My first commit!

Done some refactoring around the PowerPC stuff. Main changes:

* Declared CPUCoreBase class
* Wrapped the interpreter into a class and made both it and JitBase inherit from CPUCoreBase
* Avoided reinitializing interpreter's and Jit's tables

A great deal of this work was done by nodchip, so kudos to him :-)
To finish, please forgive me for my not-so-great english.

git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@6132 8ced0084-cf51-0410-be5f-012b33b47a6e
This commit is contained in:
anusko 2010-08-26 17:44:13 +00:00
parent 46e8ea8094
commit d082f50c34
19 changed files with 703 additions and 617 deletions

View File

@ -0,0 +1,32 @@
// Copyright (C) 2010 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#ifndef _CPUCOREBASE_H
#define _CPUCOREBASE_H
class CPUCoreBase
{
public:
virtual void Init() = 0;
virtual void Shutdown() = 0;
virtual void ClearCache() = 0;
virtual void Run() = 0;
virtual void SingleStep() = 0;
virtual const char *GetName() = 0;
};
#endif

View File

@ -31,36 +31,33 @@ namespace {
u32 last_pc; u32 last_pc;
} }
bool Interpreter::m_EndBlock;
// function tables // function tables
Interpreter::_interpreterInstruction Interpreter::m_opTable[64];
Interpreter::_interpreterInstruction Interpreter::m_opTable4[1024];
Interpreter::_interpreterInstruction Interpreter::m_opTable19[1024];
Interpreter::_interpreterInstruction Interpreter::m_opTable31[1024];
Interpreter::_interpreterInstruction Interpreter::m_opTable59[32];
Interpreter::_interpreterInstruction Interpreter::m_opTable63[1024];
namespace Interpreter void Interpreter::RunTable4(UGeckoInstruction _inst) {m_opTable4 [_inst.SUBOP10](_inst);}
void Interpreter::RunTable19(UGeckoInstruction _inst) {m_opTable19[_inst.SUBOP10](_inst);}
void Interpreter::RunTable31(UGeckoInstruction _inst) {m_opTable31[_inst.SUBOP10](_inst);}
void Interpreter::RunTable59(UGeckoInstruction _inst) {m_opTable59[_inst.SUBOP5 ](_inst);}
void Interpreter::RunTable63(UGeckoInstruction _inst) {m_opTable63[_inst.SUBOP10](_inst);}
void Interpreter::Init()
{ {
// cpu register to keep the code readable g_bReserve = false;
u32 *m_GPR = PowerPC::ppcState.gpr; m_EndBlock = false;
bool m_EndBlock = false; }
_interpreterInstruction m_opTable[64]; void Interpreter::Shutdown()
_interpreterInstruction m_opTable4[1024];
_interpreterInstruction m_opTable19[1024];
_interpreterInstruction m_opTable31[1024];
_interpreterInstruction m_opTable59[32];
_interpreterInstruction m_opTable63[1024];
void RunTable4(UGeckoInstruction _inst) {m_opTable4 [_inst.SUBOP10](_inst);}
void RunTable19(UGeckoInstruction _inst) {m_opTable19[_inst.SUBOP10](_inst);}
void RunTable31(UGeckoInstruction _inst) {m_opTable31[_inst.SUBOP10](_inst);}
void RunTable59(UGeckoInstruction _inst) {m_opTable59[_inst.SUBOP5 ](_inst);}
void RunTable63(UGeckoInstruction _inst) {m_opTable63[_inst.SUBOP10](_inst);}
void Init()
{ {
} }
void Shutdown() static void patches()
{
}
void patches()
{ {
/* if (Memory::Read_U16(0x90000880) == 0x130b) /* if (Memory::Read_U16(0x90000880) == 0x130b)
{ {
@ -77,7 +74,7 @@ void patches()
}*/ }*/
} }
void SingleStepInner(void) void Interpreter::SingleStepInner(void)
{ {
static UGeckoInstruction instCode; static UGeckoInstruction instCode;
@ -135,7 +132,7 @@ void SingleStepInner(void)
patches(); patches();
} }
void SingleStep() void Interpreter::SingleStep()
{ {
SingleStepInner(); SingleStepInner();
@ -159,7 +156,7 @@ int ShowSteps = 300;
#endif #endif
// FastRun - inspired by GCemu (to imitate the JIT so that they can be compared). // FastRun - inspired by GCemu (to imitate the JIT so that they can be compared).
void Run() void Interpreter::Run()
{ {
while (!PowerPC::GetState()) while (!PowerPC::GetState())
{ {
@ -244,7 +241,7 @@ void Run()
} }
} }
void unknown_instruction(UGeckoInstruction _inst) void Interpreter::unknown_instruction(UGeckoInstruction _inst)
{ {
if (_inst.hex != 0) if (_inst.hex != 0)
{ {
@ -257,4 +254,18 @@ void unknown_instruction(UGeckoInstruction _inst)
} }
} // namespace void Interpreter::ClearCache()
{
// Do nothing.
}
const char *Interpreter::GetName()
{
return "Interpreter";
}
Interpreter *Interpreter::getInstance()
{
static Interpreter instance;
return &instance;
}

