Merge pull request #6378 from stenzek/vulkan-redundant-converter

Vulkan: Remove redundant YUYV conversion shaders
This commit is contained in:
Mat M 2018-02-14 02:45:33 -05:00 committed by GitHub
commit dff7837715
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 0 additions and 195 deletions

View File

@ -71,11 +71,6 @@ TextureConverter::~TextureConverter()
if (it.second.compute_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), it.second.compute_shader, nullptr);
}
if (m_rgb_to_yuyv_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_rgb_to_yuyv_shader, nullptr);
if (m_yuyv_to_rgb_shader != VK_NULL_HANDLE)
vkDestroyShaderModule(g_vulkan_context->GetDevice(), m_yuyv_to_rgb_shader, nullptr);
}
bool TextureConverter::Initialize()
@ -104,12 +99,6 @@ bool TextureConverter::Initialize()
return false;
}
if (!CompileYUYVConversionShaders())
{
PanicAlert("Failed to compile YUYV conversion shaders");
return false;
}
return true;
}
@ -275,113 +264,6 @@ void TextureConverter::EncodeTextureToMemory(VkImageView src_texture, u8* dest_p
m_encoding_readback_texture->ReadTexels(copy_rect, dest_ptr, memory_stride);
}
void TextureConverter::EncodeTextureToMemoryYUYV(void* dst_ptr, u32 dst_width, u32 dst_stride,
u32 dst_height, Texture2D* src_texture,
const MathUtil::Rectangle<int>& src_rect)
{
StateTracker::GetInstance()->EndRenderPass();
// Borrow framebuffer from EFB2RAM encoder.
VkCommandBuffer command_buffer = g_command_buffer_mgr->GetCurrentCommandBuffer();
src_texture->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
static_cast<VKTexture*>(m_encoding_render_texture.get())
->GetRawTexIdentifier()
->TransitionToLayout(command_buffer, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// Use fragment shader to convert RGBA to YUYV.
// Use linear sampler for downscaling. This texture is in BGRA order, so the data is already in
// the order the guest is expecting and we don't have to swap it at readback time. The width
// is halved because we're using an RGBA8 texture, but the YUYV data is two bytes per pixel.
u32 output_width = dst_width / 2;
VkRenderPass render_pass = g_object_cache->GetRenderPass(
Util::GetVkFormatForHostTextureFormat(m_encoding_render_texture->GetConfig().format),
VK_FORMAT_UNDEFINED, 1, VK_ATTACHMENT_LOAD_OP_DONT_CARE);
UtilityShaderDraw draw(
command_buffer, g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_STANDARD), render_pass,
g_shader_cache->GetPassthroughVertexShader(), VK_NULL_HANDLE, m_rgb_to_yuyv_shader);
VkRect2D region = {{0, 0}, {output_width, dst_height}};
draw.BeginRenderPass(static_cast<VKTexture*>(m_encoding_render_texture.get())->GetFramebuffer(),
region);
draw.SetPSSampler(0, src_texture->GetView(), g_object_cache->GetLinearSampler());
draw.DrawQuad(0, 0, static_cast<int>(output_width), static_cast<int>(dst_height), src_rect.left,
src_rect.top, 0, src_rect.GetWidth(), src_rect.GetHeight(),
static_cast<int>(src_texture->GetWidth()),
static_cast<int>(src_texture->GetHeight()));
draw.EndRenderPass();
// Copy from encoding texture to download buffer.
MathUtil::Rectangle<int> copy_rect(0, 0, output_width, dst_height);
m_encoding_readback_texture->CopyFromTexture(m_encoding_render_texture.get(), copy_rect, 0, 0,
copy_rect);
m_encoding_readback_texture->ReadTexels(copy_rect, dst_ptr, dst_stride);
}
void TextureConverter::DecodeYUYVTextureFromMemory(VKTexture* dst_texture, const void* src_ptr,
u32 src_width, u32 src_stride, u32 src_height)
{
// Copies (and our decoding step) cannot be done inside a render pass.
StateTracker::GetInstance()->EndRenderPass();
StateTracker::GetInstance()->SetPendingRebind();
// Pack each row without any padding in the texel buffer.
size_t upload_stride = src_width * sizeof(u16);
size_t upload_size = upload_stride * src_height;
// Reserve space in the texel buffer for storing the raw image.
if (!ReserveTexelBufferStorage(upload_size, sizeof(u16)))
return;
// Handle pitch differences here.
if (src_stride != upload_stride)
{
const u8* src_row_ptr = reinterpret_cast<const u8*>(src_ptr);
