { WIAFileReader::WIAFileReader(File::IOFile file, const std::string& path) : m_file(std::move(file)), m_encryption_cache(this) { m_valid = Initialize(path); } WIAFileReader::~WIAFileReader() = default; bool WIAFileReader::Initialize(const std::string& path) { if (!m_file.Seek(0, SEEK_SET) || !m_file.ReadArray(&m_header_1, 1)) return false; if (m_header_1.magic != WIA_MAGIC) return false; const u32 version = Common::swap32(m_header_1.version); const u32 version_compatible = Common::swap32(m_header_1.version_compatible); if (WIA_VERSION < version_compatible || WIA_VERSION_READ_COMPATIBLE > version) { ERROR_LOG(DISCIO, "Unsupported WIA version %s in %s", VersionToString(version).c_str(), path.c_str()); return false; } SHA1 header_1_actual_hash; mbedtls_sha1_ret(reinterpret_cast(&m_header_1), sizeof(m_header_1) - sizeof(SHA1), header_1_actual_hash.data()); if (m_header_1.header_1_hash != header_1_actual_hash) return false; if (Common::swap64(m_header_1.wia_file_size) != m_file.GetSize()) { ERROR_LOG(DISCIO, "File size is incorrect for %s", path.c_str()); return false; } const u32 header_2_size = Common::swap32(m_header_1.header_2_size); const u32 header_2_min_size = sizeof(WIAHeader2) - sizeof(WIAHeader2::compressor_data); if (header_2_size < header_2_min_size) return false; std::vector header_2(header_2_size); if (!m_file.ReadBytes(header_2.data(), header_2.size())) return false; SHA1 header_2_actual_hash; mbedtls_sha1_ret(header_2.data(), header_2.size(), header_2_actual_hash.data()); if (m_header_1.header_2_hash != header_2_actual_hash) return false; std::memcpy(&m_header_2, header_2.data(), std::min(header_2.size(), sizeof(WIAHeader2))); if (m_header_2.compressor_data_size > sizeof(WIAHeader2::compressor_data) || header_2_size < header_2_min_size + m_header_2.compressor_data_size) { return false; } const u32 chunk_size = Common::swap32(m_header_2.chunk_size); if (chunk_size % VolumeWii::GROUP_TOTAL_SIZE != 0) return false; const u32 compression_type = Common::swap32(m_header_2.compression_type); m_compression_type = static_cast(compression_type); if (m_compression_type > CompressionType::LZMA2) { ERROR_LOG(DISCIO, "Unsupported WIA compression type %u in %s", compression_type, path.c_str()); return false; } const size_t number_of_partition_entries = Common::swap32(m_header_2.number_of_partition_entries); const size_t partition_entry_size = Common::swap32(m_header_2.partition_entry_size); std::vector partition_entries(partition_entry_size * number_of_partition_entries); if (!m_file.Seek(Common::swap64(m_header_2.partition_entries_offset), SEEK_SET)) return false; if (!m_file.ReadBytes(partition_entries.data(), partition_entries.size())) return false; SHA1 partition_entries_actual_hash; mbedtls_sha1_ret(reinterpret_cast(partition_entries.data()), partition_entries.size(), partition_entries_actual_hash.data()); if (m_header_2.partition_entries_hash != partition_entries_actual_hash) return false; const size_t copy_length = std::min(partition_entry_size, sizeof(PartitionEntry)); const size_t memset_length = sizeof(PartitionEntry) - copy_length; u8* ptr = partition_entries.data(); m_partition_entries.resize(number_of_partition_entries); for (size_t i = 0; i < number_of_partition_entries; ++i, ptr += partition_entry_size) { std::memcpy(&m_partition_entries[i], ptr, copy_length); std::memset(reinterpret_cast(&m_partition_entries[i]) + copy_length, 0, memset_length); } for (size_t i = 0; i < m_partition_entries.size(); ++i) { const std::array& entries = m_partition_entries[i].data_entries; size_t non_empty_entries = 0; for (size_t j = 0; j < entries.size(); ++j) { const u32 number_of_sectors = Common::swap32(entries[j].number_of_sectors); if (number_of_sectors != 0) { ++non_empty_entries; const u32 last_sector = Common::swap32(entries[j].first_sector) + number_of_sectors; m_data_entries.emplace(last_sector * VolumeWii::BLOCK_TOTAL_SIZE, DataEntry(i, j)); } } if (non_empty_entries > 1) { const u32 first_end = Common::swap32(entries[0].first_sector) + Common::swap32(entries[0].number_of_sectors); const u32 second_start = Common::swap32(entries[1].first_sector); if (first_end > second_start) return false; } } const u32 number_of_raw_data_entries = Common::swap32(m_header_2.number_of_raw_data_entries); m_raw_data_entries.resize(number_of_raw_data_entries); Chunk& raw_data_entries = ReadCompressedData(Common::swap64(m_header_2.raw_data_entries_offset), Common::swap32(m_header_2.raw_data_entries_size), number_of_raw_data_entries * sizeof(RawDataEntry), false); if (!raw_data_entries.ReadAll(&m_raw_data_entries)) return false; for (size_t i = 0; i < m_raw_data_entries.size(); ++i) { const RawDataEntry& entry = m_raw_data_entries[i]; const u64 data_size = Common::swap64(entry.data_size); if (data_size != 0) m_data_entries.emplace(Common::swap64(entry.data_offset) + data_size, DataEntry(i)); } const u32 number_of_group_entries = Common::swap32(m_header_2.number_of_group_entries); m_group_entries.resize(number_of_group_entries); Chunk& group_entries = ReadCompressedData(Common::swap64(m_header_2.group_entries_offset), Common::swap32(m_header_2.group_entries_size), number_of_group_entries * sizeof(GroupEntry), false); if (!group_entries.ReadAll(&m_group_entries)) return false; return true; } std::unique_ptr WIAFileReader::Create(File::IOFile file, const std::string& path) { std::unique_ptr blob(new WIAFileReader(std::move(file), path)); return blob->m_valid ? std::move(blob) : nullptr; } bool WIAFileReader::Read(u64 offset, u64 size, u8* out_ptr) { if (offset + size > Common::swap64(m_header_1.iso_file_size)) return false; if (offset < sizeof(WIAHeader2::disc_header)) { const u64 bytes_to_read = std::min(sizeof(WIAHeader2::disc_header) - offset, size); std::memcpy(out_ptr, m_header_2.disc_header.data() + offset, bytes_to_read); offset += bytes_to_read; size -= bytes_to_read; out_ptr += bytes_to_read; } const u32 chunk_size = Common::swap32(m_header_2.chunk_size); while (size > 0) { const auto it = m_data_entries.upper_bound(offset); if (it == m_data_entries.end()) return false; const DataEntry& data = it->second; if (data.is_partition) { const PartitionEntry& partition = m_partition_entries[it->second.index]; const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector); const u64 partition_data_offset = partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE; const u32 second_number_of_sectors = Common::swap32(partition.data_entries[1].number_of_sectors); const u32 partition_total_sectors = second_number_of_sectors ? Common::swap32(partition.data_entries[1].first_sector) - partition_first_sector + second_number_of_sectors : Common::swap32(partition.data_entries[0].number_of_sectors); for (const PartitionDataEntry& partition_data : partition.data_entries) { if (size == 0) return true; const u32 first_sector = Common::swap32(partition_data.first_sector); const u32 number_of_sectors = Common::swap32(partition_data.number_of_sectors); const u64 data_offset = first_sector * VolumeWii::BLOCK_TOTAL_SIZE; const u64 data_size = number_of_sectors * VolumeWii::BLOCK_TOTAL_SIZE; if (data_size == 0) continue; if (data_offset + data_size <= offset) continue; if (offset < data_offset) return false; const u64 bytes_to_read = std::min(data_size - (offset - data_offset), size); if (!m_encryption_cache.EncryptGroups( offset - partition_data_offset, bytes_to_read, out_ptr, partition_data_offset, partition_total_sectors * VolumeWii::BLOCK_DATA_SIZE, partition.partition_key)) { return false; } offset += bytes_to_read; size -= bytes_to_read; out_ptr += bytes_to_read; } } else { const RawDataEntry& raw_data = m_raw_data_entries[data.index]; if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_TOTAL_SIZE, Common::swap64(raw_data.data_offset), Common::swap64(raw_data.data_size), Common::swap32(raw_data.group_index), Common::swap32(raw_data.number_of_groups), 