View File

@ -20,15 +20,19 @@
#include "../Gekko.h" #include "../Gekko.h"
#include "../PowerPC.h" #include "../PowerPC.h"
#include "../CPUCoreBase.h"
namespace Interpreter class Interpreter : public CPUCoreBase
{ {
public:
void Init(); void Init();
void Shutdown(); void Shutdown();
void Reset(); void Reset();
void SingleStep(); void SingleStep();
void SingleStepInner(); void SingleStepInner();
void Run(); void Run();
void ClearCache();
const char *GetName();
typedef void (*_interpreterInstruction)(UGeckoInstruction instCode); typedef void (*_interpreterInstruction)(UGeckoInstruction instCode);
@ -36,288 +40,302 @@ namespace Interpreter
void Log(); void Log();
// pointer to the CPU-Regs to keep the code cleaner // to keep the code cleaner
extern u32* m_GPR; #define m_GPR (PowerPC::ppcState.gpr)
extern bool m_EndBlock; static bool m_EndBlock;
void unknown_instruction(UGeckoInstruction _inst); static void unknown_instruction(UGeckoInstruction _inst);
// Branch Instructions // Branch Instructions
void bx(UGeckoInstruction _inst); static void bx(UGeckoInstruction _inst);
void bcx(UGeckoInstruction _inst); static void bcx(UGeckoInstruction _inst);
void bcctrx(UGeckoInstruction _inst); static void bcctrx(UGeckoInstruction _inst);
void bclrx(UGeckoInstruction _inst); static void bclrx(UGeckoInstruction _inst);
void HLEFunction(UGeckoInstruction _inst); static void HLEFunction(UGeckoInstruction _inst);
void CompiledBlock(UGeckoInstruction _inst); static void CompiledBlock(UGeckoInstruction _inst);
// Syscall Instruction // Syscall Instruction
void sc(UGeckoInstruction _inst); static void sc(UGeckoInstruction _inst);
// Floating Point Instructions // Floating Point Instructions
void faddsx(UGeckoInstruction _inst); static void faddsx(UGeckoInstruction _inst);
void fdivsx(UGeckoInstruction _inst); static void fdivsx(UGeckoInstruction _inst);
void fmaddsx(UGeckoInstruction _inst); static void fmaddsx(UGeckoInstruction _inst);
void fmsubsx(UGeckoInstruction _inst); static void fmsubsx(UGeckoInstruction _inst);
void fmulsx(UGeckoInstruction _inst); static void fmulsx(UGeckoInstruction _inst);
void fnmaddsx(UGeckoInstruction _inst); static void fnmaddsx(UGeckoInstruction _inst);
void fnmsubsx(UGeckoInstruction _inst); static void fnmsubsx(UGeckoInstruction _inst);
void fresx(UGeckoInstruction _inst); static void fresx(UGeckoInstruction _inst);
// void fsqrtsx(UGeckoInstruction _inst); // static void fsqrtsx(UGeckoInstruction _inst);
void fsubsx(UGeckoInstruction _inst); static void fsubsx(UGeckoInstruction _inst);
void fabsx(UGeckoInstruction _inst); static void fabsx(UGeckoInstruction _inst);
void fcmpo(UGeckoInstruction _inst); static void fcmpo(UGeckoInstruction _inst);
void fcmpu(UGeckoInstruction _inst); static void fcmpu(UGeckoInstruction _inst);
void fctiwx(UGeckoInstruction _inst); static void fctiwx(UGeckoInstruction _inst);
void fctiwzx(UGeckoInstruction _inst); static void fctiwzx(UGeckoInstruction _inst);
void fmrx(UGeckoInstruction _inst); static void fmrx(UGeckoInstruction _inst);
void fnabsx(UGeckoInstruction _inst); static void fnabsx(UGeckoInstruction _inst);
void fnegx(UGeckoInstruction _inst); static void fnegx(UGeckoInstruction _inst);
void frspx(UGeckoInstruction _inst); static void frspx(UGeckoInstruction _inst);
void faddx(UGeckoInstruction _inst); static void faddx(UGeckoInstruction _inst);
void fdivx(UGeckoInstruction _inst); static void fdivx(UGeckoInstruction _inst);
void fmaddx(UGeckoInstruction _inst); static void fmaddx(UGeckoInstruction _inst);
void fmsubx(UGeckoInstruction _inst); static void fmsubx(UGeckoInstruction _inst);
void fmulx(UGeckoInstruction _inst); static void fmulx(UGeckoInstruction _inst);
void fnmaddx(UGeckoInstruction _inst); static void fnmaddx(UGeckoInstruction _inst);
void fnmsubx(UGeckoInstruction _inst); static void fnmsubx(UGeckoInstruction _inst);
void frsqrtex(UGeckoInstruction _inst); static void frsqrtex(UGeckoInstruction _inst);
void fselx(UGeckoInstruction _inst); static void fselx(UGeckoInstruction _inst);
void fsqrtx(UGeckoInstruction _inst); static void fsqrtx(UGeckoInstruction _inst);
void fsubx(UGeckoInstruction _inst); static void fsubx(UGeckoInstruction _inst);
// Integer Instructions // Integer Instructions
void addi(UGeckoInstruction _inst); static void addi(UGeckoInstruction _inst);
void addic(UGeckoInstruction _inst); static void addic(UGeckoInstruction _inst);
void addic_rc(UGeckoInstruction _inst); static void addic_rc(UGeckoInstruction _inst);
void addis(UGeckoInstruction _inst); static void addis(UGeckoInstruction _inst);
void andi_rc(UGeckoInstruction _inst); static void andi_rc(UGeckoInstruction _inst);
void andis_rc(UGeckoInstruction _inst); static void andis_rc(UGeckoInstruction _inst);
void cmpi(UGeckoInstruction _inst); static void cmpi(UGeckoInstruction _inst);
void cmpli(UGeckoInstruction _inst); static void cmpli(UGeckoInstruction _inst);
void mulli(UGeckoInstruction _inst); static void mulli(UGeckoInstruction _inst);
void ori(UGeckoInstruction _inst); static void ori(UGeckoInstruction _inst);
void oris(UGeckoInstruction _inst); static void oris(UGeckoInstruction _inst);
void subfic(UGeckoInstruction _inst); static void subfic(UGeckoInstruction _inst);
void twi(UGeckoInstruction _inst); static void twi(UGeckoInstruction _inst);
void xori(UGeckoInstruction _inst); static void xori(UGeckoInstruction _inst);
void xoris(UGeckoInstruction _inst); static void xoris(UGeckoInstruction _inst);
void rlwimix(UGeckoInstruction _inst); static void rlwimix(UGeckoInstruction _inst);
void rlwinmx(UGeckoInstruction _inst); static void rlwinmx(UGeckoInstruction _inst);
void rlwnmx(UGeckoInstruction _inst); static void rlwnmx(UGeckoInstruction _inst);
void andx(UGeckoInstruction _inst); static void andx(UGeckoInstruction _inst);
void andcx(UGeckoInstruction _inst); static void andcx(UGeckoInstruction _inst);
void cmp(UGeckoInstruction _inst); static void cmp(UGeckoInstruction _inst);
void cmpl(UGeckoInstruction _inst); static void cmpl(UGeckoInstruction _inst);
void cntlzwx(UGeckoInstruction _inst); static void cntlzwx(UGeckoInstruction _inst);
void eqvx(UGeckoInstruction _inst); static void eqvx(UGeckoInstruction _inst);
void extsbx(UGeckoInstruction _inst); static void extsbx(UGeckoInstruction _inst);
void extshx(UGeckoInstruction _inst); static void extshx(UGeckoInstruction _inst);
void nandx(UGeckoInstruction _inst); static void nandx(UGeckoInstruction _inst);
void norx(UGeckoInstruction _inst); static void norx(UGeckoInstruction _inst);
void orx(UGeckoInstruction _inst); static void orx(UGeckoInstruction _inst);
void orcx(UGeckoInstruction _inst); static void orcx(UGeckoInstruction _inst);
void slwx(UGeckoInstruction _inst); static void slwx(UGeckoInstruction _inst);
void srawx(UGeckoInstruction _inst); static void srawx(UGeckoInstruction _inst);
void srawix(UGeckoInstruction _inst); static void srawix(UGeckoInstruction _inst);
void srwx(UGeckoInstruction _inst); static void srwx(UGeckoInstruction _inst);
void tw(UGeckoInstruction _inst); static void tw(UGeckoInstruction _inst);
void xorx(UGeckoInstruction _inst); static void xorx(UGeckoInstruction _inst);
void addx(UGeckoInstruction _inst); static void addx(UGeckoInstruction _inst);
void addcx(UGeckoInstruction _inst); static void addcx(UGeckoInstruction _inst);
void addex(UGeckoInstruction _inst); static void addex(UGeckoInstruction _inst);
void addmex(UGeckoInstruction _inst); static void addmex(UGeckoInstruction _inst);
void addzex(UGeckoInstruction _inst); static void addzex(UGeckoInstruction _inst);
void divwx(UGeckoInstruction _inst); static void divwx(UGeckoInstruction _inst);
void divwux(UGeckoInstruction _inst); static void divwux(UGeckoInstruction _inst);
void mulhwx(UGeckoInstruction _inst); static void mulhwx(UGeckoInstruction _inst);
void mulhwux(UGeckoInstruction _inst); static void mulhwux(UGeckoInstruction _inst);
void mullwx(UGeckoInstruction _inst); static void mullwx(UGeckoInstruction _inst);
void negx(UGeckoInstruction _inst); static void negx(UGeckoInstruction _inst);
void subfx(UGeckoInstruction _inst); static void subfx(UGeckoInstruction _inst);
void subfcx(UGeckoInstruction _inst); static void subfcx(UGeckoInstruction _inst);
void subfex(UGeckoInstruction _inst); static void subfex(UGeckoInstruction _inst);
void subfmex(UGeckoInstruction _inst); static void subfmex(UGeckoInstruction _inst);
void subfzex(UGeckoInstruction _inst); static void subfzex(UGeckoInstruction _inst);
// Load/Store Instructions // Load/Store Instructions
void lbz(UGeckoInstruction _inst); static void lbz(UGeckoInstruction _inst);
void lbzu(UGeckoInstruction _inst); static void lbzu(UGeckoInstruction _inst);
void lfd(UGeckoInstruction _inst); static void lfd(UGeckoInstruction _inst);
void lfdu(UGeckoInstruction _inst); static void lfdu(UGeckoInstruction _inst);
void lfs(UGeckoInstruction _inst); static void lfs(UGeckoInstruction _inst);
void lfsu(UGeckoInstruction _inst); static void lfsu(UGeckoInstruction _inst);
void lha(UGeckoInstruction _inst); static void lha(UGeckoInstruction _inst);
void lhau(UGeckoInstruction _inst); static void lhau(UGeckoInstruction _inst);
void lhz(UGeckoInstruction _inst); static void lhz(UGeckoInstruction _inst);
void lhzu(UGeckoInstruction _inst); static void lhzu(UGeckoInstruction _inst);
void lmw(UGeckoInstruction _inst); static void lmw(UGeckoInstruction _inst);
void lwz(UGeckoInstruction _inst); static void lwz(UGeckoInstruction _inst);
void lwzu(UGeckoInstruction _inst); static void lwzu(UGeckoInstruction _inst);
void stb(UGeckoInstruction _inst); static void stb(UGeckoInstruction _inst);
void stbu(UGeckoInstruction _inst); static void stbu(UGeckoInstruction _inst);
void stfd(UGeckoInstruction _inst); static void stfd(UGeckoInstruction _inst);
void stfdu(UGeckoInstruction _inst); static void stfdu(UGeckoInstruction _inst);
void stfs(UGeckoInstruction _inst); static void stfs(UGeckoInstruction _inst);
void stfsu(UGeckoInstruction _inst); static void stfsu(UGeckoInstruction _inst);
void sth(UGeckoInstruction _inst); static void sth(UGeckoInstruction _inst);
void sthu(UGeckoInstruction _inst); static void sthu(UGeckoInstruction _inst);
void stmw(UGeckoInstruction _inst); static void stmw(UGeckoInstruction _inst);
void stw(UGeckoInstruction _inst); static void stw(UGeckoInstruction _inst);
void stwu(UGeckoInstruction _inst); static void stwu(UGeckoInstruction _inst);
void dcba(UGeckoInstruction _inst); static void dcba(UGeckoInstruction _inst);
void dcbf(UGeckoInstruction _inst); static void dcbf(UGeckoInstruction _inst);
void dcbi(UGeckoInstruction _inst); static void dcbi(UGeckoInstruction _inst);
void dcbst(UGeckoInstruction _inst); static void dcbst(UGeckoInstruction _inst);
void dcbt(UGeckoInstruction _inst); static void dcbt(UGeckoInstruction _inst);
void dcbtst(UGeckoInstruction _inst); static void dcbtst(UGeckoInstruction _inst);
void dcbz(UGeckoInstruction _inst); static void dcbz(UGeckoInstruction _inst);
void eciwx(UGeckoInstruction _inst); static void eciwx(UGeckoInstruction _inst);
void ecowx(UGeckoInstruction _inst); static void ecowx(UGeckoInstruction _inst);
void eieio(UGeckoInstruction _inst); static void eieio(UGeckoInstruction _inst);
void icbi(UGeckoInstruction _inst); static void icbi(UGeckoInstruction _inst);
void lbzux(UGeckoInstruction _inst); static void lbzux(UGeckoInstruction _inst);
void lbzx(UGeckoInstruction _inst); static void lbzx(UGeckoInstruction _inst);
void lfdux(UGeckoInstruction _inst); static void lfdux(UGeckoInstruction _inst);
void lfdx(UGeckoInstruction _inst); static void lfdx(UGeckoInstruction _inst);
void lfsux(UGeckoInstruction _inst); static void lfsux(UGeckoInstruction _inst);
void lfsx(UGeckoInstruction _inst); static void lfsx(UGeckoInstruction _inst);
void lhaux(UGeckoInstruction _inst); static void lhaux(UGeckoInstruction _inst);
void lhax(UGeckoInstruction _inst); static void lhax(UGeckoInstruction _inst);
void lhbrx(UGeckoInstruction _inst); static void lhbrx(UGeckoInstruction _inst);
void lhzux(UGeckoInstruction _inst); static void lhzux(UGeckoInstruction _inst);
void lhzx(UGeckoInstruction _inst); static void lhzx(UGeckoInstruction _inst);
void lswi(UGeckoInstruction _inst); static void lswi(UGeckoInstruction _inst);
void lswx(UGeckoInstruction _inst); static void lswx(UGeckoInstruction _inst);
void lwarx(UGeckoInstruction _inst); static void lwarx(UGeckoInstruction _inst);
void lwbrx(UGeckoInstruction _inst); static void lwbrx(UGeckoInstruction _inst);
void lwzux(UGeckoInstruction _inst); static void lwzux(UGeckoInstruction _inst);
void lwzx(UGeckoInstruction _inst); static void lwzx(UGeckoInstruction _inst);
void stbux(UGeckoInstruction _inst); static void stbux(UGeckoInstruction _inst);
void stbx(UGeckoInstruction _inst); static void stbx(UGeckoInstruction _inst);
void stfdux(UGeckoInstruction _inst); static void stfdux(UGeckoInstruction _inst);
void stfdx(UGeckoInstruction _inst); static void stfdx(UGeckoInstruction _inst);
void stfiwx(UGeckoInstruction _inst); static void stfiwx(UGeckoInstruction _inst);
void stfsux(UGeckoInstruction _inst); static void stfsux(UGeckoInstruction _inst);
void stfsx(UGeckoInstruction _inst); static void stfsx(UGeckoInstruction _inst);
void sthbrx(UGeckoInstruction _inst); static void sthbrx(UGeckoInstruction _inst);
void sthux(UGeckoInstruction _inst); static void sthux(UGeckoInstruction _inst);
void sthx(UGeckoInstruction _inst); static void sthx(UGeckoInstruction _inst);
void stswi(UGeckoInstruction _inst); static void stswi(UGeckoInstruction _inst);
void stswx(UGeckoInstruction _inst); static void stswx(UGeckoInstruction _inst);
void stwbrx(UGeckoInstruction _inst); static void stwbrx(UGeckoInstruction _inst);
void stwcxd(UGeckoInstruction _inst); static void stwcxd(UGeckoInstruction _inst);
void stwux(UGeckoInstruction _inst); static void stwux(UGeckoInstruction _inst);
void stwx(UGeckoInstruction _inst); static void stwx(UGeckoInstruction _inst);
void sync(UGeckoInstruction _inst); static void sync(UGeckoInstruction _inst);
void tlbia(UGeckoInstruction _inst); static void tlbia(UGeckoInstruction _inst);
void tlbie(UGeckoInstruction _inst); static void tlbie(UGeckoInstruction _inst);
void tlbsync(UGeckoInstruction _inst); static void tlbsync(UGeckoInstruction _inst);
// Paired Instructions // Paired Instructions
void psq_l(UGeckoInstruction _inst); static void psq_l(UGeckoInstruction _inst);
void psq_lu(UGeckoInstruction _inst); static void psq_lu(UGeckoInstruction _inst);
void psq_st(UGeckoInstruction _inst); static void psq_st(UGeckoInstruction _inst);
void psq_stu(UGeckoInstruction _inst); static void psq_stu(UGeckoInstruction _inst);
void psq_lx(UGeckoInstruction _inst); static void psq_lx(UGeckoInstruction _inst);
void psq_stx(UGeckoInstruction _inst); static void psq_stx(UGeckoInstruction _inst);
void psq_lux(UGeckoInstruction _inst); static void psq_lux(UGeckoInstruction _inst);
void psq_stux(UGeckoInstruction _inst); static void psq_stux(UGeckoInstruction _inst);
void ps_div(UGeckoInstruction _inst); static void ps_div(UGeckoInstruction _inst);
void ps_sub(UGeckoInstruction _inst); static void ps_sub(UGeckoInstruction _inst);
void ps_add(UGeckoInstruction _inst); static void ps_add(UGeckoInstruction _inst);
void ps_sel(UGeckoInstruction _inst); static void ps_sel(UGeckoInstruction _inst);
void ps_res(UGeckoInstruction _inst); static void ps_res(UGeckoInstruction _inst);
void ps_mul(UGeckoInstruction _inst); static void ps_mul(UGeckoInstruction _inst);
void ps_rsqrte(UGeckoInstruction _inst); static void ps_rsqrte(UGeckoInstruction _inst);
void ps_msub(UGeckoInstruction _inst); static void ps_msub(UGeckoInstruction _inst);
void ps_madd(UGeckoInstruction _inst); static void ps_madd(UGeckoInstruction _inst);
void ps_nmsub(UGeckoInstruction _inst); static void ps_nmsub(UGeckoInstruction _inst);
void ps_nmadd(UGeckoInstruction _inst); static void ps_nmadd(UGeckoInstruction _inst);
void ps_neg(UGeckoInstruction _inst); static void ps_neg(UGeckoInstruction _inst);
void ps_mr(UGeckoInstruction _inst); static void ps_mr(UGeckoInstruction _inst);
void ps_nabs(UGeckoInstruction _inst); static void ps_nabs(UGeckoInstruction _inst);
void ps_abs(UGeckoInstruction _inst); static void ps_abs(UGeckoInstruction _inst);
void ps_sum0(UGeckoInstruction _inst); static void ps_sum0(UGeckoInstruction _inst);
void ps_sum1(UGeckoInstruction _inst); static void ps_sum1(UGeckoInstruction _inst);
void ps_muls0(UGeckoInstruction _inst); static void ps_muls0(UGeckoInstruction _inst);
void ps_muls1(UGeckoInstruction _inst); static void ps_muls1(UGeckoInstruction _inst);
void ps_madds0(UGeckoInstruction _inst); static void ps_madds0(UGeckoInstruction _inst);
void ps_madds1(UGeckoInstruction _inst); static void ps_madds1(UGeckoInstruction _inst);
void ps_cmpu0(UGeckoInstruction _inst); static void ps_cmpu0(UGeckoInstruction _inst);
void ps_cmpo0(UGeckoInstruction _inst); static void ps_cmpo0(UGeckoInstruction _inst);
void ps_cmpu1(UGeckoInstruction _inst); static void ps_cmpu1(UGeckoInstruction _inst);
void ps_cmpo1(UGeckoInstruction _inst); static void ps_cmpo1(UGeckoInstruction _inst);
void ps_merge00(UGeckoInstruction _inst); static void ps_merge00(UGeckoInstruction _inst);
void ps_merge01(UGeckoInstruction _inst); static void ps_merge01(UGeckoInstruction _inst);
void ps_merge10(UGeckoInstruction _inst); static void ps_merge10(UGeckoInstruction _inst);
void ps_merge11(UGeckoInstruction _inst); static void ps_merge11(UGeckoInstruction _inst);
void dcbz_l(UGeckoInstruction _inst); static void dcbz_l(UGeckoInstruction _inst);
// System Registers Instructions // System Registers Instructions
void mcrfs(UGeckoInstruction _inst); static void mcrfs(UGeckoInstruction _inst);
void mffsx(UGeckoInstruction _inst); static void mffsx(UGeckoInstruction _inst);
void mtfsb0x(UGeckoInstruction _inst); static void mtfsb0x(UGeckoInstruction _inst);
void mtfsb1x(UGeckoInstruction _inst); static void mtfsb1x(UGeckoInstruction _inst);
void mtfsfix(UGeckoInstruction _inst); static void mtfsfix(UGeckoInstruction _inst);
void mtfsfx(UGeckoInstruction _inst); static void mtfsfx(UGeckoInstruction _inst);
void mcrxr(UGeckoInstruction _inst); static void mcrxr(UGeckoInstruction _inst);
void mfcr(UGeckoInstruction _inst); static void mfcr(UGeckoInstruction _inst);
void mfmsr(UGeckoInstruction _inst); static void mfmsr(UGeckoInstruction _inst);
void mfsr(UGeckoInstruction _inst); static void mfsr(UGeckoInstruction _inst);
void mfsrin(UGeckoInstruction _inst); static void mfsrin(UGeckoInstruction _inst);
void mtmsr(UGeckoInstruction _inst); static void mtmsr(UGeckoInstruction _inst);
void mtsr(UGeckoInstruction _inst); static void mtsr(UGeckoInstruction _inst);
void mtsrin(UGeckoInstruction _inst); static void mtsrin(UGeckoInstruction _inst);
void mfspr(UGeckoInstruction _inst); static void mfspr(UGeckoInstruction _inst);
void mftb(UGeckoInstruction _inst); static void mftb(UGeckoInstruction _inst);
void mtcrf(UGeckoInstruction _inst); static void mtcrf(UGeckoInstruction _inst);
void mtspr(UGeckoInstruction _inst); static void mtspr(UGeckoInstruction _inst);
void crand(UGeckoInstruction _inst); static void crand(UGeckoInstruction _inst);
void crandc(UGeckoInstruction _inst); static void crandc(UGeckoInstruction _inst);
void creqv(UGeckoInstruction _inst); static void creqv(UGeckoInstruction _inst);
void crnand(UGeckoInstruction _inst); static void crnand(UGeckoInstruction _inst);
void crnor(UGeckoInstruction _inst); static void crnor(UGeckoInstruction _inst);
void cror(UGeckoInstruction _inst); static void cror(UGeckoInstruction _inst);
void crorc(UGeckoInstruction _inst); static void crorc(UGeckoInstruction _inst);
void crxor(UGeckoInstruction _inst); static void crxor(UGeckoInstruction _inst);
void mcrf(UGeckoInstruction _inst); static void mcrf(UGeckoInstruction _inst);
void rfi(UGeckoInstruction _inst); static void rfi(UGeckoInstruction _inst);
void rfid(UGeckoInstruction _inst); static void rfid(UGeckoInstruction _inst);
// void sync(UGeckoInstruction _inst); // static void sync(UGeckoInstruction _inst);
void isync(UGeckoInstruction _inst); static void isync(UGeckoInstruction _inst);
void RunTable4(UGeckoInstruction _instCode); static void RunTable4(UGeckoInstruction _instCode);
void RunTable19(UGeckoInstruction _instCode); static void RunTable19(UGeckoInstruction _instCode);
void RunTable31(UGeckoInstruction _instCode); static void RunTable31(UGeckoInstruction _instCode);
void RunTable59(UGeckoInstruction _instCode); static void RunTable59(UGeckoInstruction _instCode);
void RunTable63(UGeckoInstruction _instCode); static void RunTable63(UGeckoInstruction _instCode);
// flag helper // flag helper
void Helper_UpdateCR0(u32 _uValue); static void Helper_UpdateCR0(u32 _uValue);
void Helper_UpdateCR1(double _fValue); static void Helper_UpdateCR1(double _fValue);
void Helper_UpdateCR1(float _fValue); static void Helper_UpdateCR1(float _fValue);
void Helper_UpdateCRx(int _x, u32 _uValue); static void Helper_UpdateCRx(int _x, u32 _uValue);
u32 Helper_Carry(u32 _uValue1, u32 _uValue2); static u32 Helper_Carry(u32 _uValue1, u32 _uValue2);
// address helper // address helper
u32 Helper_Get_EA (const UGeckoInstruction _inst); static u32 Helper_Get_EA (const UGeckoInstruction _inst);
u32 Helper_Get_EA_U (const UGeckoInstruction _inst); static u32 Helper_Get_EA_U (const UGeckoInstruction _inst);
u32 Helper_Get_EA_X (const UGeckoInstruction _inst); static u32 Helper_Get_EA_X (const UGeckoInstruction _inst);
u32 Helper_Get_EA_UX(const UGeckoInstruction _inst); static u32 Helper_Get_EA_UX(const UGeckoInstruction _inst);
// paired helper // paired helper
float Helper_Dequantize(const u32 _Addr, const EQuantizeType _quantizeType, const unsigned int _uScale); static float Helper_Dequantize(const u32 _Addr, const EQuantizeType _quantizeType, const unsigned int _uScale);
void Helper_Quantize (const u32 _Addr, const double _fValue, const EQuantizeType _quantizeType, const unsigned _uScale); static void Helper_Quantize (const u32 _Addr, const double _fValue, const EQuantizeType _quantizeType, const unsigned _uScale);
// other helper // other helper
u32 Helper_Mask(int mb, int me); static u32 Helper_Mask(int mb, int me);
extern _interpreterInstruction m_opTable[64]; static _interpreterInstruction m_opTable[64];
extern _interpreterInstruction m_opTable4[1024]; static _interpreterInstruction m_opTable4[1024];
extern _interpreterInstruction m_opTable19[1024]; static _interpreterInstruction m_opTable19[1024];
extern _interpreterInstruction m_opTable31[1024]; static _interpreterInstruction m_opTable31[1024];
extern _interpreterInstruction m_opTable59[32]; static _interpreterInstruction m_opTable59[32];
extern _interpreterInstruction m_opTable63[1024]; static _interpreterInstruction m_opTable63[1024];
// singleton
static Interpreter *getInstance();
private:
Interpreter() { }
~Interpreter() { }
Interpreter(const Interpreter &);
Interpreter & operator=(const Interpreter &);
// TODO: These should really be in the save state, although it's unlikely to matter much.
// They are for lwarx and its friend stwcxd.
static bool g_bReserve;
static u32 g_reserveAddr;
}; };
#endif #endif