u8* dst_row_ptr = m_texel_buffer->GetCurrentHostPointer();
size_t copy_size = std::min(upload_stride, static_cast<size_t>(src_stride));
for (u32 row = 0; row < src_height; row++)
{
std::memcpy(dst_row_ptr, src_row_ptr, copy_size);
src_row_ptr += src_stride;
dst_row_ptr += upload_stride;
}
}
else
{
std::memcpy(m_texel_buffer->GetCurrentHostPointer(), src_ptr, upload_size);
}
VkDeviceSize texel_buffer_offset = m_texel_buffer->GetCurrentOffset();
m_texel_buffer->CommitMemory(upload_size);
dst_texture->GetRawTexIdentifier()->TransitionToLayout(
g_command_buffer_mgr->GetCurrentCommandBuffer(), VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
// We divide the offset by 4 here because we're fetching RGBA8 elements.
// The stride is in RGBA8 elements, so we divide by two because our data is two bytes per pixel.
struct PSUniformBlock
{
int buffer_offset;
int src_stride;
};
PSUniformBlock push_constants = {static_cast<int>(texel_buffer_offset / sizeof(u32)),
static_cast<int>(src_width / 2)};
// Convert from the YUYV data now in the intermediate texture to RGBA in the destination.
VkRenderPass render_pass = g_object_cache->GetRenderPass(
dst_texture->GetRawTexIdentifier()->GetFormat(), VK_FORMAT_UNDEFINED,
dst_texture->GetRawTexIdentifier()->GetSamples(), VK_ATTACHMENT_LOAD_OP_DONT_CARE);
UtilityShaderDraw draw(g_command_buffer_mgr->GetCurrentCommandBuffer(),
g_object_cache->GetPipelineLayout(PIPELINE_LAYOUT_TEXTURE_CONVERSION),
render_pass, g_shader_cache->GetScreenQuadVertexShader(), VK_NULL_HANDLE,
m_yuyv_to_rgb_shader);
VkRect2D region = {{0, 0}, {src_width, src_height}};
draw.BeginRenderPass(dst_texture->GetFramebuffer(), region);
draw.SetViewportAndScissor(0, 0, static_cast<int>(src_width), static_cast<int>(src_height));
draw.SetPSTexelBuffer(m_texel_buffer_view_rgba8_unorm);
draw.SetPushConstants(&push_constants, sizeof(push_constants));
draw.DrawWithoutVertexBuffer(4);
draw.EndRenderPass();
}
bool TextureConverter::SupportsTextureDecoding(TextureFormat format, TLUTFormat palette_format)
{
auto key = std::make_pair(format, palette_format);
@ -743,67 +625,4 @@ bool TextureConverter::CreateDecodingTexture()
&clear_value, 1, &clear_range);
return true;
}
bool TextureConverter::CompileYUYVConversionShaders()
{
static const char RGB_TO_YUYV_SHADER_SOURCE[] = R"(
SAMPLER_BINDING(0) uniform sampler2DArray source;
layout(location = 0) in vec3 uv0;
layout(location = 1) in vec4 col0;
layout(location = 0) out vec4 ocol0;
const vec3 y_const = vec3(0.257,0.504,0.098);
const vec3 u_const = vec3(-0.148,-0.291,0.439);
const vec3 v_const = vec3(0.439,-0.368,-0.071);
const vec4 const3 = vec4(0.0625,0.5,0.0625,0.5);
void main()
{
vec3 c0 = texture(source, vec3(uv0.xy - dFdx(uv0.xy) * 0.25, 0.0)).rgb;
vec3 c1 = texture(source, vec3(uv0.xy + dFdx(uv0.xy) * 0.25, 0.0)).rgb;
vec3 c01 = (c0 + c1) * 0.5;
ocol0 = vec4(dot(c1, y_const),
dot(c01,u_const),
dot(c0,y_const),
dot(c01, v_const)) + const3;
}
)";
static const char YUYV_TO_RGB_SHADER_SOURCE[] = R"(
layout(std140, push_constant) uniform PCBlock
{
int buffer_offset;
int src_stride;
} PC;
TEXEL_BUFFER_BINDING(0) uniform samplerBuffer source;
layout(location = 0) in vec3 uv0;
layout(location = 0) out vec4 ocol0;
void main()
{
ivec2 uv = ivec2(gl_FragCoord.xy);
int buffer_pos = PC.buffer_offset + uv.y * PC.src_stride + (uv.x / 2);
vec4 c0 = texelFetch(source, buffer_pos);
float y = mix(c0.r, c0.b, (uv.x & 1) == 1);
float yComp = 1.164 * (y - 0.0625);
float uComp = c0.g - 0.5;
float vComp = c0.a - 0.5;
ocol0 = vec4(yComp + (1.596 * vComp),
yComp - (0.813 * vComp) - (0.391 * uComp),
yComp + (2.018 * uComp),
1.0);
}
)";
std::string header = g_shader_cache->GetUtilityShaderHeader();
std::string source = header + RGB_TO_YUYV_SHADER_SOURCE;
m_rgb_to_yuyv_shader = Util::CompileAndCreateFragmentShader(source);
source = header + YUYV_TO_RGB_SHADER_SOURCE;
m_yuyv_to_rgb_shader = Util::CompileAndCreateFragmentShader(source);
return m_rgb_to_yuyv_shader != VK_NULL_HANDLE && m_yuyv_to_rgb_shader != VK_NULL_HANDLE;
}
} // namespace Vulkan