0)) { return false; } } } return true; } bool WIAFileReader::SupportsReadWiiDecrypted() const { return !m_partition_entries.empty(); } bool WIAFileReader::ReadWiiDecrypted(u64 offset, u64 size, u8* out_ptr, u64 partition_data_offset) { const u64 chunk_size = Common::swap32(m_header_2.chunk_size) * VolumeWii::BLOCK_DATA_SIZE / VolumeWii::BLOCK_TOTAL_SIZE; const auto it = m_data_entries.upper_bound(partition_data_offset); if (it == m_data_entries.end() || !it->second.is_partition) return false; const PartitionEntry& partition = m_partition_entries[it->second.index]; const u32 partition_first_sector = Common::swap32(partition.data_entries[0].first_sector); if (partition_data_offset != partition_first_sector * VolumeWii::BLOCK_TOTAL_SIZE) return false; for (const PartitionDataEntry& data : partition.data_entries) { if (size == 0) return true; const u64 data_offset = (Common::swap32(data.first_sector) - partition_first_sector) * VolumeWii::BLOCK_DATA_SIZE; const u64 data_size = Common::swap32(data.number_of_sectors) * VolumeWii::BLOCK_DATA_SIZE; if (!ReadFromGroups(&offset, &size, &out_ptr, chunk_size, VolumeWii::BLOCK_DATA_SIZE, data_offset, data_size, Common::swap32(data.group_index), Common::swap32(data.number_of_groups), chunk_size / VolumeWii::GROUP_DATA_SIZE)) { return false; } } return size == 0; } bool WIAFileReader::ReadFromGroups(u64* offset, u64* size, u8** out_ptr, u64 chunk_size, u32 sector_size, u64 data_offset, u64 data_size, u32 group_index, u32 number_of_groups, u32 exception_lists) { if (data_offset + data_size <= *offset) return true; if (*offset < data_offset) return false; const u64 skipped_data = data_offset % sector_size; data_offset -= skipped_data; data_size += skipped_data; const u64 start_group_index = (*offset - data_offset) / chunk_size; for (u64 i = start_group_index; i < number_of_groups && (*size) > 0; ++i) { const u64 total_group_index = group_index + i; if (total_group_index >= m_group_entries.size()) return false; const GroupEntry group = m_group_entries[total_group_index]; const u64 group_offset = data_offset + i * chunk_size; const u64 offset_in_group = *offset - group_offset; chunk_size = std::min(chunk_size, data_offset + data_size - group_offset); const u64 bytes_to_read = std::min(chunk_size - offset_in_group, *size); const u32 group_data_size = Common::swap32(group.data_size); if (group_data_size == 0) { std::memset(*out_ptr, 0, bytes_to_read); } else { const u64 group_offset_in_file = static_cast(Common::swap32(group.data_offset)) << 2; Chunk& chunk = ReadCompressedData(group_offset_in_file, group_data_size, chunk_size, exception_lists); if (!chunk.Read(offset_in_group, bytes_to_read, *out_ptr)) { m_cached_chunk_offset = std::numeric_limits::max(); // Invalidate the cache return false; } } *offset += bytes_to_read; *size -= bytes_to_read; *out_ptr += bytes_to_read; } return true; } WIAFileReader::Chunk& WIAFileReader::ReadCompressedData(u64 offset_in_file, u64 compressed_size, u64 decompressed_size, u32 exception_lists) { if (offset_in_file == m_cached_chunk_offset) return m_cached_chunk; std::unique_ptr decompressor; switch (m_compression_type) { case CompressionType::None: decompressor = std::make_unique(); break; case CompressionType::Purge: decompressor = std::make_unique(decompressed_size); break; case CompressionType::Bzip2: decompressor = std::make_unique(); break; case CompressionType::LZMA: decompressor = std::make_unique(false, m_header_2.compressor_data, m_header_2.compressor_data_size); break; case CompressionType::LZMA2: decompressor = std::make_unique(true, m_header_2.compressor_data, m_header_2.compressor_data_size); break; } const bool compressed_exception_lists = m_compression_type > CompressionType::Purge; m_cached_chunk = Chunk(&m_file, offset_in_file, compressed_size, decompressed_size, exception_lists, compressed_exception_lists, std::move(decompressor)); m_cached_chunk_offset = offset_in_file; return m_cached_chunk; } std::string WIAFileReader::VersionToString(u32 version) { const u8 a = version >> 24; const u8 b = (version >> 16) & 0xff; const u8 c = (version >> 8) & 0xff; const u8 d = version & 0xff; if (d == 0 || d == 0xff) return StringFromFormat("%u.