View File

@ -20,10 +20,7 @@
#include "../../HLE/HLE.h" #include "../../HLE/HLE.h"
#include "../PPCAnalyst.h" #include "../PPCAnalyst.h"
namespace Interpreter void Interpreter::bx(UGeckoInstruction _inst)
{
void bx(UGeckoInstruction _inst)
{ {
if (_inst.LK) if (_inst.LK)
LR = PC + 4; LR = PC + 4;
@ -43,7 +40,7 @@ void bx(UGeckoInstruction _inst)
} }
// bcx - ugly, straight from PPC manual equations :) // bcx - ugly, straight from PPC manual equations :)
void bcx(UGeckoInstruction _inst) void Interpreter::bcx(UGeckoInstruction _inst)
{ {
if ((_inst.BO & BO_DONT_DECREMENT_FLAG) == 0) if ((_inst.BO & BO_DONT_DECREMENT_FLAG) == 0)
CTR--; CTR--;
@ -67,7 +64,7 @@ void bcx(UGeckoInstruction _inst)
m_EndBlock = true; m_EndBlock = true;
} }
void bcctrx(UGeckoInstruction _inst) void Interpreter::bcctrx(UGeckoInstruction _inst)
{ {
_dbg_assert_msg_(POWERPC, _inst.BO_2 & BO_DONT_DECREMENT_FLAG, "bcctrx with decrement and test CTR option is invalid!"); _dbg_assert_msg_(POWERPC, _inst.BO_2 & BO_DONT_DECREMENT_FLAG, "bcctrx with decrement and test CTR option is invalid!");
@ -82,7 +79,7 @@ void bcctrx(UGeckoInstruction _inst)
m_EndBlock = true; m_EndBlock = true;
} }
void bclrx(UGeckoInstruction _inst) void Interpreter::bclrx(UGeckoInstruction _inst)
{ {
if ((_inst.BO_2 & BO_DONT_DECREMENT_FLAG) == 0) if ((_inst.BO_2 & BO_DONT_DECREMENT_FLAG) == 0)
CTR--; CTR--;
@ -99,18 +96,18 @@ void bclrx(UGeckoInstruction _inst)
m_EndBlock = true; m_EndBlock = true;
} }
void HLEFunction(UGeckoInstruction _inst) void Interpreter::HLEFunction(UGeckoInstruction _inst)
{ {
m_EndBlock = true; m_EndBlock = true;
HLE::Execute(PC, _inst.hex); HLE::Execute(PC, _inst.hex);
} }
void CompiledBlock(UGeckoInstruction _inst) void Interpreter::CompiledBlock(UGeckoInstruction _inst)
{ {
_assert_msg_(POWERPC, 0, "CompiledBlock - shouldn't be here!"); _assert_msg_(POWERPC, 0, "CompiledBlock - shouldn't be here!");
} }
void rfi(UGeckoInstruction _inst) void Interpreter::rfi(UGeckoInstruction _inst)
{ {
// Restore saved bits from SRR1 to MSR. // Restore saved bits from SRR1 to MSR.
// Gecko/Broadway can save more bits than explicitly defined in ppc spec // Gecko/Broadway can save more bits than explicitly defined in ppc spec
@ -127,7 +124,7 @@ void rfi(UGeckoInstruction _inst)
m_EndBlock = true; m_EndBlock = true;
} }
void rfid(UGeckoInstruction _inst) void Interpreter::rfid(UGeckoInstruction _inst)
{ {
_dbg_assert_msg_(POWERPC,0,"Instruction unimplemented (does this instruction even exist?)","rfid"); _dbg_assert_msg_(POWERPC,0,"Instruction unimplemented (does this instruction even exist?)","rfid");
m_EndBlock = true; m_EndBlock = true;
@ -135,11 +132,9 @@ void rfid(UGeckoInstruction _inst)
// sc isn't really used for anything important in gc games (just for a write barrier) so we really don't have to emulate it. // sc isn't really used for anything important in gc games (just for a write barrier) so we really don't have to emulate it.
// We do it anyway, though :P // We do it anyway, though :P
void sc(UGeckoInstruction _inst) void Interpreter::sc(UGeckoInstruction _inst)
{ {
PowerPC::ppcState.Exceptions |= EXCEPTION_SYSCALL; PowerPC::ppcState.Exceptions |= EXCEPTION_SYSCALL;
PowerPC::CheckExceptions(); PowerPC::CheckExceptions();
m_EndBlock = true; m_EndBlock = true;
} }
} // namespace

View File

@ -40,20 +40,17 @@
using namespace MathUtil; using namespace MathUtil;
namespace Interpreter
{
void UpdateSSEState(); void UpdateSSEState();
// Extremely rare - actually, never seen. // Extremely rare - actually, never seen.
// Star Wars : Rogue Leader spams that at some point :| // Star Wars : Rogue Leader spams that at some point :|
void Helper_UpdateCR1(double _fValue) void Interpreter::Helper_UpdateCR1(double _fValue)
{ {
// Should just update exception flags, not do any compares. // Should just update exception flags, not do any compares.
PanicAlert("CR1"); PanicAlert("CR1");
} }
void fcmpo(UGeckoInstruction _inst) void Interpreter::fcmpo(UGeckoInstruction _inst)
{ {
double fa = rPS0(_inst.FA); double fa = rPS0(_inst.FA);
double fb = rPS0(_inst.FB); double fb = rPS0(_inst.FB);
@ -84,7 +81,7 @@ void fcmpo(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, compareResult); SetCRField(_inst.CRFD, compareResult);
} }
void fcmpu(UGeckoInstruction _inst) void Interpreter::fcmpu(UGeckoInstruction _inst)
{ {
double fa = rPS0(_inst.FA); double fa = rPS0(_inst.FA);
double fb = rPS0(_inst.FB); double fb = rPS0(_inst.FB);
@ -107,7 +104,7 @@ void fcmpu(UGeckoInstruction _inst)
} }
// Apply current rounding mode // Apply current rounding mode
void fctiwx(UGeckoInstruction _inst) void Interpreter::fctiwx(UGeckoInstruction _inst)
{ {
const double b = rPS0(_inst.FB); const double b = rPS0(_inst.FB);
u32 value; u32 value;
@ -172,7 +169,7 @@ void fctiwx(UGeckoInstruction _inst)
} }
// Always round toward zero // Always round toward zero
void fctiwzx(UGeckoInstruction _inst) void Interpreter::fctiwzx(UGeckoInstruction _inst)
{ {
const double b = rPS0(_inst.FB); const double b = rPS0(_inst.FB);
u32 value; u32 value;
@ -215,35 +212,35 @@ void fctiwzx(UGeckoInstruction _inst)
Helper_UpdateCR1(rPS0(_inst.FD)); Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fmrx(UGeckoInstruction _inst) void Interpreter::fmrx(UGeckoInstruction _inst)
{ {
riPS0(_inst.FD) = riPS0(_inst.FB); riPS0(_inst.FD) = riPS0(_inst.FB);
// This is a binary instruction. Does not alter FPSCR // This is a binary instruction. Does not alter FPSCR
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fabsx(UGeckoInstruction _inst) void Interpreter::fabsx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = fabs(rPS0(_inst.FB)); rPS0(_inst.FD) = fabs(rPS0(_inst.FB));
// This is a binary instruction. Does not alter FPSCR // This is a binary instruction. Does not alter FPSCR
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fnabsx(UGeckoInstruction _inst) void Interpreter::fnabsx(UGeckoInstruction _inst)
{ {
riPS0(_inst.FD) = riPS0(_inst.FB) | (1ULL << 63); riPS0(_inst.FD) = riPS0(_inst.FB) | (1ULL << 63);
// This is a binary instruction. Does not alter FPSCR // This is a binary instruction. Does not alter FPSCR
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fnegx(UGeckoInstruction _inst) void Interpreter::fnegx(UGeckoInstruction _inst)
{ {
riPS0(_inst.FD) = riPS0(_inst.FB) ^ (1ULL << 63); riPS0(_inst.FD) = riPS0(_inst.FB) ^ (1ULL << 63);
// This is a binary instruction. Does not alter FPSCR // This is a binary instruction. Does not alter FPSCR
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fselx(UGeckoInstruction _inst) void Interpreter::fselx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = (rPS0(_inst.FA) >= -0.0) ? rPS0(_inst.FC) : rPS0(_inst.FB); rPS0(_inst.FD) = (rPS0(_inst.FA) >= -0.0) ? rPS0(_inst.FC) : rPS0(_inst.FB);
// This is a binary instruction. Does not alter FPSCR // This is a binary instruction. Does not alter FPSCR
@ -253,7 +250,7 @@ void fselx(UGeckoInstruction _inst)
// !!! warning !!! // !!! warning !!!
// PS1 must be set to the value of PS0 or DragonballZ will be f**ked up // PS1 must be set to the value of PS0 or DragonballZ will be f**ked up
// PS1 is said to be undefined // PS1 is said to be undefined
void frspx(UGeckoInstruction _inst) // round to single void Interpreter::frspx(UGeckoInstruction _inst) // round to single
{ {
double b = rPS0(_inst.FB); double b = rPS0(_inst.FB);
double rounded = ForceSingle(b); double rounded = ForceSingle(b);
@ -265,7 +262,7 @@ void frspx(UGeckoInstruction _inst) // round to single
} }
void fmulx(UGeckoInstruction _inst) void Interpreter::fmulx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceDouble(NI_mul(rPS0(_inst.FA), rPS0(_inst.FC))); rPS0(_inst.FD) = ForceDouble(NI_mul(rPS0(_inst.FA), rPS0(_inst.FC)));
FPSCR.FI = 0; // are these flags important? FPSCR.FI = 0; // are these flags important?
@ -273,7 +270,7 @@ void fmulx(UGeckoInstruction _inst)
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fmulsx(UGeckoInstruction _inst) void Interpreter::fmulsx(UGeckoInstruction _inst)
{ {
double d_value = NI_mul(rPS0(_inst.FA), rPS0(_inst.FC)); double d_value = NI_mul(rPS0(_inst.FA), rPS0(_inst.FC));
rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(d_value); rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(d_value);
@ -284,7 +281,7 @@ void fmulsx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fmaddx(UGeckoInstruction _inst) void Interpreter::fmaddx(UGeckoInstruction _inst)
{ {
double result = ForceDouble(NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) )); double result = ForceDouble(NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ));
rPS0(_inst.FD) = result; rPS0(_inst.FD) = result;
@ -292,7 +289,7 @@ void fmaddx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fmaddsx(UGeckoInstruction _inst) void Interpreter::fmaddsx(UGeckoInstruction _inst)
{ {
double d_value = NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ); double d_value = NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) );
rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(d_value); rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(d_value);
@ -303,20 +300,20 @@ void fmaddsx(UGeckoInstruction _inst)
} }
void faddx(UGeckoInstruction _inst) void Interpreter::faddx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceDouble(NI_add(rPS0(_inst.FA), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceDouble(NI_add(rPS0(_inst.FA), rPS0(_inst.FB)));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void faddsx(UGeckoInstruction _inst) void Interpreter::faddsx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(NI_add(rPS0(_inst.FA), rPS0(_inst.FB))); rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(NI_add(rPS0(_inst.FA), rPS0(_inst.FB)));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fdivx(UGeckoInstruction _inst) void Interpreter::fdivx(UGeckoInstruction _inst)
{ {
double a = rPS0(_inst.FA); double a = rPS0(_inst.FA);
double b = rPS0(_inst.FB); double b = rPS0(_inst.FB);
@ -347,7 +344,7 @@ void fdivx(UGeckoInstruction _inst)
// FR,FI,OX,UX??? // FR,FI,OX,UX???
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fdivsx(UGeckoInstruction _inst) void Interpreter::fdivsx(UGeckoInstruction _inst)
{ {
double a = rPS0(_inst.FA); double a = rPS0(_inst.FA);
double b = rPS0(_inst.FB); double b = rPS0(_inst.FB);
@ -381,7 +378,7 @@ void fdivsx(UGeckoInstruction _inst)
} }
// Single precision only. // Single precision only.
void fresx(UGeckoInstruction _inst) void Interpreter::fresx(UGeckoInstruction _inst)
{ {
double b = rPS0(_inst.FB); double b = rPS0(_inst.FB);
double one_over = ForceSingle(1.0 / b); double one_over = ForceSingle(1.0 / b);
@ -405,7 +402,7 @@ void fresx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void frsqrtex(UGeckoInstruction _inst) void Interpreter::frsqrtex(UGeckoInstruction _inst)
{ {
double b = rPS0(_inst.FB); double b = rPS0(_inst.FB);
if (b < 0.0) if (b < 0.0)
@ -447,14 +444,14 @@ void frsqrtex(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fmsubx(UGeckoInstruction _inst) void Interpreter::fmsubx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceDouble(NI_msub( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) )); rPS0(_inst.FD) = ForceDouble(NI_msub( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fmsubsx(UGeckoInstruction _inst) void Interpreter::fmsubsx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS1(_inst.FD) = rPS0(_inst.FD) = rPS1(_inst.FD) =
ForceSingle( NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) )); ForceSingle( NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ));
@ -462,13 +459,13 @@ void fmsubsx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fnmaddx(UGeckoInstruction _inst) void Interpreter::fnmaddx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceDouble(-NI_madd(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceDouble(-NI_madd(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fnmaddsx(UGeckoInstruction _inst) void Interpreter::fnmaddsx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS1(_inst.FD) = rPS0(_inst.FD) = rPS1(_inst.FD) =
ForceSingle(-NI_madd(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB))); ForceSingle(-NI_madd(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)));
@ -476,7 +473,7 @@ void fnmaddsx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fnmsubx(UGeckoInstruction _inst) void Interpreter::fnmsubx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceDouble(-NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceDouble(-NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
@ -484,7 +481,7 @@ void fnmsubx(UGeckoInstruction _inst)
} }
// fnmsubsx does not handle QNAN properly - see NI_msub // fnmsubsx does not handle QNAN properly - see NI_msub
void fnmsubsx(UGeckoInstruction _inst) void Interpreter::fnmsubsx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS1(_inst.FD) = rPS0(_inst.FD) = rPS1(_inst.FD) =
ForceSingle(-NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB))); ForceSingle(-NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)));
@ -492,21 +489,21 @@ void fnmsubsx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fsubx(UGeckoInstruction _inst) void Interpreter::fsubx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceDouble(NI_sub(rPS0(_inst.FA), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceDouble(NI_sub(rPS0(_inst.FA), rPS0(_inst.FB)));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fsubsx(UGeckoInstruction _inst) void Interpreter::fsubsx(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(NI_sub(rPS0(_inst.FA), rPS0(_inst.FB))); rPS0(_inst.FD) = rPS1(_inst.FD) = ForceSingle(NI_sub(rPS0(_inst.FA), rPS0(_inst.FB)));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void fsqrtx(UGeckoInstruction _inst) void Interpreter::fsqrtx(UGeckoInstruction _inst)
{ {
// GEKKO is not supposed to support this instruction. // GEKKO is not supposed to support this instruction.
// PanicAlert("fsqrtx"); // PanicAlert("fsqrtx");
@ -518,5 +515,3 @@ void fsqrtx(UGeckoInstruction _inst)
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
} // namespace