View File

@ -44,14 +44,6 @@ public:
u32 native_width, u32 bytes_per_row, u32 num_blocks_y,
u32 memory_stride, const EFBRectangle& src_rect, bool scale_by_half);
// Encodes texture to guest memory in XFB (YUYV) format.
void EncodeTextureToMemoryYUYV(void* dst_ptr, u32 dst_width, u32 dst_stride, u32 dst_height,
Texture2D* src_texture, const MathUtil::Rectangle<int>& src_rect);
// Decodes data from guest memory in XFB (YUYV) format to a RGBA format texture on the GPU.
void DecodeYUYVTextureFromMemory(VKTexture* dst_texture, const void* src_ptr, u32 src_width,
u32 src_stride, u32 src_height);
bool SupportsTextureDecoding(TextureFormat format, TLUTFormat palette_format);
void DecodeTexture(VkCommandBuffer command_buffer, TextureCache::TCacheEntry* entry,
u32 dst_level, const u8* data, size_t data_size, TextureFormat format,
@ -79,8 +71,6 @@ private:
bool CreateEncodingTexture();
bool CreateDecodingTexture();
bool CompileYUYVConversionShaders();
// Allocates storage in the texel command buffer of the specified size.
// If the buffer does not have enough space, executes the current command buffer and tries again.
// If this is done, g_command_buffer_mgr->GetCurrentCommandBuffer() will return a different value,
@ -118,10 +108,6 @@ private:
};
std::map<std::pair<TextureFormat, TLUTFormat>, TextureDecodingPipeline> m_decoding_pipelines;
std::unique_ptr<Texture2D> m_decoding_texture;
// XFB encoding/decoding shaders
VkShaderModule m_rgb_to_yuyv_shader = VK_NULL_HANDLE;
VkShaderModule m_yuyv_to_rgb_shader = VK_NULL_HANDLE;
};
} // namespace Vulkan