%02x.%02x", a, b, c); else return StringFromFormat("%u.%02x.%02x.beta%u", a, b, c, d); } WIAFileReader::Decompressor::~Decompressor() = default; bool WIAFileReader::NoneDecompressor::Decompress(const DecompressionBuffer& in, DecompressionBuffer* out, size_t* in_bytes_read) { const size_t length = std::min(in.bytes_written - *in_bytes_read, out->data.size() - out->bytes_written); std::memcpy(out->data.data() + out->bytes_written, in.data.data() + *in_bytes_read, length); *in_bytes_read += length; out->bytes_written += length; m_done = in.data.size() == *in_bytes_read; return true; } WIAFileReader::PurgeDecompressor::PurgeDecompressor(u64 decompressed_size) : m_decompressed_size(decompressed_size) { mbedtls_sha1_init(&m_sha1_context); } bool WIAFileReader::PurgeDecompressor::Decompress(const DecompressionBuffer& in, DecompressionBuffer* out, size_t* in_bytes_read) { if (!m_started) { mbedtls_sha1_starts_ret(&m_sha1_context); // Include the exception lists in the SHA-1 calculation (but not in the compression...) mbedtls_sha1_update_ret(&m_sha1_context, in.data.data(), *in_bytes_read); m_started = true; } while (!m_done && in.bytes_written != *in_bytes_read && (m_segment_bytes_written < sizeof(m_segment) || out->data.size() != out->bytes_written)) { if (m_segment_bytes_written == 0 && *in_bytes_read == in.data.size() - sizeof(SHA1)) { const size_t zeroes_to_write = std::min(m_decompressed_size - m_out_bytes_written, out->data.size() - out->bytes_written); std::memset(out->data.data() + out->bytes_written, 0, zeroes_to_write); out->bytes_written += zeroes_to_write; m_out_bytes_written += zeroes_to_write; if (m_out_bytes_written == m_decompressed_size && in.bytes_written == in.data.size()) { SHA1 actual_hash; mbedtls_sha1_finish_ret(&m_sha1_context, actual_hash.data()); SHA1 expected_hash; std::memcpy(expected_hash.data(), in.data.data() + *in_bytes_read, expected_hash.size()); *in_bytes_read += expected_hash.size(); m_done = true; if (actual_hash != expected_hash) return false; } return true; } if (m_segment_bytes_written < sizeof(m_segment)) { const size_t bytes_to_copy = std::min(in.bytes_written - *in_bytes_read, sizeof(m_segment) - m_segment_bytes_written); std::memcpy(reinterpret_cast(&m_segment) + m_segment_bytes_written, in.data.data() + *in_bytes_read, bytes_to_copy); mbedtls_sha1_update_ret(&m_sha1_context, in.data.data() + *in_bytes_read, bytes_to_copy); *in_bytes_read += bytes_to_copy; m_bytes_read += bytes_to_copy; m_segment_bytes_written += bytes_to_copy; } if (m_segment_bytes_written < sizeof(m_segment)) return true; const size_t offset = Common::swap32(m_segment.offset); const size_t size = Common::swap32(m_segment.size); if (m_out_bytes_written < offset) { const size_t zeroes_to_write = std::min(offset - m_out_bytes_written, out->data.size() - out->bytes_written); std::memset(out->data.data() + out->bytes_written, 0, zeroes_to_write); out->bytes_written += zeroes_to_write; m_out_bytes_written += zeroes_to_write; } if (m_out_bytes_written >= offset && m_out_bytes_written < offset + size) { const size_t bytes_to_copy = std::min( std::min(offset + size - m_out_bytes_written, out->data.size() - out->bytes_written), in.bytes_written - *in_bytes_read); std::memcpy(out->data.data() + out->bytes_written, in.data.data() + *in_bytes_read, bytes_to_copy); mbedtls_sha1_update_ret(&m_sha1_context, in.data.data() + *in_bytes_read, bytes_to_copy); *in_bytes_read += bytes_to_copy; m_bytes_read += bytes_to_copy; out->bytes_written += bytes_to_copy; m_out_bytes_written += bytes_to_copy; } if (m_out_bytes_written >= offset + size) m_segment_bytes_written = 0; } return true; } WIAFileReader::Bzip2Decompressor::~Bzip2Decompressor() { if (m_started) BZ2_bzDecompressEnd(&m_stream); } bool WIAFileReader::Bzip2Decompressor::Decompress(const DecompressionBuffer& in, DecompressionBuffer* out, size_t* in_bytes_read) { if (!m_started) { if (BZ2_bzDecompressInit(&m_stream, 0, 0) != BZ_OK) return false; m_started = true; } constexpr auto clamped_cast = [](size_t x) { return static_cast( std::min(std::numeric_limits().max(), x)); }; char* const in_ptr = reinterpret_cast(const_cast(in.data.data() + *in_bytes_read)); m_stream.next_in = in_ptr; m_stream.avail_in = clamped_cast(in.bytes_written - *in_bytes_read); char* const out_ptr = reinterpret_cast(out->data.data() + out->bytes_written); m_stream.next_out = out_ptr; m_stream.avail_out = clamped_cast(out->data.size() - out->bytes_written); const int result = BZ2_bzDecompress(&m_stream); *in_bytes_read += m_stream.next_in - in_ptr; out->bytes_written += m_stream.next_out - out_ptr; m_done = result == BZ_STREAM_END; return result == BZ_OK || result == BZ_STREAM_END; } WIAFileReader::LZMADecompressor::LZMADecompressor(bool lzma2, const u8* filter_options, size_t filter_options_size) { m_options.preset_dict = nullptr; if (!lzma2 && filter_options_size == 5) { // The dictionary size is stored as a 32-bit little endian unsigned integer static_assert(sizeof(m_options.dict_size) == sizeof(u32)); std::memcpy(&m_options.dict_size, filter_options + 1, sizeof(u32)); const u8 d = filter_options[0]; if (d >= (9 * 5 * 5)) { m_error_occurred = true; } else { m_options.lc = d % 9; const u8 e = d / 9; m_options.pb = e / 5; m_options.lp = e % 5; } } else if (lzma2 && filter_options_size == 1) { const u8 d = filter_options[0]; if (d > 40) m_error_occurred = true; else m_options.dict_size = d == 40 ? 0xFFFFFFFF : (static_cast(2) | (d & 1)) << (d / 2 + 11); } else { m_error_occurred = true; } m_filters[0].id = lzma2 ? LZMA_FILTER_LZMA2 : LZMA_FILTER_LZMA1; m_filters[0].options = &m_options; m_filters[1].id = LZMA_VLI_UNKNOWN; m_filters[1].options = nullptr; } WIAFileReader::LZMADecompressor::~LZMADecompressor() { if (m_started) lzma_end(&m_stream); } bool WIAFileReader::LZMADecompressor::Decompress(const DecompressionBuffer& in, DecompressionBuffer* out, size_t* in_bytes_read) { if (!m_started) { if (m_error_occurred || lzma_raw_decoder(&m_stream, m_filters) != LZMA_OK) return false; m_started = true; } const u8* const in_ptr = in.data.data() + *in_bytes_read; m_stream.next_in = in_ptr; m_stream.avail_in = in.bytes_written - *in_bytes_read; u8* const out_ptr = out->data.data() + out->bytes_written; m_stream.next_out = out_ptr; m_stream.avail_out = out->data.size() - out->bytes_written; const lzma_ret result = lzma_code(&m_stream, LZMA_RUN); *in_bytes_read += m_stream.next_in - in_ptr; out->bytes_written += m_stream.next_out - out_ptr; m_done = result == LZMA_STREAM_END; return result == LZMA_OK || result == LZMA_STREAM_END; } WIAFileReader::Chunk::Chunk() = default; WIAFileReader::Chunk::Chunk(File::IOFile* file, u64 offset_in_file, u64 compressed_size, u64 decompressed_size, u32 exception_lists, bool compressed_exception_lists, std::unique_ptr decompressor) : m_file(file), m_offset_in_file(offset_in_file), m_exception_lists(exception_lists), m_compressed_exception_lists(compressed_exception_lists), m_decompressor(std::move(decompressor)) { constexpr size_t MAX_SIZE_PER_EXCEPTION_LIST = Common::AlignUp(VolumeWii::BLOCK_HEADER_SIZE, sizeof(SHA1)) / sizeof(SHA1) * VolumeWii::BLOCKS_PER_GROUP * sizeof(HashExceptionEntry) + sizeof(u16); m_out_bytes_allocated_for_exceptions = m_compressed_exception_lists ? MAX_SIZE_PER_EXCEPTION_LIST * m_exception_lists : 