View File

@ -18,10 +18,7 @@
#include "Interpreter.h" #include "Interpreter.h"
#include "../../Core.h" #include "../../Core.h"
namespace Interpreter void Interpreter::Helper_UpdateCR0(u32 _uValue)
{
void Helper_UpdateCR0(u32 _uValue)
{ {
u32 new_cr0; u32 new_cr0;
int sValue = (int)_uValue; int sValue = (int)_uValue;
@ -35,7 +32,7 @@ void Helper_UpdateCR0(u32 _uValue)
SetCRField(0, new_cr0); SetCRField(0, new_cr0);
} }
void Helper_UpdateCRx(int _x, u32 _uValue) void Interpreter::Helper_UpdateCRx(int _x, u32 _uValue)
{ {
u32 new_crX; u32 new_crX;
int sValue = (int)_uValue; int sValue = (int)_uValue;
@ -49,12 +46,12 @@ void Helper_UpdateCRx(int _x, u32 _uValue)
SetCRField(_x, new_crX); SetCRField(_x, new_crX);
} }
u32 Helper_Carry(u32 _uValue1, u32 _uValue2) u32 Interpreter::Helper_Carry(u32 _uValue1, u32 _uValue2)
{ {
return _uValue2 > (~_uValue1); return _uValue2 > (~_uValue1);
} }
u32 Helper_Mask(int mb, int me) u32 Interpreter::Helper_Mask(int mb, int me)
{ {
//first make 001111111111111 part //first make 001111111111111 part
u32 begin = 0xFFFFFFFF >> mb; u32 begin = 0xFFFFFFFF >> mb;
@ -69,7 +66,7 @@ u32 Helper_Mask(int mb, int me)
return mask; return mask;
} }
void addi(UGeckoInstruction _inst) void Interpreter::addi(UGeckoInstruction _inst)
{ {
if (_inst.RA) if (_inst.RA)
m_GPR[_inst.RD] = m_GPR[_inst.RA] + _inst.SIMM_16; m_GPR[_inst.RD] = m_GPR[_inst.RA] + _inst.SIMM_16;
@ -77,7 +74,7 @@ void addi(UGeckoInstruction _inst)
m_GPR[_inst.RD] = _inst.SIMM_16; m_GPR[_inst.RD] = _inst.SIMM_16;
} }
void addic(UGeckoInstruction _inst) void Interpreter::addic(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 imm = (u32)(s32)_inst.SIMM_16; u32 imm = (u32)(s32)_inst.SIMM_16;
@ -86,13 +83,13 @@ void addic(UGeckoInstruction _inst)
SetCarry(Helper_Carry(a, imm)); SetCarry(Helper_Carry(a, imm));
} }
void addic_rc(UGeckoInstruction _inst) void Interpreter::addic_rc(UGeckoInstruction _inst)
{ {
addic(_inst); addic(_inst);
Helper_UpdateCR0(m_GPR[_inst.RD]); Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void addis(UGeckoInstruction _inst) void Interpreter::addis(UGeckoInstruction _inst)
{ {
if (_inst.RA) if (_inst.RA)
m_GPR[_inst.RD] = m_GPR[_inst.RA] + (_inst.SIMM_16 << 16); m_GPR[_inst.RD] = m_GPR[_inst.RA] + (_inst.SIMM_16 << 16);
@ -100,24 +97,24 @@ void addis(UGeckoInstruction _inst)
m_GPR[_inst.RD] = (_inst.SIMM_16 << 16); m_GPR[_inst.RD] = (_inst.SIMM_16 << 16);
} }
void andi_rc(UGeckoInstruction _inst) void Interpreter::andi_rc(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] & _inst.UIMM; m_GPR[_inst.RA] = m_GPR[_inst.RS] & _inst.UIMM;
Helper_UpdateCR0(m_GPR[_inst.RA]); Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void andis_rc(UGeckoInstruction _inst) void Interpreter::andis_rc(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] & ((u32)_inst.UIMM<<16); m_GPR[_inst.RA] = m_GPR[_inst.RS] & ((u32)_inst.UIMM<<16);
Helper_UpdateCR0(m_GPR[_inst.RA]); Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void cmpi(UGeckoInstruction _inst) void Interpreter::cmpi(UGeckoInstruction _inst)
{ {
Helper_UpdateCRx(_inst.CRFD, m_GPR[_inst.RA] - _inst.SIMM_16); Helper_UpdateCRx(_inst.CRFD, m_GPR[_inst.RA] - _inst.SIMM_16);
} }
void cmpli(UGeckoInstruction _inst) void Interpreter::cmpli(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = _inst.UIMM; u32 b = _inst.UIMM;
@ -129,22 +126,22 @@ void cmpli(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, f); SetCRField(_inst.CRFD, f);
} }
void mulli(UGeckoInstruction _inst) void Interpreter::mulli(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RD] = (s32)m_GPR[_inst.RA] * _inst.SIMM_16; m_GPR[_inst.RD] = (s32)m_GPR[_inst.RA] * _inst.SIMM_16;
} }
void ori(UGeckoInstruction _inst) void Interpreter::ori(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] | _inst.UIMM; m_GPR[_inst.RA] = m_GPR[_inst.RS] | _inst.UIMM;
} }
void oris(UGeckoInstruction _inst) void Interpreter::oris(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] | (_inst.UIMM << 16); m_GPR[_inst.RA] = m_GPR[_inst.RS] | (_inst.UIMM << 16);
} }
void subfic(UGeckoInstruction _inst) void Interpreter::subfic(UGeckoInstruction _inst)
{ {
/* u32 rra = ~m_GPR[_inst.RA]; /* u32 rra = ~m_GPR[_inst.RA];
s32 immediate = (s16)_inst.SIMM_16 + 1; s32 immediate = (s16)_inst.SIMM_16 + 1;
@ -163,7 +160,7 @@ void subfic(UGeckoInstruction _inst)
SetCarry((m_GPR[_inst.RA] == 0) || (Helper_Carry(0-m_GPR[_inst.RA], immediate))); SetCarry((m_GPR[_inst.RA] == 0) || (Helper_Carry(0-m_GPR[_inst.RA], immediate)));
} }
void twi(UGeckoInstruction _inst) void Interpreter::twi(UGeckoInstruction _inst)
{ {
s32 a = m_GPR[_inst.RA]; s32 a = m_GPR[_inst.RA];
s32 b = _inst.SIMM_16; s32 b = _inst.SIMM_16;
@ -183,31 +180,31 @@ void twi(UGeckoInstruction _inst)
} }
} }
void xori(UGeckoInstruction _inst) void Interpreter::xori(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] ^ _inst.UIMM; m_GPR[_inst.RA] = m_GPR[_inst.RS] ^ _inst.UIMM;
} }
void xoris(UGeckoInstruction _inst) void Interpreter::xoris(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] ^ (_inst.UIMM << 16); m_GPR[_inst.RA] = m_GPR[_inst.RS] ^ (_inst.UIMM << 16);
} }
void rlwimix(UGeckoInstruction _inst) void Interpreter::rlwimix(UGeckoInstruction _inst)
{ {
u32 mask = Helper_Mask(_inst.MB,_inst.ME); u32 mask = Helper_Mask(_inst.MB,_inst.ME);
m_GPR[_inst.RA] = (m_GPR[_inst.RA] & ~mask) | (_rotl(m_GPR[_inst.RS],_inst.SH) & mask); m_GPR[_inst.RA] = (m_GPR[_inst.RA] & ~mask) | (_rotl(m_GPR[_inst.RS],_inst.SH) & mask);
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void rlwinmx(UGeckoInstruction _inst) void Interpreter::rlwinmx(UGeckoInstruction _inst)
{ {
u32 mask = Helper_Mask(_inst.MB,_inst.ME); u32 mask = Helper_Mask(_inst.MB,_inst.ME);
m_GPR[_inst.RA] = _rotl(m_GPR[_inst.RS],_inst.SH) & mask; m_GPR[_inst.RA] = _rotl(m_GPR[_inst.RS],_inst.SH) & mask;
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void rlwnmx(UGeckoInstruction _inst) void Interpreter::rlwnmx(UGeckoInstruction _inst)
{ {
u32 mask = Helper_Mask(_inst.MB,_inst.ME); u32 mask = Helper_Mask(_inst.MB,_inst.ME);
m_GPR[_inst.RA] = _rotl(m_GPR[_inst.RS], m_GPR[_inst.RB] & 0x1F) & mask; m_GPR[_inst.RA] = _rotl(m_GPR[_inst.RS], m_GPR[_inst.RB] & 0x1F) & mask;
@ -215,21 +212,21 @@ void rlwnmx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void andx(UGeckoInstruction _inst) void Interpreter::andx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] & m_GPR[_inst.RB]; m_GPR[_inst.RA] = m_GPR[_inst.RS] & m_GPR[_inst.RB];
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void andcx(UGeckoInstruction _inst) void Interpreter::andcx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] & ~m_GPR[_inst.RB]; m_GPR[_inst.RA] = m_GPR[_inst.RS] & ~m_GPR[_inst.RB];
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void cmp(UGeckoInstruction _inst) void Interpreter::cmp(UGeckoInstruction _inst)
{ {
s32 a = (s32)m_GPR[_inst.RA]; s32 a = (s32)m_GPR[_inst.RA];
s32 b = (s32)m_GPR[_inst.RB]; s32 b = (s32)m_GPR[_inst.RB];
@ -241,7 +238,7 @@ void cmp(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, fTemp); SetCRField(_inst.CRFD, fTemp);
} }
void cmpl(UGeckoInstruction _inst) void Interpreter::cmpl(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -254,7 +251,7 @@ void cmpl(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, fTemp); SetCRField(_inst.CRFD, fTemp);
} }
void cntlzwx(UGeckoInstruction _inst) void Interpreter::cntlzwx(UGeckoInstruction _inst)
{ {
u32 val = m_GPR[_inst.RS]; u32 val = m_GPR[_inst.RS];
u32 mask = 0x80000000; u32 mask = 0x80000000;
@ -266,56 +263,56 @@ void cntlzwx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void eqvx(UGeckoInstruction _inst) void Interpreter::eqvx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = ~(m_GPR[_inst.RS] ^ m_GPR[_inst.RB]); m_GPR[_inst.RA] = ~(m_GPR[_inst.RS] ^ m_GPR[_inst.RB]);
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void extsbx(UGeckoInstruction _inst) void Interpreter::extsbx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = (u32)(s32)(s8)m_GPR[_inst.RS]; m_GPR[_inst.RA] = (u32)(s32)(s8)m_GPR[_inst.RS];
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void extshx(UGeckoInstruction _inst) void Interpreter::extshx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = (u32)(s32)(s16)m_GPR[_inst.RS]; m_GPR[_inst.RA] = (u32)(s32)(s16)m_GPR[_inst.RS];
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void nandx(UGeckoInstruction _inst) void Interpreter::nandx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = ~(m_GPR[_inst.RS] & m_GPR[_inst.RB]); m_GPR[_inst.RA] = ~(m_GPR[_inst.RS] & m_GPR[_inst.RB]);
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void norx(UGeckoInstruction _inst) void Interpreter::norx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = ~(m_GPR[_inst.RS] | m_GPR[_inst.RB]); m_GPR[_inst.RA] = ~(m_GPR[_inst.RS] | m_GPR[_inst.RB]);
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void orx(UGeckoInstruction _inst) void Interpreter::orx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] | m_GPR[_inst.RB]; m_GPR[_inst.RA] = m_GPR[_inst.RS] | m_GPR[_inst.RB];
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void orcx(UGeckoInstruction _inst) void Interpreter::orcx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] | (~m_GPR[_inst.RB]); m_GPR[_inst.RA] = m_GPR[_inst.RS] | (~m_GPR[_inst.RB]);
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void slwx(UGeckoInstruction _inst) void Interpreter::slwx(UGeckoInstruction _inst)
{ {
u32 amount = m_GPR[_inst.RB]; u32 amount = m_GPR[_inst.RB];
m_GPR[_inst.RA] = (amount & 0x20) ? 0 : m_GPR[_inst.RS] << amount; m_GPR[_inst.RA] = (amount & 0x20) ? 0 : m_GPR[_inst.RS] << amount;
@ -323,7 +320,7 @@ void slwx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void srawx(UGeckoInstruction _inst) void Interpreter::srawx(UGeckoInstruction _inst)
{ {
int rb = m_GPR[_inst.RB]; int rb = m_GPR[_inst.RB];
if (rb & 0x20) if (rb & 0x20)
@ -360,7 +357,7 @@ void srawx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void srawix(UGeckoInstruction _inst) void Interpreter::srawix(UGeckoInstruction _inst)
{ {
int amount = _inst.SH; int amount = _inst.SH;
@ -383,7 +380,7 @@ void srawix(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void srwx(UGeckoInstruction _inst) void Interpreter::srwx(UGeckoInstruction _inst)
{ {
u32 amount = m_GPR[_inst.RB]; u32 amount = m_GPR[_inst.RB];
m_GPR[_inst.RA] = (amount & 0x20) ? 0 : (m_GPR[_inst.RS] >> (amount & 0x1f)); m_GPR[_inst.RA] = (amount & 0x20) ? 0 : (m_GPR[_inst.RS] >> (amount & 0x1f));
@ -391,7 +388,7 @@ void srwx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void tw(UGeckoInstruction _inst) void Interpreter::tw(UGeckoInstruction _inst)
{ {
s32 a = m_GPR[_inst.RA]; s32 a = m_GPR[_inst.RA];
s32 b = m_GPR[_inst.RB]; s32 b = m_GPR[_inst.RB];
@ -411,14 +408,14 @@ void tw(UGeckoInstruction _inst)
} }
} }
void xorx(UGeckoInstruction _inst) void Interpreter::xorx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RA] = m_GPR[_inst.RS] ^ m_GPR[_inst.RB]; m_GPR[_inst.RA] = m_GPR[_inst.RS] ^ m_GPR[_inst.RB];
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RA]);
} }
void addx(UGeckoInstruction _inst) void Interpreter::addx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RD] = m_GPR[_inst.RA] + m_GPR[_inst.RB]; m_GPR[_inst.RD] = m_GPR[_inst.RA] + m_GPR[_inst.RB];
@ -426,7 +423,7 @@ void addx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void addcx(UGeckoInstruction _inst) void Interpreter::addcx(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -437,7 +434,7 @@ void addcx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void addex(UGeckoInstruction _inst) void Interpreter::addex(UGeckoInstruction _inst)
{ {
int carry = GetCarry(); int carry = GetCarry();
int a = m_GPR[_inst.RA]; int a = m_GPR[_inst.RA];
@ -449,7 +446,7 @@ void addex(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void addmex(UGeckoInstruction _inst) void Interpreter::addmex(UGeckoInstruction _inst)
{ {
int carry = GetCarry(); int carry = GetCarry();
int a = m_GPR[_inst.RA]; int a = m_GPR[_inst.RA];
@ -460,7 +457,7 @@ void addmex(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void addzex(UGeckoInstruction _inst) void Interpreter::addzex(UGeckoInstruction _inst)
{ {
int carry = GetCarry(); int carry = GetCarry();
int a = m_GPR[_inst.RA]; int a = m_GPR[_inst.RA];
@ -471,7 +468,7 @@ void addzex(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void divwx(UGeckoInstruction _inst) void Interpreter::divwx(UGeckoInstruction _inst)
{ {
s32 a = m_GPR[_inst.RA]; s32 a = m_GPR[_inst.RA];
s32 b = m_GPR[_inst.RB]; s32 b = m_GPR[_inst.RB];
@ -492,7 +489,7 @@ void divwx(UGeckoInstruction _inst)
} }
void divwux(UGeckoInstruction _inst) void Interpreter::divwux(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -510,7 +507,7 @@ void divwux(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void mulhwx(UGeckoInstruction _inst) void Interpreter::mulhwx(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -519,7 +516,7 @@ void mulhwx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void mulhwux(UGeckoInstruction _inst) void Interpreter::mulhwux(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -528,7 +525,7 @@ void mulhwux(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void mullwx(UGeckoInstruction _inst) void Interpreter::mullwx(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -539,7 +536,7 @@ void mullwx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void negx(UGeckoInstruction _inst) void Interpreter::negx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RD] = (~m_GPR[_inst.RA]) + 1; m_GPR[_inst.RD] = (~m_GPR[_inst.RA]) + 1;
if (m_GPR[_inst.RD] == 0x80000000) if (m_GPR[_inst.RD] == 0x80000000)
@ -549,7 +546,7 @@ void negx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void subfx(UGeckoInstruction _inst) void Interpreter::subfx(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RD] = m_GPR[_inst.RB] - m_GPR[_inst.RA]; m_GPR[_inst.RD] = m_GPR[_inst.RB] - m_GPR[_inst.RA];
@ -557,7 +554,7 @@ void subfx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void subfcx(UGeckoInstruction _inst) void Interpreter::subfcx(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -568,7 +565,7 @@ void subfcx(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
void subfex(UGeckoInstruction _inst) void Interpreter::subfex(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
u32 b = m_GPR[_inst.RB]; u32 b = m_GPR[_inst.RB];
@ -581,7 +578,7 @@ void subfex(UGeckoInstruction _inst)
} }
// sub from minus one // sub from minus one
void subfmex(UGeckoInstruction _inst) void Interpreter::subfmex(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
int carry = GetCarry(); int carry = GetCarry();
@ -593,7 +590,7 @@ void subfmex(UGeckoInstruction _inst)
} }
// sub from zero // sub from zero
void subfzex(UGeckoInstruction _inst) void Interpreter::subfzex(UGeckoInstruction _inst)
{ {
u32 a = m_GPR[_inst.RA]; u32 a = m_GPR[_inst.RA];
int carry = GetCarry(); int carry = GetCarry();
@ -603,5 +600,3 @@ void subfzex(UGeckoInstruction _inst)
if (_inst.OE) PanicAlert("OE: subfzex"); if (_inst.OE) PanicAlert("OE: subfzex");
if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]); if (_inst.Rc) Helper_UpdateCR0(m_GPR[_inst.RD]);
} }
} // namespace

