Merge pull request #12000 from Filoppi/window_res_fix

Video: Fix issues with the window presentation
This commit is contained in:
Admiral H. Curtiss 2023-08-28 23:50:50 +02:00 committed by GitHub
commit df120b0630
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 150 additions and 33 deletions

View File

@ -23,6 +23,9 @@
std::unique_ptr<VideoCommon::Presenter> g_presenter;
// The video encoder needs the image to be a multiple of x samples.
static constexpr int VIDEO_ENCODER_LCM = 4;
namespace VideoCommon
{
static float AspectToWidescreen(float aspect)
@ -30,6 +33,39 @@ static float AspectToWidescreen(float aspect)
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
static std::tuple<int, int> FindClosestIntegerResolution(float width, float height,
float aspect_ratio)
{
// We can't round both the x and y resolution as that might generate an aspect ratio
// further away from the target one, we also can't either ceil or floor both sides,
// so we find the combination or flooring and ceiling that is closest to the target ar.
const int ceiled_width = static_cast<int>(std::ceil(width));
const int ceiled_height = static_cast<int>(std::ceil(height));
const int floored_width = static_cast<int>(std::floor(width));
const int floored_height = static_cast<int>(std::floor(height));
int int_width = floored_width;
int int_height = floored_height;
float min_aspect_ratio_distance = std::numeric_limits<float>::max();
for (const int new_width : std::array<int, 2>{ceiled_width, floored_width})
{
for (const int new_height : std::array<int, 2>{ceiled_height, floored_height})
{
const float new_aspect_ratio = static_cast<float>(new_width) / new_height;
const float aspect_ratio_distance = std::abs((new_aspect_ratio / aspect_ratio) - 1.f);
if (aspect_ratio_distance < min_aspect_ratio_distance)
{
min_aspect_ratio_distance = aspect_ratio_distance;
int_width = new_width;
int_height = new_height;
}
}
}
return std::make_tuple(int_width, int_height);
}
Presenter::Presenter()
{
m_config_changed =
@ -244,9 +280,12 @@ Presenter::ConvertStereoRectangle(const MathUtil::Rectangle<int>& rc) const
return std::make_tuple(left_rc, right_rc);
}
float Presenter::CalculateDrawAspectRatio() const
float Presenter::CalculateDrawAspectRatio(bool allow_stretch) const
{
const auto aspect_mode = g_ActiveConfig.aspect_mode;
auto aspect_mode = g_ActiveConfig.aspect_mode;
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto;
// If stretch is enabled, we prefer the aspect ratio of the window.
if (aspect_mode == AspectMode::Stretch)
@ -326,14 +365,45 @@ void* Presenter::GetNewSurfaceHandle()
u32 Presenter::AutoIntegralScale() const
{
// Calculate a scale based on the window size
u32 width = EFB_WIDTH * m_target_rectangle.GetWidth() / m_last_xfb_width;
u32 height = EFB_HEIGHT * m_target_rectangle.GetHeight() / m_last_xfb_height;
const float efb_aspect_ratio = static_cast<float>(EFB_WIDTH) / EFB_HEIGHT;
const float target_aspect_ratio =
static_cast<float>(m_target_rectangle.GetWidth()) / m_target_rectangle.GetHeight();
u32 target_width;
u32 target_height;
// Instead of using the entire window (back buffer) resolution,
// find the portion of it that will actually contain the EFB output,
// and ignore the portion that will likely have black bars.
if (target_aspect_ratio >= efb_aspect_ratio)
{
target_height = m_target_rectangle.GetHeight();
target_width = static_cast<u32>(
std::round((static_cast<float>(m_target_rectangle.GetWidth()) / target_aspect_ratio) *
efb_aspect_ratio));
}
else
{
target_width = m_target_rectangle.GetWidth();
target_height = static_cast<u32>(
std::round((static_cast<float>(m_target_rectangle.GetHeight()) * target_aspect_ratio) /
efb_aspect_ratio));
}
// Calculate a scale based on the adjusted window size
u32 width = EFB_WIDTH * target_width / m_last_xfb_width;
u32 height = EFB_HEIGHT * target_height / m_last_xfb_height;
return std::max((width - 1) / EFB_WIDTH + 1, (height - 1) / EFB_HEIGHT + 1);
}
void Presenter::SetWindowSize(int width, int height)
{