0; m_in.data.resize(compressed_size); m_out.data.resize(decompressed_size + m_out_bytes_allocated_for_exceptions); } bool WIAFileReader::Chunk::Read(u64 offset, u64 size, u8* out_ptr) { if (!m_decompressor || !m_file || offset + size > m_out.data.size() - m_out_bytes_allocated_for_exceptions) { return false; } while (offset + size > m_out.bytes_written - m_out_bytes_used_for_exceptions) { u64 bytes_to_read; if (offset + size == m_out.data.size()) { // Read all the remaining data. bytes_to_read = m_in.data.size() - m_in.bytes_written; } else { // Pick a suitable amount of compressed data to read. The std::min line has to // be as it is, but the rest is a bit arbitrary and can be changed if desired. // The compressed data is probably not much bigger than the decompressed data. // Add a few bytes for possible compression overhead and for any hash exceptions. bytes_to_read = offset + size - (m_out.bytes_written - m_out_bytes_used_for_exceptions) + 0x100; // Align the access in an attempt to gain speed. But we don't actually know the // block size of the underlying storage device, so we just use the Wii block size. bytes_to_read = Common::AlignUp(bytes_to_read + m_offset_in_file, VolumeWii::BLOCK_TOTAL_SIZE) - m_offset_in_file; // Ensure we don't read too much. bytes_to_read = std::min(m_in.data.size() - m_in.bytes_written, bytes_to_read); } if (bytes_to_read == 0) { // Compressed size is larger than expected or decompressed size is smaller than expected return false; } if (!m_file->Seek(m_offset_in_file, SEEK_SET)) return false; if (!m_file->ReadBytes(m_in.data.data() + m_in.bytes_written, bytes_to_read)) return false; m_offset_in_file += bytes_to_read; m_in.bytes_written += bytes_to_read; if (m_exception_lists > 0 && !m_compressed_exception_lists) { if (!HandleExceptions(m_in.data.data(), m_in.data.size(), m_in.bytes_written, &m_in_bytes_used_for_exceptions, true)) { return false; } m_in_bytes_read = m_in_bytes_used_for_exceptions; } if (m_exception_lists == 0 || m_compressed_exception_lists) { if (!m_decompressor->Decompress(m_in, &m_out, &m_in_bytes_read)) return false; } if (m_exception_lists > 0 && m_compressed_exception_lists) { if (!HandleExceptions(m_out.data.data(), m_out_bytes_allocated_for_exceptions, m_out.bytes_written, &m_out_bytes_used_for_exceptions, false)) { return false; } } if (m_exception_lists == 0) { const size_t expected_out_bytes = m_out.data.size() - m_out_bytes_allocated_for_exceptions + m_out_bytes_used_for_exceptions; if (m_out.bytes_written > expected_out_bytes) return false; // Decompressed size is larger than expected if (m_out.bytes_written == expected_out_bytes && !m_decompressor->Done()) return false; // Decompressed size is larger than expected if (m_decompressor->Done() && m_in_bytes_read != m_in.data.size()) return false; // Compressed size is smaller than expected } } std::memcpy(out_ptr, m_out.data.data() + offset + m_out_bytes_used_for_exceptions, size); return true; } bool WIAFileReader::Chunk::HandleExceptions(const u8* data, size_t bytes_allocated, size_t bytes_written, size_t* bytes_used, bool align) { while (m_exception_lists > 0) { if (sizeof(u16) + *bytes_used > bytes_allocated) { ERROR_LOG(DISCIO, "More hash exceptions than expected"); return false; } if (sizeof(u16) + *bytes_used > bytes_written) return true; const u16 exceptions = Common::swap16(data + *bytes_used); size_t exception_list_size = exceptions * sizeof(HashExceptionEntry) + sizeof(u16); if (align && m_exception_lists == 1) exception_list_size = Common::AlignUp(*bytes_used + exception_list_size, 4) - *bytes_used; if (exception_list_size + *bytes_used > bytes_allocated) { ERROR_LOG(DISCIO, "More hash exceptions than expected"); return false; } if (exception_list_size + *bytes_used > bytes_written) return true; *bytes_used += exception_list_size; --m_exception_lists; } return true; } } // namespace DiscIO