View File

@ -28,42 +28,37 @@
#include "Interpreter_FPUtils.h" #include "Interpreter_FPUtils.h"
namespace Interpreter bool Interpreter::g_bReserve;
{ u32 Interpreter::g_reserveAddr;
// TODO: These should really be in the save state, although it's unlikely to matter much. u32 Interpreter::Helper_Get_EA(const UGeckoInstruction _inst)
// They are for lwarx and its friend stwcxd.
static bool g_bReserve = false;
static u32 g_reserveAddr;
u32 Helper_Get_EA(const UGeckoInstruction _inst)
{ {
return _inst.RA ? (m_GPR[_inst.RA] + _inst.SIMM_16) : _inst.SIMM_16; return _inst.RA ? (m_GPR[_inst.RA] + _inst.SIMM_16) : _inst.SIMM_16;
} }
u32 Helper_Get_EA_U(const UGeckoInstruction _inst) u32 Interpreter::Helper_Get_EA_U(const UGeckoInstruction _inst)
{ {
return (m_GPR[_inst.RA] + _inst.SIMM_16); return (m_GPR[_inst.RA] + _inst.SIMM_16);
} }
u32 Helper_Get_EA_X(const UGeckoInstruction _inst) u32 Interpreter::Helper_Get_EA_X(const UGeckoInstruction _inst)
{ {
return _inst.RA ? (m_GPR[_inst.RA] + m_GPR[_inst.RB]) : m_GPR[_inst.RB]; return _inst.RA ? (m_GPR[_inst.RA] + m_GPR[_inst.RB]) : m_GPR[_inst.RB];
} }
u32 Helper_Get_EA_UX(const UGeckoInstruction _inst) u32 Interpreter::Helper_Get_EA_UX(const UGeckoInstruction _inst)
{ {
return (m_GPR[_inst.RA] + m_GPR[_inst.RB]); return (m_GPR[_inst.RA] + m_GPR[_inst.RB]);
} }
void lbz(UGeckoInstruction _inst) void Interpreter::lbz(UGeckoInstruction _inst)
{ {
u32 temp = (u32)Memory::Read_U8(Helper_Get_EA(_inst)); u32 temp = (u32)Memory::Read_U8(Helper_Get_EA(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
m_GPR[_inst.RD] = temp; m_GPR[_inst.RD] = temp;
} }
void lbzu(UGeckoInstruction _inst) void Interpreter::lbzu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
u32 temp = (u32)Memory::Read_U8(uAddress); u32 temp = (u32)Memory::Read_U8(uAddress);
@ -74,14 +69,14 @@ void lbzu(UGeckoInstruction _inst)
} }
} }
void lfd(UGeckoInstruction _inst) void Interpreter::lfd(UGeckoInstruction _inst)
{ {
u64 temp = Memory::Read_U64(Helper_Get_EA(_inst)); u64 temp = Memory::Read_U64(Helper_Get_EA(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
riPS0(_inst.FD) = temp; riPS0(_inst.FD) = temp;
} }
void lfdu(UGeckoInstruction _inst) void Interpreter::lfdu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
u64 temp = Memory::Read_U64(uAddress); u64 temp = Memory::Read_U64(uAddress);
@ -92,7 +87,7 @@ void lfdu(UGeckoInstruction _inst)
} }
} }
void lfdux(UGeckoInstruction _inst) void Interpreter::lfdux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
u64 temp = Memory::Read_U64(uAddress); u64 temp = Memory::Read_U64(uAddress);
@ -103,14 +98,14 @@ void lfdux(UGeckoInstruction _inst)
} }
} }
void lfdx(UGeckoInstruction _inst) void Interpreter::lfdx(UGeckoInstruction _inst)
{ {
u64 temp = Memory::Read_U64(Helper_Get_EA_X(_inst)); u64 temp = Memory::Read_U64(Helper_Get_EA_X(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
riPS0(_inst.FD) = temp; riPS0(_inst.FD) = temp;
} }
void lfs(UGeckoInstruction _inst) void Interpreter::lfs(UGeckoInstruction _inst)
{ {
u32 uTemp = Memory::Read_U32(Helper_Get_EA(_inst)); u32 uTemp = Memory::Read_U32(Helper_Get_EA(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -121,7 +116,7 @@ void lfs(UGeckoInstruction _inst)
} }
} }
void lfsu(UGeckoInstruction _inst) void Interpreter::lfsu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
u32 uTemp = Memory::Read_U32(uAddress); u32 uTemp = Memory::Read_U32(uAddress);
@ -135,7 +130,7 @@ void lfsu(UGeckoInstruction _inst)
} }
void lfsux(UGeckoInstruction _inst) void Interpreter::lfsux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
u32 uTemp = Memory::Read_U32(uAddress); u32 uTemp = Memory::Read_U32(uAddress);
@ -148,7 +143,7 @@ void lfsux(UGeckoInstruction _inst)
} }
} }
void lfsx(UGeckoInstruction _inst) void Interpreter::lfsx(UGeckoInstruction _inst)
{ {
u32 uTemp = Memory::Read_U32(Helper_Get_EA_X(_inst)); u32 uTemp = Memory::Read_U32(Helper_Get_EA_X(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -159,7 +154,7 @@ void lfsx(UGeckoInstruction _inst)
} }
} }
void lha(UGeckoInstruction _inst) void Interpreter::lha(UGeckoInstruction _inst)
{ {
u32 temp = (u32)(s32)(s16)Memory::Read_U16(Helper_Get_EA(_inst)); u32 temp = (u32)(s32)(s16)Memory::Read_U16(Helper_Get_EA(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -168,7 +163,7 @@ void lha(UGeckoInstruction _inst)
} }
} }
void lhau(UGeckoInstruction _inst) void Interpreter::lhau(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
u32 temp = (u32)(s32)(s16)Memory::Read_U16(uAddress); u32 temp = (u32)(s32)(s16)Memory::Read_U16(uAddress);
@ -179,7 +174,7 @@ void lhau(UGeckoInstruction _inst)
} }
} }
void lhz(UGeckoInstruction _inst) void Interpreter::lhz(UGeckoInstruction _inst)
{ {
u32 temp = (u32)(u16)Memory::Read_U16(Helper_Get_EA(_inst)); u32 temp = (u32)(u16)Memory::Read_U16(Helper_Get_EA(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -188,7 +183,7 @@ void lhz(UGeckoInstruction _inst)
} }
} }
void lhzu(UGeckoInstruction _inst) void Interpreter::lhzu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
u32 temp = (u32)(u16)Memory::Read_U16(uAddress); u32 temp = (u32)(u16)Memory::Read_U16(uAddress);
@ -200,7 +195,7 @@ void lhzu(UGeckoInstruction _inst)
} }
// FIXME: lmw should do a total rollback if a DSI occurs // FIXME: lmw should do a total rollback if a DSI occurs
void lmw(UGeckoInstruction _inst) void Interpreter::lmw(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA(_inst); u32 uAddress = Helper_Get_EA(_inst);
for (int iReg = _inst.RD; iReg <= 31; iReg++, uAddress += 4) for (int iReg = _inst.RD; iReg <= 31; iReg++, uAddress += 4)
@ -220,7 +215,7 @@ void lmw(UGeckoInstruction _inst)
} }
// FIXME: stmw should do a total rollback if a DSI occurs // FIXME: stmw should do a total rollback if a DSI occurs
void stmw(UGeckoInstruction _inst) void Interpreter::stmw(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA(_inst); u32 uAddress = Helper_Get_EA(_inst);
for (int iReg = _inst.RS; iReg <= 31; iReg++, uAddress+=4) for (int iReg = _inst.RS; iReg <= 31; iReg++, uAddress+=4)
@ -235,7 +230,7 @@ void stmw(UGeckoInstruction _inst)
} }
} }
void lwz(UGeckoInstruction _inst) void Interpreter::lwz(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA(_inst); u32 uAddress = Helper_Get_EA(_inst);
u32 temp = Memory::Read_U32(uAddress); u32 temp = Memory::Read_U32(uAddress);
@ -261,7 +256,7 @@ void lwz(UGeckoInstruction _inst)
}*/ }*/
} }
void lwzu(UGeckoInstruction _inst) void Interpreter::lwzu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
u32 temp = Memory::Read_U32(uAddress); u32 temp = Memory::Read_U32(uAddress);
@ -272,12 +267,12 @@ void lwzu(UGeckoInstruction _inst)
} }
} }
void stb(UGeckoInstruction _inst) void Interpreter::stb(UGeckoInstruction _inst)
{ {
Memory::Write_U8((u8)m_GPR[_inst.RS], Helper_Get_EA(_inst)); Memory::Write_U8((u8)m_GPR[_inst.RS], Helper_Get_EA(_inst));
} }
void stbu(UGeckoInstruction _inst) void Interpreter::stbu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
Memory::Write_U8((u8)m_GPR[_inst.RS], uAddress); Memory::Write_U8((u8)m_GPR[_inst.RS], uAddress);
@ -287,12 +282,12 @@ void stbu(UGeckoInstruction _inst)
} }
} }
void stfd(UGeckoInstruction _inst) void Interpreter::stfd(UGeckoInstruction _inst)
{ {
Memory::Write_U64(riPS0(_inst.FS), Helper_Get_EA(_inst)); Memory::Write_U64(riPS0(_inst.FS), Helper_Get_EA(_inst));
} }
void stfdu(UGeckoInstruction _inst) void Interpreter::stfdu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
Memory::Write_U64(riPS0(_inst.FS), uAddress); Memory::Write_U64(riPS0(_inst.FS), uAddress);
@ -302,7 +297,7 @@ void stfdu(UGeckoInstruction _inst)
} }
} }
void stfs(UGeckoInstruction _inst) void Interpreter::stfs(UGeckoInstruction _inst)
{ {
//double value = rPS0(_inst.FS); //double value = rPS0(_inst.FS);
//float fTemp = (float)value; //float fTemp = (float)value;
@ -310,7 +305,7 @@ void stfs(UGeckoInstruction _inst)
Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), Helper_Get_EA(_inst)); Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), Helper_Get_EA(_inst));
} }
void stfsu(UGeckoInstruction _inst) void Interpreter::stfsu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), uAddress); Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), uAddress);
@ -320,12 +315,12 @@ void stfsu(UGeckoInstruction _inst)
} }
} }
void sth(UGeckoInstruction _inst) void Interpreter::sth(UGeckoInstruction _inst)
{ {
Memory::Write_U16((u16)m_GPR[_inst.RS], Helper_Get_EA(_inst)); Memory::Write_U16((u16)m_GPR[_inst.RS], Helper_Get_EA(_inst));
} }
void sthu(UGeckoInstruction _inst) void Interpreter::sthu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
Memory::Write_U16((u16)m_GPR[_inst.RS], uAddress); Memory::Write_U16((u16)m_GPR[_inst.RS], uAddress);
@ -335,12 +330,12 @@ void sthu(UGeckoInstruction _inst)
} }
} }
void stw(UGeckoInstruction _inst) void Interpreter::stw(UGeckoInstruction _inst)
{ {
Memory::Write_U32(m_GPR[_inst.RS], Helper_Get_EA(_inst)); Memory::Write_U32(m_GPR[_inst.RS], Helper_Get_EA(_inst));
} }
void stwu(UGeckoInstruction _inst) void Interpreter::stwu(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_U(_inst); u32 uAddress = Helper_Get_EA_U(_inst);
Memory::Write_U32(m_GPR[_inst.RS], uAddress); Memory::Write_U32(m_GPR[_inst.RS], uAddress);
@ -350,12 +345,12 @@ void stwu(UGeckoInstruction _inst)
} }
} }
void dcba(UGeckoInstruction _inst) void Interpreter::dcba(UGeckoInstruction _inst)
{ {
_assert_msg_(POWERPC,0,"dcba - Not implemented - not a Gekko instruction"); _assert_msg_(POWERPC,0,"dcba - Not implemented - not a Gekko instruction");
} }
void dcbf(UGeckoInstruction _inst) void Interpreter::dcbf(UGeckoInstruction _inst)
{ {
//This should tell GFX plugin to throw out any cached data here //This should tell GFX plugin to throw out any cached data here
// !!! SPEEDUP HACK for OSProtectRange !!! // !!! SPEEDUP HACK for OSProtectRange !!!
@ -369,29 +364,29 @@ void dcbf(UGeckoInstruction _inst)
}*/ }*/
} }
void dcbi(UGeckoInstruction _inst) void Interpreter::dcbi(UGeckoInstruction _inst)
{ {
// Removes a block from data cache. Since we don't emulate the data cache, we don't need to do anything. // Removes a block from data cache. Since we don't emulate the data cache, we don't need to do anything.
// Seen used during initialization. // Seen used during initialization.
} }
void dcbst(UGeckoInstruction _inst) void Interpreter::dcbst(UGeckoInstruction _inst)
{ {
// Cache line flush. Since we don't emulate the data cache, we don't need to do anything. // Cache line flush. Since we don't emulate the data cache, we don't need to do anything.
} }
void dcbt(UGeckoInstruction _inst) void Interpreter::dcbt(UGeckoInstruction _inst)
{ {
// Prefetch. Since we don't emulate the data cache, we don't need to do anything. // Prefetch. Since we don't emulate the data cache, we don't need to do anything.
} }
void dcbtst(UGeckoInstruction _inst) void Interpreter::dcbtst(UGeckoInstruction _inst)
{ {
// This is just some sort of store "prefetching". // This is just some sort of store "prefetching".
// Since we don't emulate the data cache, we don't need to do anything. // Since we don't emulate the data cache, we don't need to do anything.
} }
void dcbz(UGeckoInstruction _inst) void Interpreter::dcbz(UGeckoInstruction _inst)
{ {
// HACK but works... we think // HACK but works... we think
Memory::Memset(Helper_Get_EA_X(_inst) & (~31), 0, 32); Memory::Memset(Helper_Get_EA_X(_inst) & (~31), 0, 32);
@ -399,7 +394,7 @@ void dcbz(UGeckoInstruction _inst)
// eciwx/ecowx technically should access the specified device // eciwx/ecowx technically should access the specified device
// We just do it instantly from ppc...and hey, it works! :D // We just do it instantly from ppc...and hey, it works! :D
void eciwx(UGeckoInstruction _inst) void Interpreter::eciwx(UGeckoInstruction _inst)
{ {
u32 EA, b; u32 EA, b;
if (_inst.RA == 0) if (_inst.RA == 0)
@ -421,7 +416,7 @@ void eciwx(UGeckoInstruction _inst)
m_GPR[_inst.RS] = Memory::Read_U32(EA); m_GPR[_inst.RS] = Memory::Read_U32(EA);
} }
void ecowx(UGeckoInstruction _inst) void Interpreter::ecowx(UGeckoInstruction _inst)
{ {
u32 EA, b; u32 EA, b;
if (_inst.RA == 0) if (_inst.RA == 0)
@ -443,7 +438,7 @@ void ecowx(UGeckoInstruction _inst)
Memory::Write_U32(m_GPR[_inst.RS], EA); Memory::Write_U32(m_GPR[_inst.RS], EA);
} }
void eieio(UGeckoInstruction _inst) void Interpreter::eieio(UGeckoInstruction _inst)
{ {
// Basically ensures that loads/stores before this instruction // Basically ensures that loads/stores before this instruction
// have completed (in order) before executing the next op. // have completed (in order) before executing the next op.
@ -451,13 +446,13 @@ void eieio(UGeckoInstruction _inst)
// But (at least in interpreter) we do everything realtime anyways. // But (at least in interpreter) we do everything realtime anyways.
} }
void icbi(UGeckoInstruction _inst) void Interpreter::icbi(UGeckoInstruction _inst)
{ {
u32 address = Helper_Get_EA_X(_inst); u32 address = Helper_Get_EA_X(_inst);
PowerPC::ppcState.iCache.Invalidate(address); PowerPC::ppcState.iCache.Invalidate(address);
} }
void lbzux(UGeckoInstruction _inst) void Interpreter::lbzux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
u32 temp = (u32)Memory::Read_U8(uAddress); u32 temp = (u32)Memory::Read_U8(uAddress);
@ -468,7 +463,7 @@ void lbzux(UGeckoInstruction _inst)
} }
} }
void lbzx(UGeckoInstruction _inst) void Interpreter::lbzx(UGeckoInstruction _inst)
{ {
u32 temp = (u32)Memory::Read_U8(Helper_Get_EA_X(_inst)); u32 temp = (u32)Memory::Read_U8(Helper_Get_EA_X(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -477,7 +472,7 @@ void lbzx(UGeckoInstruction _inst)
} }
} }
void lhaux(UGeckoInstruction _inst) void Interpreter::lhaux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
s32 temp = (s32)(s16)Memory::Read_U16(uAddress); s32 temp = (s32)(s16)Memory::Read_U16(uAddress);
@ -488,7 +483,7 @@ void lhaux(UGeckoInstruction _inst)
} }
} }
void lhax(UGeckoInstruction _inst) void Interpreter::lhax(UGeckoInstruction _inst)
{ {
s32 temp = (s32)(s16)Memory::Read_U16(Helper_Get_EA_X(_inst)); s32 temp = (s32)(s16)Memory::Read_U16(Helper_Get_EA_X(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -497,7 +492,7 @@ void lhax(UGeckoInstruction _inst)
} }
} }
void lhbrx(UGeckoInstruction _inst) void Interpreter::lhbrx(UGeckoInstruction _inst)
{ {
u32 temp = (u32)Common::swap16(Memory::Read_U16(Helper_Get_EA_X(_inst))); u32 temp = (u32)Common::swap16(Memory::Read_U16(Helper_Get_EA_X(_inst)));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -506,7 +501,7 @@ void lhbrx(UGeckoInstruction _inst)
} }
} }
void lhzux(UGeckoInstruction _inst) void Interpreter::lhzux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
u32 temp = (u32)Memory::Read_U16(uAddress); u32 temp = (u32)Memory::Read_U16(uAddress);
@ -517,7 +512,7 @@ void lhzux(UGeckoInstruction _inst)
} }
} }
void lhzx(UGeckoInstruction _inst) void Interpreter::lhzx(UGeckoInstruction _inst)
{ {
u32 temp = (u32)Memory::Read_U16(Helper_Get_EA_X(_inst)); u32 temp = (u32)Memory::Read_U16(Helper_Get_EA_X(_inst));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -526,7 +521,7 @@ void lhzx(UGeckoInstruction _inst)
} }
} }
void lswx(UGeckoInstruction _inst) void Interpreter::lswx(UGeckoInstruction _inst)
{ {
static bool bFirst = true; static bool bFirst = true;
if (bFirst) if (bFirst)
@ -534,7 +529,7 @@ void lswx(UGeckoInstruction _inst)
bFirst = false; bFirst = false;
} }
void lwbrx(UGeckoInstruction _inst) void Interpreter::lwbrx(UGeckoInstruction _inst)
{ {
u32 temp = Common::swap32(Memory::Read_U32(Helper_Get_EA_X(_inst))); u32 temp = Common::swap32(Memory::Read_U32(Helper_Get_EA_X(_inst)));
if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI)) if (!(PowerPC::ppcState.Exceptions & EXCEPTION_DSI))
@ -543,7 +538,7 @@ void lwbrx(UGeckoInstruction _inst)
} }
} }
void lwzux(UGeckoInstruction _inst) void Interpreter::lwzux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
u32 temp = Memory::Read_U32(uAddress); u32 temp = Memory::Read_U32(uAddress);
@ -554,7 +549,7 @@ void lwzux(UGeckoInstruction _inst)
} }
} }
void lwzx(UGeckoInstruction _inst) void Interpreter::lwzx(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_X(_inst); u32 uAddress = Helper_Get_EA_X(_inst);
u32 temp = Memory::Read_U32(uAddress); u32 temp = Memory::Read_U32(uAddress);
@ -564,7 +559,7 @@ void lwzx(UGeckoInstruction _inst)
} }
} }
void stbux(UGeckoInstruction _inst) void Interpreter::stbux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
Memory::Write_U8((u8)m_GPR[_inst.RS], uAddress); Memory::Write_U8((u8)m_GPR[_inst.RS], uAddress);
@ -574,12 +569,12 @@ void stbux(UGeckoInstruction _inst)
} }
} }
void stbx(UGeckoInstruction _inst) void Interpreter::stbx(UGeckoInstruction _inst)
{ {
Memory::Write_U8((u8)m_GPR[_inst.RS], Helper_Get_EA_X(_inst)); Memory::Write_U8((u8)m_GPR[_inst.RS], Helper_Get_EA_X(_inst));
} }
void stfdux(UGeckoInstruction _inst) void Interpreter::stfdux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
Memory::Write_U64(riPS0(_inst.FS), uAddress); Memory::Write_U64(riPS0(_inst.FS), uAddress);
@ -589,7 +584,7 @@ void stfdux(UGeckoInstruction _inst)
} }
} }
void stfdx(UGeckoInstruction _inst) void Interpreter::stfdx(UGeckoInstruction _inst)
{ {
Memory::Write_U64(riPS0(_inst.FS), Helper_Get_EA_X(_inst)); Memory::Write_U64(riPS0(_inst.FS), Helper_Get_EA_X(_inst));
} }
@ -598,7 +593,7 @@ void stfdx(UGeckoInstruction _inst)
// stfiwx // stfiwx
// TODO - examine what this really does // TODO - examine what this really does
// Stores Floating points into Integers indeXed // Stores Floating points into Integers indeXed
void stfiwx(UGeckoInstruction _inst) void Interpreter::stfiwx(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_X(_inst); u32 uAddress = Helper_Get_EA_X(_inst);
@ -606,7 +601,7 @@ void stfiwx(UGeckoInstruction _inst)
} }
void stfsux(UGeckoInstruction _inst) void Interpreter::stfsux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), uAddress); Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), uAddress);
@ -616,17 +611,17 @@ void stfsux(UGeckoInstruction _inst)
} }
} }
void stfsx(UGeckoInstruction _inst) void Interpreter::stfsx(UGeckoInstruction _inst)
{ {
Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), Helper_Get_EA_X(_inst)); Memory::Write_U32(ConvertToSingle(riPS0(_inst.FS)), Helper_Get_EA_X(_inst));
} }
void sthbrx(UGeckoInstruction _inst) void Interpreter::sthbrx(UGeckoInstruction _inst)
{ {
Memory::Write_U16(Common::swap16((u16)m_GPR[_inst.RS]), Helper_Get_EA_X(_inst)); Memory::Write_U16(Common::swap16((u16)m_GPR[_inst.RS]), Helper_Get_EA_X(_inst));
} }
void sthux(UGeckoInstruction _inst) void Interpreter::sthux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
Memory::Write_U16((u16)m_GPR[_inst.RS], uAddress); Memory::Write_U16((u16)m_GPR[_inst.RS], uAddress);
@ -636,7 +631,7 @@ void sthux(UGeckoInstruction _inst)
} }
} }
void sthx(UGeckoInstruction _inst) void Interpreter::sthx(UGeckoInstruction _inst)
{ {
Memory::Write_U16((u16)m_GPR[_inst.RS], Helper_Get_EA_X(_inst)); Memory::Write_U16((u16)m_GPR[_inst.RS], Helper_Get_EA_X(_inst));
} }
@ -644,7 +639,7 @@ void sthx(UGeckoInstruction _inst)
// __________________________________________________________________________________________________ // __________________________________________________________________________________________________
// lswi - bizarro string instruction // lswi - bizarro string instruction
// FIXME: Should rollback if a DSI occurs // FIXME: Should rollback if a DSI occurs
void lswi(UGeckoInstruction _inst) void Interpreter::lswi(UGeckoInstruction _inst)
{ {
u32 EA; u32 EA;
if (_inst.RA == 0) if (_inst.RA == 0)
@ -690,7 +685,7 @@ void lswi(UGeckoInstruction _inst)
// __________________________________________________________________________________________________ // __________________________________________________________________________________________________
// stswi - bizarro string instruction // stswi - bizarro string instruction
// FIXME: Should rollback if a DSI occurs // FIXME: Should rollback if a DSI occurs
void stswi(UGeckoInstruction _inst) void Interpreter::stswi(UGeckoInstruction _inst)
{ {
u32 EA; u32 EA;
if (_inst.RA == 0) if (_inst.RA == 0)
@ -727,7 +722,7 @@ void stswi(UGeckoInstruction _inst)
} }
} }
void stswx(UGeckoInstruction _inst) void Interpreter::stswx(UGeckoInstruction _inst)
{ {
static bool bFirst = true; static bool bFirst = true;
if (bFirst) if (bFirst)
@ -735,7 +730,7 @@ void stswx(UGeckoInstruction _inst)
bFirst = false; bFirst = false;
} }
void stwbrx(UGeckoInstruction _inst) void Interpreter::stwbrx(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_X(_inst); u32 uAddress = Helper_Get_EA_X(_inst);
Memory::Write_U32(Common::swap32(m_GPR[_inst.RS]), uAddress); Memory::Write_U32(Common::swap32(m_GPR[_inst.RS]), uAddress);
@ -745,7 +740,7 @@ void stwbrx(UGeckoInstruction _inst)
// The following two instructions are for SMP communications. On a single // The following two instructions are for SMP communications. On a single
// CPU, they cannot fail unless an interrupt happens in between. // CPU, they cannot fail unless an interrupt happens in between.
void lwarx(UGeckoInstruction _inst) void Interpreter::lwarx(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_X(_inst); u32 uAddress = Helper_Get_EA_X(_inst);
u32 temp = Memory::Read_U32(uAddress); u32 temp = Memory::Read_U32(uAddress);
@ -757,7 +752,7 @@ void lwarx(UGeckoInstruction _inst)
} }
} }
void stwcxd(UGeckoInstruction _inst) void Interpreter::stwcxd(UGeckoInstruction _inst)
{ {
// Stores Word Conditional indeXed // Stores Word Conditional indeXed
u32 uAddress; u32 uAddress;
@ -777,7 +772,7 @@ void stwcxd(UGeckoInstruction _inst)
SetCRField(0, GetXER_SO()); SetCRField(0, GetXER_SO());
} }
void stwux(UGeckoInstruction _inst) void Interpreter::stwux(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_UX(_inst); u32 uAddress = Helper_Get_EA_UX(_inst);
Memory::Write_U32(m_GPR[_inst.RS], uAddress); Memory::Write_U32(m_GPR[_inst.RS], uAddress);
@ -787,18 +782,18 @@ void stwux(UGeckoInstruction _inst)
} }
} }
void stwx(UGeckoInstruction _inst) void Interpreter::stwx(UGeckoInstruction _inst)
{ {
u32 uAddress = Helper_Get_EA_X(_inst); u32 uAddress = Helper_Get_EA_X(_inst);
Memory::Write_U32(m_GPR[_inst.RS], uAddress); Memory::Write_U32(m_GPR[_inst.RS], uAddress);
} }
void sync(UGeckoInstruction _inst) void Interpreter::sync(UGeckoInstruction _inst)
{ {
//ignored //ignored
} }
void tlbia(UGeckoInstruction _inst) void Interpreter::tlbia(UGeckoInstruction _inst)
{ {
// Gekko does not support this instructions. // Gekko does not support this instructions.
PanicAlert("The GC CPU does not support tlbia"); PanicAlert("The GC CPU does not support tlbia");
@ -806,16 +801,14 @@ void tlbia(UGeckoInstruction _inst)
//MessageBox(0,"TLBIA","TLBIA",0); //MessageBox(0,"TLBIA","TLBIA",0);
} }
void tlbie(UGeckoInstruction _inst) void Interpreter::tlbie(UGeckoInstruction _inst)
{ {
// Invalidate TLB entry // Invalidate TLB entry
u32 _Address = m_GPR[_inst.RB]; u32 _Address = m_GPR[_inst.RB];
Memory::InvalidateTLBEntry(_Address); Memory::InvalidateTLBEntry(_Address);
} }
void tlbsync(UGeckoInstruction _inst) void Interpreter::tlbsync(UGeckoInstruction _inst)
{ {
//MessageBox(0,"TLBsync","TLBsyncE",0); //MessageBox(0,"TLBsync","TLBsyncE",0);
} }
} // namespace