const auto [out_width, out_height] = g_presenter->CalculateOutputDimensions(width, height);
// While trying to guess the best window resolution, we can't allow it to use the
// "AspectMode::Stretch" setting because that would self influence the output result,
// given it would be based on the previous frame resolution
const bool allow_stretch = false;
const auto [out_width, out_height] =
g_presenter->CalculateOutputDimensions(width, height, allow_stretch);
// Track the last values of width/height to avoid sending a window resize event every frame.
if (out_width == m_last_window_request_width && out_height == m_last_window_request_height)
@ -341,13 +411,18 @@ void Presenter::SetWindowSize(int width, int height)
m_last_window_request_width = out_width;
m_last_window_request_height = out_height;
// Pass in the suggested window size. This might not always be acknowledged.
Host_RequestRenderWindowSize(out_width, out_height);
}
// Crop to exactly 16:9 or 4:3 if enabled and not AspectMode::Stretch.
std::tuple<float, float> Presenter::ApplyStandardAspectCrop(float width, float height) const
std::tuple<float, float> Presenter::ApplyStandardAspectCrop(float width, float height,
bool allow_stretch) const
{
const auto aspect_mode = g_ActiveConfig.aspect_mode;
auto aspect_mode = g_ActiveConfig.aspect_mode;
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto;
if (!g_ActiveConfig.bCrop || aspect_mode == AspectMode::Stretch)
return {width, height};
@ -411,11 +486,12 @@ void Presenter::UpdateDrawRectangle()
// The rendering window size
const float win_width = static_cast<float>(m_backbuffer_width);
const float win_height = static_cast<float>(m_backbuffer_height);
const float win_aspect_ratio = win_width / win_height;
// FIXME: this breaks at very low widget sizes
// Make ControllerInterface aware of the render window region actually being used
// to adjust mouse cursor inputs.
g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / (win_width / win_height));
g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / win_aspect_ratio);
float draw_width = draw_aspect_ratio;
float draw_height = 1;
@ -424,7 +500,7 @@ void Presenter::UpdateDrawRectangle()
auto [crop_width, crop_height] = ApplyStandardAspectCrop(draw_width, draw_height);
// scale the picture to fit the rendering window
if (win_width / win_height >= crop_width / crop_height)
if (win_aspect_ratio >= crop_width / crop_height)
{
// the window is flatter than the picture
draw_width *= win_height / crop_height;
@ -441,27 +517,42 @@ void Presenter::UpdateDrawRectangle()
crop_width = win_width;
}
// ensure divisibility by 4 to make it compatible with all the video encoders
int int_draw_width;
int int_draw_height;
if (g_frame_dumper->IsFrameDumping())
{
draw_width = std::ceil(draw_width) - static_cast<int>(std::ceil(draw_width)) % 4;
draw_height = std::ceil(draw_height) - static_cast<int>(std::ceil(draw_height)) % 4;
// ensure divisibility by "VIDEO_ENCODER_LCM" to make it compatible with all the video encoders.
// Note that this is theoretically only necessary when recording videos and not screenshots.
draw_width =
std::ceil(draw_width) - static_cast<int>(std::ceil(draw_width)) % VIDEO_ENCODER_LCM;
draw_height =
std::ceil(draw_height) - static_cast<int>(std::ceil(draw_height)) % VIDEO_ENCODER_LCM;
int_draw_width = static_cast<int>(draw_width);
int_draw_height = static_cast<int>(draw_height);
}
else
{
const auto int_draw_res =
FindClosestIntegerResolution(draw_width, draw_height, win_aspect_ratio);
int_draw_width = std::get<0>(int_draw_res);
int_draw_height = std::get<1>(int_draw_res);
}
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - draw_width / 2.0));
m_target_rectangle.top = static_cast<int>(std::round(win_height / 2.0 - draw_height / 2.0));
m_target_rectangle.right = m_target_rectangle.left + static_cast<int>(draw_width);
m_target_rectangle.bottom = m_target_rectangle.top + static_cast<int>(draw_height);
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - int_draw_width / 2.0));