View File

@ -21,9 +21,6 @@
#include "Interpreter_FPUtils.h" #include "Interpreter_FPUtils.h"
namespace Interpreter
{
// dequantize table // dequantize table
const float m_dequantizeTable[] = const float m_dequantizeTable[] =
{ {
@ -73,7 +70,7 @@ inline T CLAMP(T a, T bottom, T top) {
return a; return a;
} }
void Helper_Quantize(const u32 _Addr, const double _fValue, void Interpreter::Helper_Quantize(const u32 _Addr, const double _fValue,
const EQuantizeType _quantizeType, const unsigned int _uScale) const EQuantizeType _quantizeType, const unsigned int _uScale)
{ {
switch (_quantizeType) switch (_quantizeType)
@ -117,8 +114,8 @@ void Helper_Quantize(const u32 _Addr, const double _fValue,
} }
} }
float Helper_Dequantize(const u32 _Addr, const EQuantizeType _quantizeType, float Interpreter::Helper_Dequantize(const u32 _Addr, const EQuantizeType _quantizeType,
const unsigned int _uScale) const unsigned int _uScale)
{ {
// dequantize the value // dequantize the value
float fResult; float fResult;
@ -156,7 +153,7 @@ float Helper_Dequantize(const u32 _Addr, const EQuantizeType _quantizeType,
return fResult; return fResult;
} }
void psq_l(UGeckoInstruction _inst) void Interpreter::psq_l(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.I)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.I));
const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE); const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE);
@ -190,7 +187,7 @@ void psq_l(UGeckoInstruction _inst)
} }
} }
void psq_lu(UGeckoInstruction _inst) void Interpreter::psq_lu(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.I)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.I));
const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE); const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE);
@ -225,7 +222,7 @@ void psq_lu(UGeckoInstruction _inst)
m_GPR[_inst.RA] = EA; m_GPR[_inst.RA] = EA;
} }
void psq_st(UGeckoInstruction _inst) void Interpreter::psq_st(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.I)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.I));
const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE); const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE);
@ -247,7 +244,7 @@ void psq_st(UGeckoInstruction _inst)
} }
} }
void psq_stu(UGeckoInstruction _inst) void Interpreter::psq_stu(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.I)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.I));
const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE); const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE);
@ -274,7 +271,7 @@ void psq_stu(UGeckoInstruction _inst)
m_GPR[_inst.RA] = EA; m_GPR[_inst.RA] = EA;
} }
void psq_lx(UGeckoInstruction _inst) void Interpreter::psq_lx(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix));
const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE); const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE);
@ -313,7 +310,7 @@ void psq_lx(UGeckoInstruction _inst)
} }
} }
void psq_stx(UGeckoInstruction _inst) void Interpreter::psq_stx(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix));
const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE); const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE);
@ -335,7 +332,7 @@ void psq_stx(UGeckoInstruction _inst)
} }
} }
void psq_lux(UGeckoInstruction _inst) void Interpreter::psq_lux(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix));
const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE); const EQuantizeType ldType = static_cast<EQuantizeType>(gqr.LD_TYPE);
@ -370,7 +367,7 @@ void psq_lux(UGeckoInstruction _inst)
m_GPR[_inst.RA] = EA; m_GPR[_inst.RA] = EA;
} }
void psq_stux(UGeckoInstruction _inst) void Interpreter::psq_stux(UGeckoInstruction _inst)
{ {
const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix)); const UGQR gqr(rSPR(SPR_GQR0 + _inst.Ix));
const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE); const EQuantizeType stType = static_cast<EQuantizeType>(gqr.ST_TYPE);
@ -397,4 +394,3 @@ void psq_stux(UGeckoInstruction _inst)
m_GPR[_inst.RA] = EA; m_GPR[_inst.RA] = EA;
} // namespace======= } // namespace=======
}

View File

@ -25,39 +25,36 @@
using namespace MathUtil; using namespace MathUtil;
namespace Interpreter
{
// These "binary instructions" do not alter FPSCR. // These "binary instructions" do not alter FPSCR.
void ps_sel(UGeckoInstruction _inst) void Interpreter::ps_sel(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS0(_inst.FA) >= -0.0 ? rPS0(_inst.FC) : rPS0(_inst.FB); rPS0(_inst.FD) = rPS0(_inst.FA) >= -0.0 ? rPS0(_inst.FC) : rPS0(_inst.FB);
rPS1(_inst.FD) = rPS1(_inst.FA) >= -0.0 ? rPS1(_inst.FC) : rPS1(_inst.FB); rPS1(_inst.FD) = rPS1(_inst.FA) >= -0.0 ? rPS1(_inst.FC) : rPS1(_inst.FB);
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_neg(UGeckoInstruction _inst) void Interpreter::ps_neg(UGeckoInstruction _inst)
{ {
riPS0(_inst.FD) = riPS0(_inst.FB) ^ (1ULL << 63); riPS0(_inst.FD) = riPS0(_inst.FB) ^ (1ULL << 63);
riPS1(_inst.FD) = riPS1(_inst.FB) ^ (1ULL << 63); riPS1(_inst.FD) = riPS1(_inst.FB) ^ (1ULL << 63);
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_mr(UGeckoInstruction _inst) void Interpreter::ps_mr(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = rPS0(_inst.FB); rPS0(_inst.FD) = rPS0(_inst.FB);
rPS1(_inst.FD) = rPS1(_inst.FB); rPS1(_inst.FD) = rPS1(_inst.FB);
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_nabs(UGeckoInstruction _inst) void Interpreter::ps_nabs(UGeckoInstruction _inst)
{ {
riPS0(_inst.FD) = riPS0(_inst.FB) | (1ULL << 63); riPS0(_inst.FD) = riPS0(_inst.FB) | (1ULL << 63);
riPS1(_inst.FD) = riPS1(_inst.FB) | (1ULL << 63); riPS1(_inst.FD) = riPS1(_inst.FB) | (1ULL << 63);
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_abs(UGeckoInstruction _inst) void Interpreter::ps_abs(UGeckoInstruction _inst)
{ {
riPS0(_inst.FD) = riPS0(_inst.FB) &~ (1ULL << 63); riPS0(_inst.FD) = riPS0(_inst.FB) &~ (1ULL << 63);
riPS1(_inst.FD) = riPS1(_inst.FB) &~ (1ULL << 63); riPS1(_inst.FD) = riPS1(_inst.FB) &~ (1ULL << 63);
@ -65,7 +62,7 @@ void ps_abs(UGeckoInstruction _inst)
} }
// These are just moves, double is OK. // These are just moves, double is OK.
void ps_merge00(UGeckoInstruction _inst) void Interpreter::ps_merge00(UGeckoInstruction _inst)
{ {
double p0 = rPS0(_inst.FA); double p0 = rPS0(_inst.FA);
double p1 = rPS0(_inst.FB); double p1 = rPS0(_inst.FB);
@ -74,7 +71,7 @@ void ps_merge00(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_merge01(UGeckoInstruction _inst) void Interpreter::ps_merge01(UGeckoInstruction _inst)
{ {
double p0 = rPS0(_inst.FA); double p0 = rPS0(_inst.FA);
double p1 = rPS1(_inst.FB); double p1 = rPS1(_inst.FB);
@ -83,7 +80,7 @@ void ps_merge01(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_merge10(UGeckoInstruction _inst) void Interpreter::ps_merge10(UGeckoInstruction _inst)
{ {
double p0 = rPS1(_inst.FA); double p0 = rPS1(_inst.FA);
double p1 = rPS0(_inst.FB); double p1 = rPS0(_inst.FB);
@ -92,7 +89,7 @@ void ps_merge10(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_merge11(UGeckoInstruction _inst) void Interpreter::ps_merge11(UGeckoInstruction _inst)
{ {
double p0 = rPS1(_inst.FA); double p0 = rPS1(_inst.FA);
double p1 = rPS1(_inst.FB); double p1 = rPS1(_inst.FB);
@ -102,7 +99,7 @@ void ps_merge11(UGeckoInstruction _inst)
} }
// From here on, the real deal. // From here on, the real deal.
void ps_div(UGeckoInstruction _inst) void Interpreter::ps_div(UGeckoInstruction _inst)
{ {
u32 ex_mask = 0; u32 ex_mask = 0;
@ -187,7 +184,7 @@ void ps_div(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_res(UGeckoInstruction _inst) void Interpreter::ps_res(UGeckoInstruction _inst)
{ {
// this code is based on the real hardware tests // this code is based on the real hardware tests
double a = rPS0(_inst.FB); double a = rPS0(_inst.FB);
@ -216,7 +213,7 @@ void ps_res(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_rsqrte(UGeckoInstruction _inst) void Interpreter::ps_rsqrte(UGeckoInstruction _inst)
{ {
// this code is based on the real hardware tests // this code is based on the real hardware tests
if (rPS0(_inst.FB) == 0.0 || rPS1(_inst.FB) == 0.0) if (rPS0(_inst.FB) == 0.0 || rPS1(_inst.FB) == 0.0)
@ -253,7 +250,7 @@ void ps_rsqrte(UGeckoInstruction _inst)
} }
void ps_sub(UGeckoInstruction _inst) void Interpreter::ps_sub(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle(NI_sub(rPS0(_inst.FA), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceSingle(NI_sub(rPS0(_inst.FA), rPS0(_inst.FB)));
rPS1(_inst.FD) = ForceSingle(NI_sub(rPS1(_inst.FA), rPS1(_inst.FB))); rPS1(_inst.FD) = ForceSingle(NI_sub(rPS1(_inst.FA), rPS1(_inst.FB)));
@ -261,7 +258,7 @@ void ps_sub(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_add(UGeckoInstruction _inst) void Interpreter::ps_add(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle(NI_add(rPS0(_inst.FA), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceSingle(NI_add(rPS0(_inst.FA), rPS0(_inst.FB)));
rPS1(_inst.FD) = ForceSingle(NI_add(rPS1(_inst.FA), rPS1(_inst.FB))); rPS1(_inst.FD) = ForceSingle(NI_add(rPS1(_inst.FA), rPS1(_inst.FB)));
@ -269,7 +266,7 @@ void ps_add(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_mul(UGeckoInstruction _inst) void Interpreter::ps_mul(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle(NI_mul(rPS0(_inst.FA), rPS0(_inst.FC))); rPS0(_inst.FD) = ForceSingle(NI_mul(rPS0(_inst.FA), rPS0(_inst.FC)));
rPS1(_inst.FD) = ForceSingle(NI_mul(rPS1(_inst.FA), rPS1(_inst.FC))); rPS1(_inst.FD) = ForceSingle(NI_mul(rPS1(_inst.FA), rPS1(_inst.FC)));
@ -278,7 +275,7 @@ void ps_mul(UGeckoInstruction _inst)
} }
void ps_msub(UGeckoInstruction _inst) void Interpreter::ps_msub(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle(NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceSingle(NI_msub(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)));
rPS1(_inst.FD) = ForceSingle(NI_msub(rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB))); rPS1(_inst.FD) = ForceSingle(NI_msub(rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB)));
@ -286,7 +283,7 @@ void ps_msub(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_madd(UGeckoInstruction _inst) void Interpreter::ps_madd(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle(NI_madd(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB))); rPS0(_inst.FD) = ForceSingle(NI_madd(rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)));
rPS1(_inst.FD) = ForceSingle(NI_madd(rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB))); rPS1(_inst.FD) = ForceSingle(NI_madd(rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB)));
@ -294,7 +291,7 @@ void ps_madd(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_nmsub(UGeckoInstruction _inst) void Interpreter::ps_nmsub(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle( -NI_msub( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ) ); rPS0(_inst.FD) = ForceSingle( -NI_msub( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ) );
rPS1(_inst.FD) = ForceSingle( -NI_msub( rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB) ) ); rPS1(_inst.FD) = ForceSingle( -NI_msub( rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB) ) );
@ -302,7 +299,7 @@ void ps_nmsub(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_nmadd(UGeckoInstruction _inst) void Interpreter::ps_nmadd(UGeckoInstruction _inst)
{ {
rPS0(_inst.FD) = ForceSingle( -NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ) ); rPS0(_inst.FD) = ForceSingle( -NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB) ) );
rPS1(_inst.FD) = ForceSingle( -NI_madd( rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB) ) ); rPS1(_inst.FD) = ForceSingle( -NI_madd( rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB) ) );
@ -310,7 +307,7 @@ void ps_nmadd(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_sum0(UGeckoInstruction _inst) void Interpreter::ps_sum0(UGeckoInstruction _inst)
{ {
double p0 = ForceSingle(NI_add(rPS0(_inst.FA), rPS1(_inst.FB))); double p0 = ForceSingle(NI_add(rPS0(_inst.FA), rPS1(_inst.FB)));
double p1 = ForceSingle(rPS1(_inst.FC)); double p1 = ForceSingle(rPS1(_inst.FC));
@ -320,7 +317,7 @@ void ps_sum0(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_sum1(UGeckoInstruction _inst) void Interpreter::ps_sum1(UGeckoInstruction _inst)
{ {
double p0 = ForceSingle(rPS0(_inst.FC)); double p0 = ForceSingle(rPS0(_inst.FC));
double p1 = ForceSingle(NI_add(rPS0(_inst.FA), rPS1(_inst.FB))); double p1 = ForceSingle(NI_add(rPS0(_inst.FA), rPS1(_inst.FB)));
@ -330,7 +327,7 @@ void ps_sum1(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_muls0(UGeckoInstruction _inst) void Interpreter::ps_muls0(UGeckoInstruction _inst)
{ {
double p0 = ForceSingle(NI_mul(rPS0(_inst.FA), rPS0(_inst.FC))); double p0 = ForceSingle(NI_mul(rPS0(_inst.FA), rPS0(_inst.FC)));
double p1 = ForceSingle(NI_mul(rPS1(_inst.FA), rPS0(_inst.FC))); double p1 = ForceSingle(NI_mul(rPS1(_inst.FA), rPS0(_inst.FC)));
@ -340,7 +337,7 @@ void ps_muls0(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_muls1(UGeckoInstruction _inst) void Interpreter::ps_muls1(UGeckoInstruction _inst)
{ {
double p0 = ForceSingle(NI_mul(rPS0(_inst.FA), rPS1(_inst.FC))); double p0 = ForceSingle(NI_mul(rPS0(_inst.FA), rPS1(_inst.FC)));
double p1 = ForceSingle(NI_mul(rPS1(_inst.FA), rPS1(_inst.FC))); double p1 = ForceSingle(NI_mul(rPS1(_inst.FA), rPS1(_inst.FC)));
@ -350,7 +347,7 @@ void ps_muls1(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_madds0(UGeckoInstruction _inst) void Interpreter::ps_madds0(UGeckoInstruction _inst)
{ {
double p0 = ForceSingle( NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)) ); double p0 = ForceSingle( NI_madd( rPS0(_inst.FA), rPS0(_inst.FC), rPS0(_inst.FB)) );
double p1 = ForceSingle( NI_madd( rPS1(_inst.FA), rPS0(_inst.FC), rPS1(_inst.FB)) ); double p1 = ForceSingle( NI_madd( rPS1(_inst.FA), rPS0(_inst.FC), rPS1(_inst.FB)) );
@ -360,7 +357,7 @@ void ps_madds0(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_madds1(UGeckoInstruction _inst) void Interpreter::ps_madds1(UGeckoInstruction _inst)
{ {
double p0 = ForceSingle( NI_madd( rPS0(_inst.FA), rPS1(_inst.FC), rPS0(_inst.FB)) ); double p0 = ForceSingle( NI_madd( rPS0(_inst.FA), rPS1(_inst.FC), rPS0(_inst.FB)) );
double p1 = ForceSingle( NI_madd( rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB)) ); double p1 = ForceSingle( NI_madd( rPS1(_inst.FA), rPS1(_inst.FC), rPS1(_inst.FB)) );
@ -370,7 +367,7 @@ void ps_madds1(UGeckoInstruction _inst)
if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD)); if (_inst.Rc) Helper_UpdateCR1(rPS0(_inst.FD));
} }
void ps_cmpu0(UGeckoInstruction _inst) void Interpreter::ps_cmpu0(UGeckoInstruction _inst)
{ {
double fa = rPS0(_inst.FA); double fa = rPS0(_inst.FA);
double fb = rPS0(_inst.FB); double fb = rPS0(_inst.FB);
@ -391,7 +388,7 @@ void ps_cmpu0(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, compareResult); SetCRField(_inst.CRFD, compareResult);
} }
void ps_cmpo0(UGeckoInstruction _inst) void Interpreter::ps_cmpo0(UGeckoInstruction _inst)
{ {
double fa = rPS0(_inst.FA); double fa = rPS0(_inst.FA);
double fb = rPS0(_inst.FB); double fb = rPS0(_inst.FB);
@ -419,7 +416,7 @@ void ps_cmpo0(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, compareResult); SetCRField(_inst.CRFD, compareResult);
} }
void ps_cmpu1(UGeckoInstruction _inst) void Interpreter::ps_cmpu1(UGeckoInstruction _inst)
{ {
double fa = rPS1(_inst.FA); double fa = rPS1(_inst.FA);
double fb = rPS1(_inst.FB); double fb = rPS1(_inst.FB);
@ -440,7 +437,7 @@ void ps_cmpu1(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, compareResult); SetCRField(_inst.CRFD, compareResult);
} }
void ps_cmpo1(UGeckoInstruction _inst) void Interpreter::ps_cmpo1(UGeckoInstruction _inst)
{ {
double fa = rPS1(_inst.FA); double fa = rPS1(_inst.FA);
double fb = rPS1(_inst.FB); double fb = rPS1(_inst.FB);
@ -471,10 +468,8 @@ void ps_cmpo1(UGeckoInstruction _inst)
// __________________________________________________________________________________________________ // __________________________________________________________________________________________________
// dcbz_l // dcbz_l
// TODO(ector) check docs // TODO(ector) check docs
void dcbz_l(UGeckoInstruction _inst) void Interpreter::dcbz_l(UGeckoInstruction _inst)
{ {
//FAKE: clear memory instead of clearing the cache block //FAKE: clear memory instead of clearing the cache block
Memory::Memset(Helper_Get_EA_X(_inst) & (~31), 0, 32); Memory::Memset(Helper_Get_EA_X(_inst) & (~31), 0, 32);
} }
} // namespace

View File

@ -60,9 +60,6 @@ mffsx: 80036650 (huh?)
// That is, set rounding mode etc when entering jit code or the interpreter loop // That is, set rounding mode etc when entering jit code or the interpreter loop
// Restore rounding mode when calling anything external // Restore rounding mode when calling anything external
namespace Interpreter
{
const u32 MASKS = 0x1F80; // mask away the interrupts. const u32 MASKS = 0x1F80; // mask away the interrupts.
const u32 DAZ = 0x40; const u32 DAZ = 0x40;
const u32 FTZ = 0x8000; const u32 FTZ = 0x8000;
@ -121,7 +118,7 @@ void FPSCRtoFPUSettings(UReg_FPSCR fp)
_mm_setcsr(csr); _mm_setcsr(csr);
} }
void mtfsb0x(UGeckoInstruction _inst) void Interpreter::mtfsb0x(UGeckoInstruction _inst)
{ {
u32 b = 0x80000000 >> _inst.CRBD; u32 b = 0x80000000 >> _inst.CRBD;
@ -134,7 +131,7 @@ void mtfsb0x(UGeckoInstruction _inst)
if (_inst.Rc) PanicAlert("mtfsb0x: inst_.Rc"); if (_inst.Rc) PanicAlert("mtfsb0x: inst_.Rc");
} }
void mtfsb1x(UGeckoInstruction _inst) void Interpreter::mtfsb1x(UGeckoInstruction _inst)
{ {
// this instruction can affect FX // this instruction can affect FX
u32 b = 0x80000000 >> _inst.CRBD; u32 b = 0x80000000 >> _inst.CRBD;
@ -147,7 +144,7 @@ void mtfsb1x(UGeckoInstruction _inst)
if (_inst.Rc) PanicAlert("mtfsb1x: inst_.Rc"); if (_inst.Rc) PanicAlert("mtfsb1x: inst_.Rc");
} }
void mtfsfix(UGeckoInstruction _inst) void Interpreter::mtfsfix(UGeckoInstruction _inst)
{ {
u32 mask = (0xF0000000 >> (4 * _inst.CRFD)); u32 mask = (0xF0000000 >> (4 * _inst.CRFD));
u32 imm = (_inst.hex << 16) & 0xF0000000; u32 imm = (_inst.hex << 16) & 0xF0000000;
@ -163,7 +160,7 @@ void mtfsfix(UGeckoInstruction _inst)
if (_inst.Rc) PanicAlert("mtfsfix: inst_.Rc"); if (_inst.Rc) PanicAlert("mtfsfix: inst_.Rc");
} }
void mtfsfx(UGeckoInstruction _inst) void Interpreter::mtfsfx(UGeckoInstruction _inst)
{ {
u32 fm = _inst.FM; u32 fm = _inst.FM;
u32 m = 0; u32 m = 0;
@ -183,19 +180,19 @@ void mtfsfx(UGeckoInstruction _inst)
if (_inst.Rc) PanicAlert("mtfsfx: inst_.Rc"); if (_inst.Rc) PanicAlert("mtfsfx: inst_.Rc");
} }
void mcrxr(UGeckoInstruction _inst) void Interpreter::mcrxr(UGeckoInstruction _inst)
{ {
// USES_XER // USES_XER
SetCRField(_inst.CRFD, PowerPC::ppcState.spr[SPR_XER] >> 28); SetCRField(_inst.CRFD, PowerPC::ppcState.spr[SPR_XER] >> 28);
PowerPC::ppcState.spr[SPR_XER] &= ~0xF0000000; // clear 0-3 PowerPC::ppcState.spr[SPR_XER] &= ~0xF0000000; // clear 0-3
} }
void mfcr(UGeckoInstruction _inst) void Interpreter::mfcr(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RD] = GetCR(); m_GPR[_inst.RD] = GetCR();
} }
void mtcrf(UGeckoInstruction _inst) void Interpreter::mtcrf(UGeckoInstruction _inst)
{ {
u32 crm = _inst.CRM; u32 crm = _inst.CRM;
if (crm == 0xFF) if (crm == 0xFF)
@ -215,24 +212,24 @@ void mtcrf(UGeckoInstruction _inst)
} }
void mfmsr(UGeckoInstruction _inst) void Interpreter::mfmsr(UGeckoInstruction _inst)
{ {
//Privileged? //Privileged?
m_GPR[_inst.RD] = MSR; m_GPR[_inst.RD] = MSR;
} }
void mfsr(UGeckoInstruction _inst) void Interpreter::mfsr(UGeckoInstruction _inst)
{ {
m_GPR[_inst.RD] = PowerPC::ppcState.sr[_inst.SR]; m_GPR[_inst.RD] = PowerPC::ppcState.sr[_inst.SR];
} }
void mfsrin(UGeckoInstruction _inst) void Interpreter::mfsrin(UGeckoInstruction _inst)
{ {
int index = (m_GPR[_inst.RB] >> 28) & 0xF; int index = (m_GPR[_inst.RB] >> 28) & 0xF;
m_GPR[_inst.RD] = PowerPC::ppcState.sr[index]; m_GPR[_inst.RD] = PowerPC::ppcState.sr[index];
} }
void mtmsr(UGeckoInstruction _inst) void Interpreter::mtmsr(UGeckoInstruction _inst)
{ {
// Privileged? // Privileged?
MSR = m_GPR[_inst.RS]; MSR = m_GPR[_inst.RS];
@ -246,14 +243,14 @@ void SetSR(int index, u32 value) {
PowerPC::ppcState.sr[index] = value; PowerPC::ppcState.sr[index] = value;
} }
void mtsr(UGeckoInstruction _inst) void Interpreter::mtsr(UGeckoInstruction _inst)
{ {
int index = _inst.SR; int index = _inst.SR;
u32 value = m_GPR[_inst.RS]; u32 value = m_GPR[_inst.RS];
SetSR(index, value); SetSR(index, value);
} }
void mtsrin(UGeckoInstruction _inst) void Interpreter::mtsrin(UGeckoInstruction _inst)
{ {
int index = (m_GPR[_inst.RB] >> 28) & 0xF; int index = (m_GPR[_inst.RB] >> 28) & 0xF;
u32 value = m_GPR[_inst.RS]; u32 value = m_GPR[_inst.RS];
@ -262,7 +259,7 @@ void mtsrin(UGeckoInstruction _inst)
void mftb(UGeckoInstruction _inst) void Interpreter::mftb(UGeckoInstruction _inst)
{ {
int iIndex = (_inst.TBR >> 5) | ((_inst.TBR & 0x1F) << 5); int iIndex = (_inst.TBR >> 5) | ((_inst.TBR & 0x1F) << 5);
if (iIndex == SPR_TL) m_GPR[_inst.RD] = TL; if (iIndex == SPR_TL) m_GPR[_inst.RD] = TL;
@ -271,7 +268,7 @@ void mftb(UGeckoInstruction _inst)
} }
void mfspr(UGeckoInstruction _inst) void Interpreter::mfspr(UGeckoInstruction _inst)
{ {
u32 iIndex = ((_inst.SPR & 0x1F) << 5) + ((_inst.SPR >> 5) & 0x1F); u32 iIndex = ((_inst.SPR & 0x1F) << 5) + ((_inst.SPR >> 5) & 0x1F);
@ -298,7 +295,7 @@ void mfspr(UGeckoInstruction _inst)
m_GPR[_inst.RD] = rSPR(iIndex); m_GPR[_inst.RD] = rSPR(iIndex);
} }
void mtspr(UGeckoInstruction _inst) void Interpreter::mtspr(UGeckoInstruction _inst)
{ {
u32 iIndex = (_inst.SPRU << 5) | (_inst.SPRL & 0x1F); u32 iIndex = (_inst.SPRU << 5) | (_inst.SPRL & 0x1F);
u32 oldValue = rSPR(iIndex); u32 oldValue = rSPR(iIndex);
@ -431,60 +428,60 @@ void mtspr(UGeckoInstruction _inst)
} }
} }
void crand(UGeckoInstruction _inst) void Interpreter::crand(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, GetCRBit(_inst.CRBA) & GetCRBit(_inst.CRBB)); SetCRBit(_inst.CRBD, GetCRBit(_inst.CRBA) & GetCRBit(_inst.CRBB));
} }
void crandc(UGeckoInstruction _inst) void Interpreter::crandc(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, GetCRBit(_inst.CRBA) & (1 ^ GetCRBit(_inst.CRBB))); SetCRBit(_inst.CRBD, GetCRBit(_inst.CRBA) & (1 ^ GetCRBit(_inst.CRBB)));
} }
void creqv(UGeckoInstruction _inst) void Interpreter::creqv(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, 1 ^ (GetCRBit(_inst.CRBA) ^ GetCRBit(_inst.CRBB))); SetCRBit(_inst.CRBD, 1 ^ (GetCRBit(_inst.CRBA) ^ GetCRBit(_inst.CRBB)));
} }
void crnand(UGeckoInstruction _inst) void Interpreter::crnand(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, 1 ^ (GetCRBit(_inst.CRBA) & GetCRBit(_inst.CRBB))); SetCRBit(_inst.CRBD, 1 ^ (GetCRBit(_inst.CRBA) & GetCRBit(_inst.CRBB)));
} }
void crnor(UGeckoInstruction _inst) void Interpreter::crnor(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, 1 ^ (GetCRBit(_inst.CRBA) | GetCRBit(_inst.CRBB))); SetCRBit(_inst.CRBD, 1 ^ (GetCRBit(_inst.CRBA) | GetCRBit(_inst.CRBB)));
} }
void cror(UGeckoInstruction _inst) void Interpreter::cror(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, (GetCRBit(_inst.CRBA) | GetCRBit(_inst.CRBB))); SetCRBit(_inst.CRBD, (GetCRBit(_inst.CRBA) | GetCRBit(_inst.CRBB)));
} }
void crorc(UGeckoInstruction _inst) void Interpreter::crorc(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, (GetCRBit(_inst.CRBA) | (1 ^ GetCRBit(_inst.CRBB)))); SetCRBit(_inst.CRBD, (GetCRBit(_inst.CRBA) | (1 ^ GetCRBit(_inst.CRBB))));
} }
void crxor(UGeckoInstruction _inst) void Interpreter::crxor(UGeckoInstruction _inst)
{ {
SetCRBit(_inst.CRBD, (GetCRBit(_inst.CRBA) ^ GetCRBit(_inst.CRBB))); SetCRBit(_inst.CRBD, (GetCRBit(_inst.CRBA) ^ GetCRBit(_inst.CRBB)));
} }
void mcrf(UGeckoInstruction _inst) void Interpreter::mcrf(UGeckoInstruction _inst)
{ {
int cr_f = GetCRField(_inst.CRFS); int cr_f = GetCRField(_inst.CRFS);
SetCRField(_inst.CRFD, cr_f); SetCRField(_inst.CRFD, cr_f);
} }
void isync(UGeckoInstruction _inst) void Interpreter::isync(UGeckoInstruction _inst)
{ {
//shouldnt do anything //shouldnt do anything
} }
// the following commands read from FPSCR // the following commands read from FPSCR
void mcrfs(UGeckoInstruction _inst) void Interpreter::mcrfs(UGeckoInstruction _inst)
{ {
//if (_inst.CRFS != 3 && _inst.CRFS != 4) //if (_inst.CRFS != 3 && _inst.CRFS != 4)
// PanicAlert("msrfs at %x, CRFS = %d, CRFD = %d", PC, (int)_inst.CRFS, (int)_inst.CRFD); // PanicAlert("msrfs at %x, CRFS = %d, CRFD = %d", PC, (int)_inst.CRFS, (int)_inst.CRFD);
@ -520,7 +517,7 @@ void mcrfs(UGeckoInstruction _inst)
SetCRField(_inst.CRFD, fpflags); SetCRField(_inst.CRFD, fpflags);
} }
void mffsx(UGeckoInstruction _inst) void Interpreter::mffsx(UGeckoInstruction _inst)
{ {
// load from FPSCR // load from FPSCR
// This may or may not be accurate - but better than nothing, I guess // This may or may not be accurate - but better than nothing, I guess
@ -530,5 +527,3 @@ void mffsx(UGeckoInstruction _inst)
riPS0(_inst.FD) = (u64)FPSCR.Hex; riPS0(_inst.FD) = (u64)FPSCR.Hex;
if (_inst.Rc) PanicAlert("mffsx: inst_.Rc"); if (_inst.Rc) PanicAlert("mffsx: inst_.Rc");
} }
} // namespace