m_target_rectangle.top = static_cast<int>(std::round(win_height / 2.0 - int_draw_height / 2.0));
m_target_rectangle.right = m_target_rectangle.left + int_draw_width;
m_target_rectangle.bottom = m_target_rectangle.top + int_draw_height;
}
std::tuple<float, float> Presenter::ScaleToDisplayAspectRatio(const int width,
const int height) const
std::tuple<float, float> Presenter::ScaleToDisplayAspectRatio(const int width, const int height,
bool allow_stretch) const
{
// Scale either the width or height depending the content aspect ratio.
// This way we preserve as much resolution as possible when scaling.
float scaled_width = static_cast<float>(width);
float scaled_height = static_cast<float>(height);
const float draw_aspect = CalculateDrawAspectRatio();
const float draw_aspect = CalculateDrawAspectRatio(allow_stretch);
if (scaled_width / scaled_height >= draw_aspect)
scaled_height = scaled_width / draw_aspect;
else
@ -469,23 +560,46 @@ std::tuple<float, float> Presenter::ScaleToDisplayAspectRatio(const int width,
return std::make_tuple(scaled_width, scaled_height);
}
std::tuple<int, int> Presenter::CalculateOutputDimensions(int width, int height) const
std::tuple<int, int> Presenter::CalculateOutputDimensions(int width, int height,
bool allow_stretch) const
{
width = std::max(width, 1);
height = std::max(height, 1);
auto [scaled_width, scaled_height] = ScaleToDisplayAspectRatio(width, height);
auto [scaled_width, scaled_height] = ScaleToDisplayAspectRatio(width, height, allow_stretch);
// Apply crop if enabled.
std::tie(scaled_width, scaled_height) = ApplyStandardAspectCrop(scaled_width, scaled_height);
std::tie(scaled_width, scaled_height) =
ApplyStandardAspectCrop(scaled_width, scaled_height, allow_stretch);
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
auto aspect_mode = g_ActiveConfig.aspect_mode;
// UpdateDrawRectangle() makes sure that the rendered image is divisible by four for video
// encoders, so do that here too to match it
width -= width % 4;
height -= height % 4;
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto;
// Find the closest integer aspect ratio,
// this avoids a small black line from being drawn on one of the four edges
if (!g_ActiveConfig.bCrop && aspect_mode != AspectMode::Stretch)
{
const float draw_aspect_ratio = CalculateDrawAspectRatio(allow_stretch);
const auto [int_width, int_height] =
FindClosestIntegerResolution(scaled_width, scaled_height, draw_aspect_ratio);
width = int_width;
height = int_height;
}
else
{
width = static_cast<int>(std::ceil(scaled_width));
height = static_cast<int>(std::ceil(scaled_height));
}
if (g_frame_dumper->IsFrameDumping())
{
// UpdateDrawRectangle() makes sure that the rendered image is divisible by "VIDEO_ENCODER_LCM"
// for video encoders, so do that here too to match it
width -= width % VIDEO_ENCODER_LCM;
height -= height % VIDEO_ENCODER_LCM;
}
return std::make_tuple(width, height);
}

View File

@ -58,7 +58,7 @@ public:
void UpdateDrawRectangle();
float CalculateDrawAspectRatio() const;
float CalculateDrawAspectRatio(bool allow_stretch = true) const;
// Crops the target rectangle to the framebuffer dimensions, reducing the size of the source
// rectangle if it is greater. Works even if the source and target rectangles don't have a
@ -103,9 +103,12 @@ private:
void ProcessFrameDumping(u64 ticks) const;
std::tuple<int, int> CalculateOutputDimensions(int width, int height) const;
std::tuple<float, float> ApplyStandardAspectCrop(float width, float height) const;
std::tuple<float, float> ScaleToDisplayAspectRatio(int width, int height) const;
std::tuple<int, int> CalculateOutputDimensions(int width, int height,
bool allow_stretch = true) const;
std::tuple<float, float> ApplyStandardAspectCrop(float width, float height,
bool allow_stretch = true) const;
std::tuple<float, float> ScaleToDisplayAspectRatio(int width, int height,
bool allow_stretch = true) const;
// Use this to convert a single target rectangle to two stereo rectangles
std::tuple<MathUtil::Rectangle<int>, MathUtil::Rectangle<int>>