View File

@ -361,8 +361,15 @@ static GekkoOPTemplate table63_2[] =
}; };
namespace InterpreterTables namespace InterpreterTables
{ {
bool initialized = false;
void InitTables() void InitTables()
{ {
// once initialized, tables are read-only
if (initialized)
return;
//clear //clear
for (int i = 0; i < 32; i++) for (int i = 0; i < 32; i++)
{ {
@ -491,6 +498,8 @@ void InitTables()
if (m_numInstructions >= 512) { if (m_numInstructions >= 512) {
PanicAlert("m_allInstructions underdimensioned"); PanicAlert("m_allInstructions underdimensioned");
} }
initialized = true;
} }
} }

View File

@ -392,8 +392,14 @@ void CompileInstruction(PPCAnalyst::CodeOp & op)
} }
} }
bool initialized = false;
void InitTables() void InitTables()
{ {
// once initialized, tables are read-only
if (initialized)
return;
//clear //clear
for (int i = 0; i < 32; i++) for (int i = 0; i < 32; i++)
{ {
@ -482,6 +488,8 @@ void InitTables()
dynaOpTable63[op] = table63_2[j].Inst; dynaOpTable63[op] = table63_2[j].Inst;
} }
} }
initialized = true;
} }
} // namespace } // namespace

View File

@ -376,6 +376,7 @@ static GekkoOPTemplate table63_2[] =
namespace JitILTables namespace JitILTables
{ {
void CompileInstruction(PPCAnalyst::CodeOp & op) void CompileInstruction(PPCAnalyst::CodeOp & op)
{ {
JitIL *jitil = (JitIL *)jit; JitIL *jitil = (JitIL *)jit;
@ -393,8 +394,15 @@ void CompileInstruction(PPCAnalyst::CodeOp & op)
PanicAlert("Tried to compile illegal (or unknown) instruction %08x, at %08x", op.inst.hex, jit->js.compilerPC); PanicAlert("Tried to compile illegal (or unknown) instruction %08x, at %08x", op.inst.hex, jit->js.compilerPC);
} }
} }
bool initialized = false;
void InitTables() void InitTables()
{ {
// once initialized, tables are read-only
if (initialized)
return;
//clear //clear
for (int i = 0; i < 32; i++) for (int i = 0; i < 32; i++)
{ {
@ -483,5 +491,8 @@ void InitTables()
dynaOpTable63[op] = table63_2[j].Inst; dynaOpTable63[op] = table63_2[j].Inst;
} }
} }
initialized = true;
} }
} }

View File

@ -25,7 +25,7 @@
namespace JitILTables namespace JitILTables
{ {
void CompileInstruction(PPCAnalyst::CodeOp & op); void CompileInstruction(PPCAnalyst::CodeOp & op);
void InitTables(); void InitTables();
} }
#endif #endif

View File

@ -22,6 +22,7 @@
//#define JIT_LOG_GPR // Enables logging of the PPC general purpose regs //#define JIT_LOG_GPR // Enables logging of the PPC general purpose regs
//#define JIT_LOG_FPR // Enables logging of the PPC floating point regs //#define JIT_LOG_FPR // Enables logging of the PPC floating point regs
#include "../CPUCoreBase.h"
#include "JitCache.h" #include "JitCache.h"
#include "Jit_Util.h" // for EmuCodeBlock #include "Jit_Util.h" // for EmuCodeBlock
#include "JitBackpatch.h" // for EmuCodeBlock #include "JitBackpatch.h" // for EmuCodeBlock
@ -32,9 +33,7 @@
#define JIT_OPCODE 0 #define JIT_OPCODE 0
// TODO: In the future, inherit this from CPUCoreBase and have Interpreter class JitBase : public CPUCoreBase, public EmuCodeBlock
// inherit from that too?
class JitBase : public EmuCodeBlock
{ {
protected: protected:
JitBlockCache blocks; JitBlockCache blocks;
@ -85,18 +84,11 @@ public:
JitBlockCache *GetBlockCache() { return &blocks; } JitBlockCache *GetBlockCache() { return &blocks; }
virtual void Init() = 0;
virtual void Shutdown() = 0;
virtual void Jit(u32 em_address) = 0; virtual void Jit(u32 em_address) = 0;
virtual void ClearCache() = 0;
virtual void Run() = 0;
virtual void SingleStep() = 0;
const u8 *BackPatch(u8 *codePtr, int accessType, u32 em_address, void *ctx); const u8 *BackPatch(u8 *codePtr, int accessType, u32 em_address, void *ctx);
virtual const CommonAsmRoutines *GetAsmRoutines() = 0; virtual const CommonAsmRoutines *GetAsmRoutines() = 0;
virtual const char *GetName() = 0;
}; };
extern JitBase *jit; extern JitBase *jit;

View File

@ -24,13 +24,11 @@
#include "FileUtil.h" #include "FileUtil.h"
#include "Interpreter/Interpreter.h" #include "Interpreter/Interpreter.h"
#include "Interpreter/Interpreter_Tables.h" #include "Interpreter/Interpreter_Tables.h"
#if !(defined(NOJIT) && NOJIT)
#include "Jit64IL/JitIL_Tables.h" #include "Jit64IL/JitIL_Tables.h"
#include "Jit64/Jit64_Tables.h" #include "Jit64/Jit64_Tables.h"
#include "Jit64IL/JitIL.h" #include "Jit64IL/JitIL.h"
#include "Jit64/Jit.h" #include "Jit64/Jit.h"
#endif
struct op_inf struct op_inf
{ {
@ -156,15 +154,33 @@ bool UsesFPU(UGeckoInstruction _inst)
} }
} }
void InitTables() void InitTables(int cpu_core)
{ {
// Interpreter ALWAYS needs to be initialized // Interpreter ALWAYS needs to be initialized
InterpreterTables::InitTables(); InterpreterTables::InitTables();
#if !(defined(NOJIT) && NOJIT) switch (cpu_core)
// Should be able to do this a better way than defines in this function {
Jit64Tables::InitTables(); case 0:
JitILTables::InitTables(); {
#endif // Interpreter
break;
}
case 1:
{
Jit64Tables::InitTables();
break;
}
case 2:
{
JitILTables::InitTables();
break;
}
default:
{
PanicAlert("Unrecognizable cpu_core: %d", cpu_core);
break;
}
}
} }
#define OPLOG #define OPLOG

View File

@ -113,7 +113,7 @@ class cJit64;
namespace PPCTables namespace PPCTables
{ {
void InitTables(); void InitTables(int cpu_core);
bool IsValidInstruction(UGeckoInstruction _instCode); bool IsValidInstruction(UGeckoInstruction _instCode);
bool UsesFPU(UGeckoInstruction _inst); bool UsesFPU(UGeckoInstruction _inst);

View File

@ -32,9 +32,12 @@
#include "Jit64/Jit.h" #include "Jit64/Jit.h"
#include "PowerPC.h" #include "PowerPC.h"
#include "PPCTables.h" #include "PPCTables.h"
#include "CPUCoreBase.h"
#include "../Host.h" #include "../Host.h"
CPUCoreBase *cpu_core_base;
namespace PowerPC namespace PowerPC
{ {
@ -42,7 +45,8 @@ namespace PowerPC
PowerPCState GC_ALIGNED16(ppcState); PowerPCState GC_ALIGNED16(ppcState);
volatile CPUState state = CPU_STEPPING; volatile CPUState state = CPU_STEPPING;
static CoreMode mode; Interpreter * const interpreter = Interpreter::getInstance();
CoreMode mode;
BreakPoints breakpoints; BreakPoints breakpoints;
MemChecks memchecks; MemChecks memchecks;
@ -137,18 +141,46 @@ void Init(int cpu_core)
#endif #endif
ResetRegisters(); ResetRegisters();
PPCTables::InitTables(); PPCTables::InitTables(cpu_core);
// Initialize both execution engines ... // We initialize the interpreter because
Interpreter::Init(); // it is used on boot and code window independently.
interpreter->Init();
if (cpu_core == 1) switch (cpu_core)
jit = new Jit64; {
case 0:
{
cpu_core_base = interpreter;
break;
}
case 1:
{
cpu_core_base = new Jit64();
break;
}
case 2:
{
cpu_core_base = new JitIL();
break;
}
default:
{
PanicAlert("Unrecognizable cpu_core: %d", cpu_core);
break;
}
}
if (cpu_core_base != interpreter)
{
jit = dynamic_cast<JitBase*>(cpu_core_base);
jit->Init();
mode = MODE_JIT;
}
else else
jit = new JitIL; {
jit->Init(); mode = MODE_INTERPRETER;
}
mode = MODE_JIT;
state = CPU_STEPPING; state = CPU_STEPPING;
ppcState.iCache.Reset(); ppcState.iCache.Reset();
@ -156,12 +188,15 @@ void Init(int cpu_core)
void Shutdown() void Shutdown()
{ {
// Shutdown both execution engines. Doesn't matter which one is active. if (jit)
jit->Shutdown(); {
jit->Shutdown();
delete jit;
jit = NULL;
}
interpreter->Shutdown();
cpu_core_base = NULL;
state = CPU_POWERDOWN; state = CPU_POWERDOWN;
delete jit;
jit = 0;
Interpreter::Shutdown();
} }
void SetMode(CoreMode new_mode) void SetMode(CoreMode new_mode)
@ -170,43 +205,30 @@ void SetMode(CoreMode new_mode)
return; // We don't need to do anything. return; // We don't need to do anything.
mode = new_mode; mode = new_mode;
switch (mode) switch (mode)
{ {
case MODE_INTERPRETER: // Switching from JIT to interpreter case MODE_INTERPRETER: // Switching from JIT to interpreter
jit->ClearCache(); // Remove all those nasty JIT patches. jit->ClearCache(); // Remove all those nasty JIT patches.
cpu_core_base = interpreter;
break; break;
case MODE_JIT: // Switching from interpreter to JIT. case MODE_JIT: // Switching from interpreter to JIT.
// Don't really need to do much. It'll work, the cache will refill itself. // Don't really need to do much. It'll work, the cache will refill itself.
cpu_core_base = jit;
break; break;
} }
} }
void SingleStep() void SingleStep()
{ {
switch (mode) cpu_core_base->SingleStep();
{
case MODE_INTERPRETER:
Interpreter::SingleStep();
break;
case MODE_JIT:
jit->SingleStep();
break;
}
} }
void RunLoop() void RunLoop()
{ {
state = CPU_RUNNING; state = CPU_RUNNING;
switch (mode) cpu_core_base->Run();
{
case MODE_INTERPRETER:
Interpreter::Run();
break;
case MODE_JIT:
jit->Run();
break;
}
Host_UpdateDisasmDialog(); Host_UpdateDisasmDialog();
} }

View File

@ -19,6 +19,7 @@
#define _POWERPC_H #define _POWERPC_H
#include "Common.h" #include "Common.h"
#include "CPUCoreBase.h"
#include "Gekko.h" #include "Gekko.h"
#include "BreakPoints.h" #include "BreakPoints.h"
#include "../Debugger/PPCDebugInterface.h" #include "../Debugger/PPCDebugInterface.h"
@ -26,6 +27,8 @@
class PointerWrap; class PointerWrap;
extern CPUCoreBase *cpu_core_base;
namespace PowerPC namespace PowerPC
{ {